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Abstract

We analyze the implications of a Higgs discovery on possible “new-physics” scenarios, for my up to ~ 700 GeV. For
this purpose we critically review lower and upper limits on the Higgs mass in the SM and in the MSSM, respectively.
Furthermore, we discuss the general features of possible “heavy” (my 2 2mz) Higgs scenarios by means of a simple

~

heavy-fermion condensate model. (© 1997 Published by Elsevier Science B.V.

1. Introduction

The discovery of the Higgs particle is of utmost
importance in particle physics. Over the years, various
theoretical bounds have been made [1-8], and most
recently an experimental lower bound of 65 GeV was
set [9]. But the Higgs boson still remains elusive. Its
nature — mass and couplings — would reveal the most
fundamental aspects of the kind of mechanism that
governs the spontaneous symmetry breakdown of the
standard model (SM). In particular, one would like to
know whether or not such a discovery, if and when it
will be made, will be accompanied by “new physics”
at some energy scale A. Of equal importance is the
following question: at roughly what mass scale will the
Higgs boson be considered elementary or composite?
Can one make some meaningful statement concerning
its nature once it is discovered? These are the issues
we would like to explore in this paper.

A first step in this direction has been recently
achieved by detailed analyses of the Higgs poten-
tial [6-8]. Indeed, with the discovery of the top quark

with mass m, = 175+ 9 GeV [10], the Higgs mass
(mp) is severely constrained by the requirement of
vacuum stability. In particular, two interesting con-
clusions have been drawn:

i. If aHiggs will be discovered at LEP200, i.e. with
my < mgz, then some new physics must appear
at very low scales: A < 10 TeV [7,8,11].

ii. The standard model with an high cut-off (with-
out new particles below 10'> GeV) requires
my 2 130 GeV and is incompatible with
the minimal supersymmetric standard model
(MSSM), where the mass of the lightest Higgs
boson is expected below 130 GeV [8].

We shall re-analyze the above statements, trying to
clarify the stability of the physical conclusions with
respect to the theoretical errors, and we shall extend
the discussion studying the implications of a Higgs
discovery up to approximately 700 GeV.

The plan of the paper is as follows. In the next
section we shall briefly review what is known about
the Higgs sector of the SM and of the MSSM. We then
divide our analysis into three separate mass regions:
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the region below mz, between mz and 2mz, above
2mz.

2. The Higgs boson in the SM and in the MSSM

The symmetry breaking sector of the SM is highly
unstable and make sense only in presence of a cut-
off scale A. The instability of the scalar sector implies
that upper and lower limits on myg, imposed by the
requirement of no Landau pole and vacuum stability,
both below A, tend to shrink together as the cut-off
increases [1,2].

The instability of the scalar potential is generated
by the quantum loop corrections to the classical ex-
pression

Vtree(d,)__ 2.5t _’E IPAY _<¢+)
= m¢¢'+6(¢¢), P = #° )
(1

where 0?2 = 2(¢°)? = 1/V2GFr ~ (246 GeV)? and
¢ = V2Re@® — v is the physical Higgs field. As
already noticed in Ref. [1], and successively con-
firmed by detailed analysis of the renormalization
group (RG) improved potential [3,12], the issue of
vacuum stability for ¢ ~ A > myz practically coin-
cides with the requirement that the running coupling
A(A) never becomes negative. On the other hand, the
requirement that no Landau pole appears before A is
equivalent to the condition that A(A) always remains
in the perturbative region.

The evolution of A as a function of A is ruled by a
set of coupled differential equations

dA(r)/dt = Br(A, ),
dg?(t)/dt = Bi(A, g),

with the corresponding set of initial conditions which
relate A(u) and giz( m) to physical observables (g3,
g2 and g; denote SU(3)¢ x SU(2), x U(1)y gauge
couplings and g; the top-quark Yukawa coupling, all
couplings are understood in the MS scheme). The 8-
functions of Eq. (2) are known in perturbation the-
ory up to two loops (see Ref. [12,5] for the complete
expressions), i.e. up to the third order in the expan-
sion around zero in terms of A and g,?, whereas the
finite parts of the initial conditions around u = mz
(threshold corrections) are known up to one-loop ac-
curacy [ 13-15]. This knowledge enables us to re-sum

t=1n(A/k) (2)
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Fig. 1. A(A) for m, = 175 GeV (pole mass) and ag(mz) = 0.118.
Full and dashed lines have been obtained by integrating two-loop
beta functions and using one-loop matching conditions, whereas
the dotted one has been obtained by integrating one-loop beta
functions. The physical values of the Higgs mass corresponding
to the full lines are my = 136 and 174 GeV.

all the next-to-leading logs in the evolution of the cou-
pling constants and thus to calculate them with high
accuracy in the perturbative region. Nevertheless, the
unstable character of A(t) can be simply read-off by
the one-loop expression

Br= 1o [44° + 12287 — 36g] + 0(st.8D)] . (3)
together with the tree-level relations

3m2 2m2
Almp) = UzH and gi(m,) = 0—2' (4)

For small values of my the g‘,‘ term in Eq. (3) drives
A to negative values, whereas if my is large enough
the Higgs self-interaction dominates and eventually A
“blows up”.

The situation is summarized in Fig. 1 where we
plot the evolution of A as obtained by integrating two-
loop beta functions. For m, = 175 (pole mass) and
as(mz) = 0.118, if we impose the condition

0 < A(A) < 10 (5)

at the Planck scale, then my is confined in a very
narrow range (full lines in Fig. 1) !

136 GeV < my < 174 GeV. (6)

' with respect to Ref. [7] we have removed a small error in
the threshold correction of g, (the correct expression is given in
Ref. [15]) obtaining a ~ I GeV decrease of the lower limit.
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The lower limit on my depends strongly on the values
of m; and ag(mz) [6-8] whereas the upper one is
more or less independent from them, both are weak-
ened if the condition (5) is imposed at scales A below
the Planck mass (dashed lines in Fig. 1). The conse-
quences of a Higgs mass outside the range (6) will
be discussed in the following sections.

The Higgs sector of the MSSM (see Refs. [17] for
excellent reviews) contains two Higgs doublets, one is
responsible for charged-lepton and down-type-quark
masses (H,), the other for up-type-quark masses
(H3). Of the eight degrees of freedom, two charged,
one CP-odd and two CP-even neutral scalars corre-
spond to physical particles after the SU(2), x U(1)y
breaking. The tree-level potential for the two neutral
components HY and Hg is given by

2 2
V(ree(HO’Hg) - & —;g2(|H(l)i2 _ |H{2)|2)2

+m?|HY)? 4+ m3|HO> + [mb,HYHS +he]l. (7)

The sum of the two vacuum expectation val-
ues squared is fixed by the gauge boson masses:
v} + 0 = 0 (v1g = \/i(H?,z)), while the ratio
tan(B) = vy/v) is a free parameter. The remarkable
feature of the potential (7) is that the coefficient
of the dimension-four operator is completely fixed
in terms of the gauge couplings g; and gy. This
property leads to the tree-level relation m%”,, =
[m} + m}y F /(m] +m%)? — 4mim% cos? 28] /2
(mpy g are the two CP-even Higgs boson masses and
my is the CP-odd one) that implies a strict upper
bound

mp < mzcos2P < my (8)

on the lightest Higgs boson mass.

As is well-known { 18,19,8], the bound (8) receives
large radiative corrections if SUSY particles, and in
particular the ¢ squark, are heavy. This can be easily
understood by means of the SM evolution of A previ-
ously discussed. Indeed, if all SUSY particles (includ-
ing additional Higgs bosons) have a mass of the order
of Ms (M3 > m%), the lightest Higgs boson decou-
ples below Mg and mimics the SM Higgs. Then, the
evolution of the scalar self-coupling A(A) is dictated
by SM beta functions up to A = Mg, where SUSY is
restored and, according to the potential (7), the fol-
lowing relation must hold

z.o_ T it e
15— ]
.\K\
= 1.0— —
~<

. PR — P N
2.5 3.0 3.5 4.0 4.5
logo(A/1GeV)

Fig. 2. A(A) in the small A region. The horizontal dotted lines
indicate the MSSM upper limit imposed by Eq. (10) for Mg = A
and X, = 0 (lower curve) or X, = X,(Ms) chosen to maximize
the threshold effect (upper curve). Full and dashed lines indicate
the SM evolution of A (two-loop beta functions and one-loop
matching conditions with m, = 175 GeV and ag(mz) = 0.118)
for different values of my (as indicated above each line).

AMMs) = 2 [g1(Ms)? + g2(Ms)?] cos® 28. (9)

Eq. (9) saturates the bound (8) for Mg ~ my but,
due to the rapidly decreasing behaviour of A(A) (see
Fig. 2), implies (20-30) % violations of the tree-level
bound for Mg ~ 1 TeV [18]. Analogously to the
tree-level relations (4), the boundary condition (9)
is not differentiable with respect to the scale of A: in
order to calculate precise bounds on the Higgs mass
is necessary to include threshold effects in both cases.
The most important correction to Eq. (9) is the one
generated by stop loops, that is proportional to g7. If
we include this effect, Eq. (9) is modified in

AA) =2 [g1(A)? + g2(A)?] cos? 28 + AX(A),
(10)

where dAA(A)/dIn(A/p) = —36g/167> + - - -, by
this way the leading terms in the derivatives of both
sides of Eq. (10) are the same. The explicit expression
of AA(A), obtained by the one-loop stop contribution
to the potential (7), is given by [8]

1672 m2 12m?
L(mt—Xt)2 [ — (mt'“Xt)2 +ln ’712_’71_2*_
o2 12m2 A% ’

(11)
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where m% = M% + m? + m,X, are the eigenvalues of
the stop mass matrix and X, is the usual stop-mixing
parameter [8,18]. As noticed in Ref. [8], AA(Mj5)
has a maximum for X? = 6M§ + O(m?). Imposing
the boundary condition (11) at A ~ Mg, using two-
loop SM beta functions to evolve down at u ~ my
and finally using SM one-loop matching conditions to
relate my and m; to A and g, we find (masses are in
units of GeV)

MM < 127 + 0.9 [m, — 175]

as(mz) —0.118 Ms
~ 038 Tlogy | => ) +4
[ 0.006 J 70810 (103)
(12)

in good agreement with the analysis of Ref. [8] 2.
The error in Eq. (12) has been estimated by varying
low and high energy matching scales in the following
intervals: A € [Mg,2Ms] and u € [mz,2m,]. Obvi-
ously the upper limit is very sensitive to M, defined
as the soft stop mass, and is valid for Mg near 1 TeV;
on the other hand, the dependence on other SUSY
masses is within the quoted error. As can be noticed
from Fig. 2, for m; = 175 GeV and ag = 0.118, the
SM with A = Mppk is compatible with the MSSM
only for unnatural large values of Mj.

3. Physics of the “low” mass Higgs boson:
my < mz GeV

As we have discussed in the previous section, the
SM vacuum becomes unstable when my < 136 GeV.
In this case the usual wisdom asserted that new degrees
of freedom must show up at or before the scale A
where A(A) becomes negative. If the Higgs mass is
below the Z mass this implies new physics in the TeV
region [7,8,11].

Recently, it has been pointed out [21] that for small
values of A the lower limit on my imposed by the
condition

dvIRS(4)
dé | 4es

where V!"RG(¢) denotes the one-loop RG-improved
potential, do not coincide with the one imposed by

> 0, (13)

2 Lower bounds are obtained with more stringent assumptions,
like the naturalness of various MSSM parameters [20].

A(A) > 0. We agree with the above statement, how-
ever it must be stressed that the two conditions lead to
equivalent results up to a small re-definition of A [21].
As an example, the lower limit on mgy imposed by
Eq. (5) with A = 1 TeV, namely my > 72 GeV, is
equivalent to the one imposed by Eq. (5) with A4 ~
3.4 TeV. On the other hand, the two conditions coin-
cide for large values of the cut-off, where the corre-
sponding A(A) curves are almost flat (Fig. 1). Since
the exact relation between A, understood as the scale
where the evolution of A is no more ruled by standard
model beta functions, and the masses of hypotheti-
cal new particles depends on the details of the new-
physics model [ 11], in our opinion is meaningless to
fix A with great accuracy. In other words, for a given
value of my, the scale A where Eq. (5) or Eq. (13)
are no more satisfied can give only an indication of
the order of magnitude below which new physics must
appear, and within this interpretation the two condi-
tions are completely equivalent and consistent with the
statement (1) of Section 1.

To stabilize the SM vacuum, one has to add more
scalar degrees of freedom which couple to the SM
Higgs, a well-known fact from studies of the effective
potential or from studies of the RG equations. The
most natural new-physics candidate in this case is the
MSSM. There is a plethora of scalar fields: the su-
persymmetric partners of quarks and leptons, and the
additional Higgses. However, as we have seen in the
previous section, the “stabilizing scalar” is the stop
which cancels the g, dependence in the evolution of A.
The lighter the Higgs is, the lighter the stop must be.

What happens if the Higgs mass is very light, say
70 GeV, and the stop is not found in the TeV region?
Either the MSSM is not correct and a more compli-
cated version is needed or something other than SUSY
enters the picture. In Ref. [ 11] this question has been
studied using a toy model with electroweak singlet
scalars, with multiplicity N and with a coupling & to
the standard Higgs field. It was found that the mass of
the new singlet scalars could be as high as ten times
the scale A where A(A) becomes negative.

In the above discussion, there was never any need
for the Higgs boson to be composite. In fact, it ap-
pears to be more natural for the Higgs boson to be
elementary in this case. Although there are models
for a “light” Higgs boson where an elementary Higgs
field is mixed with a top condensate [22], it does not
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appear to be possible to construct a model where the
Higgs boson is entirely composite. It is in this sense
that we conclude that the Higgs boson is elementary
if its mass is mz or below.

4. Physics of the Higgs boson with
mz < my < 2myg

This is a region where it will be extremely hard
to detect the Higgs boson [4]. Theoretically, this is
a region where one can still presume that the Higgs
boson is an elementary particle. Indeed, a look at Fig. 1
will convince us that A blows up below the Planck
scale only when my 2> 2mz. Furthermore, there is no
known mechanism which can give rise to a composite
Higgs boson that light (without additional scalars).

As we have seen in Section 2, if mg < 130 GeV the
most natural candidate is still the MSSM. On the other
hand, for my 2 130 GeV the MSSM it is unnatural
because the SUSY scale is too high. Above 130 GeV
natural candidates are SUSY extensions of the SM
with a non-minimal scalar sector [23]. In this region
also the SM itself can be considered a good candidate.
Indeed, a part from the problem of quadratic diver-
gences, new physics can be pushed up to the Planck
scale if my 2 130. In this framework, an interesting
scenario is the one proposed in Ref. [24].

5. Physics of the Higgs boson with my > 2m,

We finally come to the question of which kind
of new physics is expected if my is found above
~ 180 GeV, i.e. in the region where A(A) develops
a Landau singularity below the Planck mass. If one
believes that the Landau pole is not an artifact of
perturbation theory but a non-perturbative feature of
the model, as suggested by lattice simulations (see,
e.g. Refs. [16,5]), then it is natural to think that
some new physics must show up at or below A;. If
that is so, this kind of new physics must be very dif-
ferent from the one needed to stabilize the vacuum,
since one is now dealing with a strong coupling do-
main. One is then tempted to attribute this behaviour
(strong coupling) to the nature of the Higgs boson. In
particular, one might think that the Higgs boson is a
composite particle which acts like an elementary field

m,=180
. my=300 / | my=230
= ! 1
e 41— / !
) . ] I
/ y /
/
P s
2 - ~ / s -
E i - Tip=150 ]
= = ~ _ — —  my=200]
Tl ST =R S ey
o .
5 10 15

logs(A/ 1GeV)

Fig. 3. RG evolution of the Yukawa couplings g? (full and
dash-dotted lines) and gfl (dashed lines). The top mass is always
fixed to be 175 GeV and the heavy-lepton mass is assumed to be
90 GeV. The dash-dotted line is the evolution of g? without ex-
tra fermions. Near each dashed line is indicated the value of my
and the corresponding value of my obtained by the requirement
AL = Ay (the error on both my and my is about £10 GeV).

below the scale A;. This is the scenario we would
like to explore below.

The physics below the compositeness scale can be
described in terms of an effective field theory whose
couplings are constrained by the boundary conditions
at the compositeness scale. In this framework, a class
of models which is particularly attractive, relevant to
the present discussion and quite general, is the class of
the top-condensate models [25,26]. There the relevant
boundary conditions are [26,27]

Ap), gi(p) "5 oo, (14)
Aw) /g2 (w) =5 const. (15)

Thus, the Landau singularity of the Higgs self-
couplings naturally fits into this scheme. The only
problem is the requirement of a pole also in the evo-
lution of the top Yukawa coupling. As can be noticed
in Fig. 3, the top Yukawa coupling itself is not large
enough to develop a singularity since its evolution is
“softened” by QCD. However, as we will show in the
following, if we include additional heavy fermions
with a mass my above a critical value, both g, and g¢
can “blow up” at a scale Ay.

To analyze better the model, let us consider the La-
grangian of a single degenerate quark doublet g =
(u,d) coupled to the Higgs field. If we re-scale the
Higgs field in the following way
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& — do/gy, (16)

the Lagrangian becomes
L = Lhinctic(tt, d) + Zp D, @} D ®y + i’}

A
- 8(453@50)2 + GL®odg + LS ug +hc., (17)

where
B = ioy @), Zo=1/gs, W =Zem’
and A=Z2A (18)

If A and gfc develop a singularity at the same scale
Ay = A = Ac, so that the boundary conditions (14)-
(15) are satisfied, then with an appropriate tuning of
the quadratic divergences we can have [27]

m? | A% “Z4 const < 0. (19)

Thus at the compositeness scale the above Lagrangian
becomes

L = Lyineic (U, d) +qL(p0dR+67L(pguR+;fl2¢$¢o+h.C.
(20)

and &g, which is now just an auxiliary field, can be
integrated out to obtain a four-fermion Nambu-Jona-
Lasinio Lagrangian [28]

L = Linetc(4, d) + Gogr(ugiig + drdg)qr,  (21)

with Gy = —1/m?. Viewed in this way, the Higgs bo-
son becomes a dynamical fermion-condensate below
the scale Ac, in other words the Higgs boson becomes
a composite particle.

The necessary conditions for the above view to hold
are the constraints (14), (15). In order to understand
if these conditions can be satisfied, it is useful to ex-
amine the RG equation of the ratio x = A/ g% At one
loop, it is given by

16#2% =4g5(x — x3) (x — x_), (22)
where x4 = (—3+9) /2, if both members of the quark
doublet are degenerate in mass, or x4 = %( —~1+£v65),
if one member is much heavier than the other one
(e.g. the 3rd generation case). The only possibility
to have Ay = A is that the initial value of x is one
of the two fixed points. Since x_ is always negative,

the solution x = x_ is ruled out by vacuum stability.
Thus the boundary conditions can be satisfied only if
x = x4 and this implies a precise relation between mpy
and my. Using the tree-level relations (4) we find

my = Emix,. (23)
Since x, is always greater than 3/2, the fixed point
scenario implies

myg > myg. (24)

It is easy to see that, in the large N, limit, the fixed
point takes on the value x = 6, giving my =2my, a fa-
miliar result found in the Nambu-Jona-Lasinio model.
For finite N, one finds in general

my <myg <2my. (25)

As we have mentioned earlier, the top quark is not
heavy enough to solely fit into this scenario. This is be-
cause the growth of the top Yukawa coupling is damp-
ened by QCD. The minimum top mass for which there
will be a Landau singularity at the Planck mass is m, ~
216 GeV, a value which is way outside the experimen-
tal range. Let us then assume that there exist some
extra heavy fermions. To avoid the anomaly problem
we will add a complete family of heavy quarks and
leptons. For simplicity we will give a Dirac-mass to
the neutrino and, in order to satisfy the constraints
of electroweak precision measurements [29], we will
assume that both quarks and leptons are degenerate
SU(2) . doublets. As we shall see below, the addition
of these extra fermions changes dramatically the be-
haviour of the couplings at high energy. To see this let
us write the RG equations for A, g, (the top Yukawa
coupling), g, and g (the Yukawa couplings of the
heavy quark and lepton doublets)

dA
167~ = 42% + 4A(3g] + 6g] + 27)
— 12(3¢} + 6g° + 28}) + O(g}, 82), (26)

d 2
1677 5L = g2[9g2 +12g% +4g2 — 162) + O(g?, g2),

dr ~
(27)
2 dgg 2 2 2 2 2 2 2
1677 —= = go[6g; +12¢g,+4g; — 1685] +O(g1, £3),

dt
(28)

dg?
1677'2__&_[!_ =812[6g,2+12g§+4812] +0(g%’g%)_ (29)
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In absence of extra fermions one can easily see from
the above equations that the growth of g, is dampened
by the gauge couplings (mainly by g3). On the other
hand, in the presence of the extra fermions g, is no
longer dampened provided g, or g; exceed some criti-
cal values 3 . In addition, all the Yukawa couplings tend
to “drag” each other. Assuming for simplicity that the
leptons are relatively light (m; ~ Mz), i.e. assuming
that for small ¢ the major role in dragging g, is played
by g4, then a numerical integration of the above equa-
tions shows that for m, 2 150 GeV all the g, (Y =
t,q,1) develop a singularity around the Planck scale
(see Fig. 3). Imposing the condition that A develops a
singularity at the same scale as the g,, we can then de-
termine the Higgs mass (e.g. we find mg ~ 200 GeV
if the singularity is around the Planck scale). As m,
increases, the compositeness scale A¢ decreases and
the relation between my and m, approaches the fixed
point prediction (23) with x; ~~ 3. If one relaxes the
assumption that the leptons are light then a new param-
eter enters the game: the relation between the Higgs
mass and the heaviest fermion receives small correc-
tions but the corresponding compositeness scale can
be substantially smaller.

The above scenario cannot be considered as a re-
alistic model. Indeed, if the scale Ac¢ is high there is
a “fine tuning” problem related to the large disparity
between A¢ and the electroweak scale. However, it is
beyond the scope of this paper to try to construct an
underlying theory around A¢ and thus we will ignore
it. Our purpose is just to show some general features
of a wide class of models. In particular, if there are
no new bosons (scalars or gauge bosons) below the
compositeness scale, the following features hold inde-
pendently of the multiplicity of the new fermions:

i. The compositeness scale Ac, the heavy-fermion
mass my, and the effective Higgs mass my, are
tied together so that my and my increase as Ac
decreases.

ii. As shown in Eq. (24), one typically finds my >
my. Thus if my is not found below 2m it should
be “easier” to search for new fermions instead
of searching for the Higgs boson itself.

3The O(g3, ¢2) terms in Eqgs. (28), (29), which tend to split the
evolution of U and D Yukawa couplings, cannot be neglected if
we are interested in a precise determination of the critical values
of g4 and/or g.

iii. For Ac =~ 1 TeV both my and my are O(Ac)
and the Higgs effective theory becomes mean-
ingless. In this sense we agree with the more
precise and well-defined lattice bound: my <
700 GeV [16].

6. Conclusions

In this paper we have analyzed the consequences
of a Higgs discovery up to approximately 700 GeV,
dividing the mass region into three parts: the region
below mz, between my and 2mz, above 2m;.

Regarding the first two regions we have confirmed
and refined the results stated in the introduction,
namely the SM lower bound due to vacuum stability
and the MSSM upper bound.

Regarding the last region (my = 2mz) we have
shown, by means of a simple heavy-fermion conden-
sate model, how the Landau pole of the Higgs self-
coupling can be related to the compositeness of the
Higgs particle. We have analyzed the general features
of such scenarios. In particular, we have shown that
there exists a precise relationship between the effec-
tive Higgs mass, the new-fermion mass and the com-
positeness scale, which should hold in a wide class of
models.
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