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Abstract
The Transition Undulator Radiation (TUR), introduced by K. J. Kim, is derived as an

interference between two bremsstrahlung amplitudes at the entrance and exit of the undulator.
The result is applied to the TTF FEL experiment, for which this radiation, in the visible

bandwidth, may be used as an electron beam non intercepting diagnostics, while in the far
infrared region, due to the coherent emission by each microbunch, is a high brilliance source
synchronized with the higher energy FEL radiation.
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1 – Introduction
In a recent paper [1] Kwang–Je Kim has pointed out that a high energy electron beam

going through an undulator emits also a rather strong radiation at wavelengths much longer that
the fundamental spontaneous radiation.

This radiation has a wide bandwidth and an angular distribution peaked at an angle of the
order of 1/γ with respect to the beam direction (γ being the reduced electron energy).

Kim has named this radiation Transition Undulator Radiation (TUR), suggesting that its
origin derives from the sudden decrease of the beam average longitudinal velocity when
entering the undulator, folloed by the symmetric velocity increase at the undulator exit.

In its derivation of the radiation intensity, Kim does not explicitly use this feature. In this
paper I will show that TUR can indeed be obtained as the interference effect of two
bremsstrahlung amplitudes at the undulator extremities.

This approach gives a better understanding of the dependence of the radiation from the
various beam and undulator parameters, and opens also a question about the localization of the
radiation source. In fact Kim's derivation seems to suggest an emission continuously
distributed along the undulator, while the bremsstrahlung model points towards a localized
emission at the entrance and exit of the undulator. I will show that, in particular situations, this
can give rise to a sigificative difference for the radiation intensity and angular distribution.

Kim has evaluated the intensity of TUR from a standard undulator on a storage ring
dedicated to synchrotron radiation production and compared it to that from a bending magnet of
the same ring, obtaining that TUR has a lower intensity and its possible interest for users is
only based on a significant better spatial coherence.

The situation is quite different for the linac based projects of UV or X–ray FEL using the
SASE process. I will present numerical calculations using the parameters of the TTF FEL
experiment [2]. In this case the high charge of the beam and the low wavelength of the first
undulator harmonic allow a good TUR intensity in the optical bandwidth, sufficient for beam
imaging for diagnostic purpose. The very short bunch length required to obtain the desired
charge density makes possible a coherent emission from each microbunch at far infrared
wavelengths, with many order of magnitude increase of TUR intensity, that becomes a high
brilliance source.

2 – TUR as bremsstrahlung interference
When a high energy electron moving at a constant reduced velocity β enters an undulator,

it follows an oscillatory trajectory emitting spontaneous radiation with a first harmonic
wavelength λo. The electromagnetic field of the particle has a rather complex behavior, but for
wavelengths λ»λo can be well approximated to that of an electron moving on a straight line at a
constant velocity equal to the average longitudinal velocity of the real electron β1. Along the
motion in the undulator no radiation can be emitted at this wavelength, but a sharp discontinuity
is presented by the field at the entrance and the output of the undulator, identical to that of a
bremsstrahlung in which the electron suddenly change its velocity from β to β1 at the entrance
and the reverse at the output as is shown in Figure 1.

The radiation amplitude due to a change of the electron velocity from β to β1 can be
usefully described as the sum of the amplitude of an electron with velocity β suddenly stopping



— 3 —

and that of the same electron suddenly accelerating to the velocity β1, as shown in Figure 2.
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FIG. 1 – Schematic behavior of the electron average velocity before, along and
after the undulator.
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FIG. 2 – Change in the electron velocity described as a sudden stop and start.

In this case the number of photons emitted at wavelength λ for unit solid angle is given
by

dNf

dΩ = dλ
λ

α
4π2 A 2 (1)

with α the fine structure constant and

A = βsinθ
1 − βcosθ − βl sinθ

1 − βl cosθ




 (2)

the bremsstrahlung amplitude.
In the case of an undulator we have two equal amplitudes, with opposite sign, separated

by a phase difference Φ, so that

A = βsinθ
1 − βcosθ − βl sinθ

1 − βl cosθ




 1 − eiΦ( )

with

Φ = 2π
βl

L
λ 1 − βl cosθ( ) = 2πN

λo θ( )
λ
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in which L is the undulator length.
We therefore have

dNf

dΩ = dλ
λ α sin2 θ

1 − βcosθ( )2

β − βl( )2

βl
2

L
λ







2 sin2 Φ
2

Φ
2( )2 (3)

It is easy to demonstrate that, being

βl = β 1 − k2

4γ 2β2






with k the standard undulator parameter, and

β⊥
2 = k2

2γ 2

for γ»1 and θ«1 we obtain exactly Kim's formula

dNf

dΩ = dλ
λ α sin2 x

x2 β⊥
2 2 L

λ






2 γ 4θ2

1 + γ 2θ2( )2 (4)

with

x = Φ
2 = πN

λo θ( )
λ

Written as function of the undulator parameters, it becomes

dNf

dΩ = dλ
λ

α
4

sin2 x
x2 k4 L

λ






2 θ2

1 + γ 2θ2( )2 (5)

x = πL
2γ 2λ 1 + k2

2 + γ 2θ2



 (6)

The dependence of (5) from the various parameters is rather complex, but in the
framework of this model the physics is clear: we have two bremsstrahlung amplitudes, equal in
magnitude but of opposite sign, separated by a phase difference depending on the ratio L/λ and
on θ. For a zero–length undulator the two amplitudes exatly subtrac from each other and no
radiation is present, while for a short undulator and sufficiently long wavelength, for which we
can cosider Φ«1, and for a fixed angle θ, the sum of the amplitudes will linearly depend on Φ,
and thus on L/λ. The intensity will thus be proportional to the square of this parameter.
Increasing L/λ, the intensity will increase up to a maximum for Φ = π, and then decrease to a
new zero when Φ  = 2 π, but for a given undulator length this will be true only for a well
defined wavelength and emission angle θ.

The dependence of the phase from the emission angle θ makes the angular distribution of
the TUR different from that of a single bremsstrahlung, resulting in a wider angular spread.
For Φ » 2 π, the oscillations of the radiation intensity as function of θ and λ are so rapid that a
measurement over a finite solid angle and bandwidth will give only an average value. In this
case we can replace in (5) the square of the sine by its average value of 1/2 and we obtain that
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the intensity is now the sum of the intensities of the two single bremsstrahlungs, without
interference between them, and is independent from the undulator length and from wavelegth.
In a different language we can say that the two amplitudes are now separated by more than the
radiation formation length.

3 – TUR in the TTF FEL experiment
The TTF FEL [2] is a project to experimentally demonstrate the feasibility of a short

wavelength Free Electron Laser using the Self Amplified Spontaneous Emission (SASE)
process [3] and exploiting the high beam quality produced by the TTF superconducting linac
[4]. This project is a first step towards the production of a high intensity, coherent x–ray
radiation in the framework of the TESLA linear collider complex.

The main parameters of the beam and of the undulator are shown in Table I.

Table I – Beam and Undulator Parameters.

Beam energy 1 GeV
N. of electrons/microbunch 6 109

N. of microbunches 7200
Bunch length (rms) 50 µm

Bunch radius (rms) 50 µm

Undulator length 6 x 5 m
Undulator gap width 12.5 mm
Fundamental harmonics wavelength 6.4 nm
Undulator k parameter 1.32

The undulator consists of 6 modules of 5 meters each separated by short straight sections
containing focusing elements. In this case the total TUR amplitude is the sum of 12
bremsstrahlung amplitudes, but the phase difference between the exit from one module and the
entrance in the next one is so small that it can be neglected. In this way amplitudes from
neighbouring discontinuities subtract from each other and we are left with only the first and the
last one, that is, the result is the same of that of a single undulator of length equal to the sum of
the lengths of all modules.

The number of emitted photons in a bandwidth of .1% is plotted in Figure 3 as function
of wavelength.
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FIG. 3 – LogLog plot of the number of emitted photons in a .1% bandwidth,
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from eq. (5), applied to the TTF FEL project.
In the optical region, where Φ»2π and the approximation of the sum of two

bremsstrahlung intensities holds, the number of photons is almost constant. In the near and mid
infrared region it oscillates. A detail from 1 to 50 µm is given in Figure 4, showing that it
reaches a maximum around 20 µm and then decreases very rapidly in the far infrared, when
Φ«π and the two bremsstrahlung amplitudes almost cancel.

Nphs

λ [ µm]

FIG. 4 – A particular of Figure 3: from 1 to 50 µm wavelength.

The incoherent intensity is at all frequencies definitely too small to be considered as a
source for experimental work, but two wavelength regions deserve a more detailed analysis: the
optical bandwidth, because the radiation emitted in this frequency range can be used to mage the
electron beam and derive its position and intensity profile, and the far infrared region, in which
the coherent emission by all electrons in a microbunch can greatly enhance the intensity.

4 – TUR in the optical bandwidth
The short fundamental harmonics wavelength of the TTF FEL makes the condition

λ  » λ o well satisfied even in the optical bandwidth. From (6) it is clear that in this case

Φ  » 2π, and the total TUR intensity is the sum of the intensities of two single
bremsstrahlungs.

From a practical point of view, there is a strong difference depending on whether the
radiation is emitted by two distinct sources or continuously along the undulator: in the first case
the radiation from the undulator entrance cannot reach a detector placed downstream, due to the
small vacuum pipe diameter, other than for very small angles or through multiple reflections on
the inner surface, and an image of the undulator exit will show a well focused beam image
produced by the radiation emitted by bremsstrahlung there, with possibly a very tenuous
diffuse background. In the second case a fraction of the radiation, produced in the last part of
the undulator, may be detected, and, due to the finite field depth of the optical system, the
image of the beam will not be well defined being, in any case, the average on a rather long
trajectory.

This ambiguity will be solved experimentally but, in the meantime, I have computed the
measurable intensity for both situations, even though, in my opinion, the two–source model
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will prove to be correct in the short wavelength region.
For the reason discussed above, in the case of a localized emission we can consider only

the radiation from the bremsstrahlung at the undulator exit, that, from (1) and (2), can be
written, in terms of the undulator parameters, as

dNf

dΩ = dλ
λ

α
4π2

k4γ 4θ2

1 + k2

2 + γ 2θ2





2

1 + γ 2θ2( )2
(7)

The angular distribution of this radiation is shown in Figure 5.
The figure evidences that a simple way to extract the radiation from the vacuum pipe,

without interfering with the high energy FEL radiation, exists: the FEL radiation being
concentrated around the beam direction in a cone of the order of few tens of µrad aperture, a
mirror tilted at 45˚ with a hole along the beam axis may extract most of the TUR and let the FEL
radiation through the aperture.

A.U.

θ [rad]

FIG. 5 – Angular distribution of the single bremsstrahlung radiation at the undulator exit.

With a hole subtending ± 200 µrad from the undulator exit, the 99% of the TUR will be
extracted and the total intensity integrated over the optical bandwidth, from 400 to 800 nm, is

Nopt = 1 ⋅10−4 Photons
electron

This means that we can have 6 105 photons per microbunch, a number more than
sufficient to give a well detailed image of the beam charge distribution using an intensified
camera. It will then be possible to study the evolution of beam position and profile along the
macrobunch.

Even with a standard CCD camera we have enough photons for a very good image of the
beam integrated over the whole macrobunch.

In the case of a distributed source, to obtain the total flux we must integrate over a solid
angle that depends on the position along the undulator. We neglect the possibility of internal
reflection, a correct assumption if we want to obtain an image of the beam, because the reflected
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radiation givies only a diffuse background.
The angular distribution obtained in this case is compared to that of a single

bremsstrahlung source in Figure 6.
The total flux in the optical bandwidth, through the same ± 200 µrad hole, is in this case

6.3 10-5 photons/electron, which is not very different from the previous one. The photon
number is also in this case more than sufficient for a statistically good image, but the long
source may give serious problems to obtain a well focused and detailed image.

Distr ibuted source

Single
bremsst rahlung
source

FIG. 6 – Comparison of angular distribution from a TUR distributed source and a
single bremsstralung

The difference in angular distribution could be used to discriminate between the two
possibilities, but the main difference remains in our opinion in the focusing properties.

Note that the diagnostics by means of TUR, being based on a radiation spontaneously
emitted, does not in anyway perturb the electron beam and, more importantly, is really non
intercepting, avoiding the danger of material damage by the high power density of the beam
itself.

5 – TUR in the far infrared region
As we have seen in Paragraph 3, in the far infrared region the radiation intensity is

strongly reduced by the almost complete cancellation of the two bremsstrahlung amplitudes due
to the very small phase difference, however, for wavelengths longer than the microbunch
length, all electrons emit more o less coherently, and the total intensity is no longer proportional
to the number of electrons, but will increase with a power of that number that, for very long
wavelengths, tends to the square.

More precisely, the total number of photons emitted by a microbunch with Ne electrons
is

Nfch = Ne 1 + Nef λ( )( )Nf (8)

where Nf is the number of photons emitted by a single electron, while f(λ ) is a form factor
related to the charge distribution in the microbunch ρ(z):
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f λ( ) = ρ z( )exp i2πz / λ[ ]dz∫
2

(9)

in which I have neglected the effect of the transverse beam dimension.
In this wavelength region there are not efficient instruments for beam imaging, and,

furthermore, the metallic vacuum pipe can be considered a perfect mirror. Only the total flux is
therefore of interest.

Assuming the radiation will be extracted, as in the previous case, by a mirror with a hole
covering an angle of ±200 µrad from the undulator exit, the flux given by formula 5, neglecting
coherent emission, is shown in Figure 7, in which the total number of photons in a .1%
bandwidth is plotted as a function of wavelength.

Nphs

λ [m ]

FIG. 7 – Photon flux at long wavelength without coherent emission.

The coherent emission changes the picture completely, but, to proceed with the
calculation, a hypothesis on the electron distribution in the microbunch must be made. For a
uniform distribution of length l = 100 µm, corresponding to a rms value of 50 µm, the form
factor f(λ) from eq. 9 becomes

f λ( ) =
sin2 πl

λ






πl
λ







2 (10)

and the total photon flux as function of wavelength, with the same bandwidth and extraction
geometry of the previous figure, is shown in Figure 8.

For a gaussian electron distribution with σ = 50 µm, we have

f λ( ) = e− lb
2π2

λ2 (11)

and the relative total photons flux, in the same bandwidth and with the same mirror hole, is
shown in Figure 9.
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FIG. 8 – Photon flux from coherent emission for a uniform electron distribution.
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FIG. 9 – Photon flux from coherent emission from a gaussian electron distribution.

The real electron distribution will probably be in between these two extreme cases.
The small transverse dimension of the source, less than the radiation vawelength, and the

limited angular spread, give very high, diffraction limited, brilliance; averaged over a
macropulse, it can reach 1022 Nphs/(s .1% mrad2 mm2).

A quantity of particular interest for the FEL project, as a possible source of perturbations,
is the total power emitted by the electron beam through this new process.

It is evident that most of the power is carried by wavelengths for which the coherent
emission occurs. The energy lost by the beam, in a 100% bandwidth and in the hypothesis of a
gaussian electron longitudinal distribution, is shown in Figure 10 as a function of wavelength.
The total energy, integrated on all wavelengths, is however only about 5 103 GeV, negligible
compared to the beam energy. At a repetition rate of 10 Hz this corresponds to an average
power of 6 µW, most of which due to wavelengths in a small interval around 200 µm.
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FIG. 10 – Energy loss per unit bandwidth from a macrobunch in the far infrared
as function of wavelength.

6 – Conclusions
The Transition Undulator Radiation has been derived as an interference between two

bremsstrahlung amplitudes produced at the entrance and exit of the undulator. This model gives
a clear insight of the physics of the process and a simple explanation of the dependence of the
radiation intensity from the various parameters.

The result is applied to the TTF FEL experiment, for which, due to the very short
wavelength of the fundamental harmonics of spontaneous radiation, a good intensity is emitted
even in the optical bandwidth. At these wavelengths the phase difference between the two
bremsstrahlung is much larger then the radiation formation length, and the model predicts the
existence of two distinct radiation sources, one at each end of the undulator. In these conditions
the optical radiation may prove a very effective and non perturbing beam diagnostics tool.

In the far infrared region the short bunch length allows a coherent emission that strongly
enhances the otherwise very low intensity. Even so the intensity is not very high but the
brilliance is very good in a wavelength region in which intense sources are not easy to be
found. This fact, and the natural synchronization with the FEL radiation, may result in a
possible scientific use. Further analysis of this point is needed.
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