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Abstract- The complex AC susceptibility (x) of high
T¢ superconducting materials has been described in

of hysteretic and AC including
flow resistivities in the

terms losses. By

both flux creep and [flux

expression of the flux diffusivity, 1iaduction

profiles have been numerically calculated from the
The

function of

linear flux diffusion equatioa. imaginary

evaluated as

nan

part of y has been

temperature, frequency and amplitude of the applied |

magnetic field. The role of pinning and AC losses

occuring in high T, materials is discussed.

[. INTRODUCTION

The critical state model for hard superconductors assumes
that. in absence of thermally activated phenomena,
supercurrents can flow in macroscopic regions, with density
equal to a critical value, Jo(B), which is a function of the
local induction B. However, thermal activation is very
effective for high T materials and it produces non linear
resistive effects [1]. Thus. in AC suscepubility
measurements both hysteretic and frequency dependent losses
are present [2.3] and the cnitical state model 1s not accurate
for calculating losses.

In order to take into account both kind of losses, a useful

approach is the solution of the non linear diffusion equation

(4] for the magnetic induction (B) in the sample.
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In this case the non-linear [-V characteristic of ‘the
material governs the spatial induction profile and its
temporal evolution, determining therefore the {requency and
amplitude dependence of losses [3].

In this paper we report the results of a numerical
evaluation of the complex AC susceptibility (x = +1¢")
as a function of temperature, frequency and ampilitude of the
applied magnetic field. In such a way, it is possible to probe
the various regimes of flux dynamics (i.e. flux flow, flux
creep) and 1o investigate the contnbution of different pinning

mechanisms.

[I. NUMERICAL METHOD

We considered a infinitely long cylindrical sample, placed
in a parallel field; in this geometry. the diffusion equation

for the induction B(r.t) can be written as:

aaxat=f-la/ar [t (p(B.J)/uy) oB/or} 1)
where r is the radial coordinate, J(r,1)= (1/jg)dB/ar 1s the
current and P(B.J)=E(B.J)/] the resistivity.

In a conventional approach {6.7], the total ume for
fluxon motion can be considered as the sum of the creep and

flow lime : therefore, the resulting resistivity 1s the parallel

of the creep (Pcr ) and of the flux flow (Pff) resisuvities:

1/p = 1/Pcr + /PSS
Equation (1), with the boundary conditions 9B/dr=0
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at r=0 and B(r=R) = Bgsinwt, has been numerically solved

by means of the NAG Library routines. The algorithm

computes the time evolution of the flux profile for a fixed
number of spatial meshes. The periodic steady magnetization
loops have been calculatgd starting from the difference
between the volume average <B(r,t)> of the profile B(r.t) and
the istantaneous value of the applied field. The fundamental
susceptibility x=x'+ix" was then calculated as the first
Fourier coefficients of the magnetization cycle.

An explicit expression for the resistivity has been reported

by Brandt [8], where the creep electric field is:

Ecr (J) = 2p exp(-Up(TY/KpT)*
sinh[JUp(TY/(Jo(T)KT)} 2)

where Un(T) is the pinning potential, and we assume p =pff.

For the flux flow electrical field the Bardeen-Stephen model
[9] has been assumed:

Eff(J)=JpnB/Bc2(T) 3)
where the temperature dependence of the upper critical field
is: Beo()=Be2(0) (1-t2)/(1412), with t=T/T.

The material parameters refer to an YBCO sample
(8,10,11,12] of radius R=1cm, T:=92.28K, B2(0)=112T,
Uo(OWK=2x10%K, J.(0)=1010A/m2.

Neglecting fluctuations around T¢, the normal state
resistivity is: pp(T) = 1.1%10°8 (Qm/K)*T + 2+10°6 Qm.
Moreover, as Up(T) and Jc(T) vanish as T-> T¢, in this
limit the superconducting state resistivity tends to the
normal state value. Therefore, the results of the simulation

are not very accurate near the transition temperature.

[II. RESULTS AND DISCUSSIONS

The analysis has been restricted to the Bean cnitical-state
model, neglecting the local magnetic field dependence of the
pinning parameters Jc and Up. The main reasons of such
choice are the following:

a) analytical results for the susceptibility are available {13]

in different geometries, making easier the companson to the

numerical solutions;

b) the Bean picture is effective for the comprehension of the

effects related to thermally activated processes.

In the Bean model, the temperature dependence of the
susceptibility 1s regulated by the temperature dependence of
Jc, which in turn depends upon the assumed pinning model.
In particular, two pinning models have been considered . -

In the first one, denoted as CP[14}, vortices may be
supposed to be collectively pinned by randomly distributed
weak pinning centers related to local vanations of the mean
free path. Such model has been reported to describe the

behaviour of stoichiometric yttrium - based thin films [14].

The temperature dependences of Up and J¢ have the form:

UP(B.t)=UoUcp(t)=Uo( l-t4) 4a)
Je(Bt=JoJcp(t) =Jo (1-t2)>/2(1+12)"] 4b)

In the second model, introduced by Tinkham and
Malozemoff [15] (denoted as TM), the elementary pinning
force is given by fp=Up/A, where A is the penetration depth,
Up is estimated by taking the condensation energy times the
volume §a02. where aoz=¢0/B [15] and & is the coherence
length. Then the macroscopic force Fp results from a direct

summation procedure of elementary forces fp [8]. In this case

temperature dependences are:
Up(t)=Up UTmM(=Ug(1-t8)3/2(1412) 1/2 Sa)
Je(=Jo JTM(=To(1-t2)(1+t2) 5b)

As a general fact it should be remarked that for 0.8
Jop(t<<JTM(1) , whereas Ucp(t)>>Urm(t) for ©0.9.

For the CP model, plots of x" vs temperature at
differents frequencies are reported in fig.1 for H=2.20mT;
the same quantities are shown in fig.2 for TM model.

The Bean predictions are also reported in both figures.

As the normalized current density JTM(t) 1s greater than



Jcp(t) for ©>0.8, the corresponding peaks shown in figs.2
are sharper than those in figs.1; thus for the TM model the
peak temperatures (Tp) are placed practically at T for both

field amplitudes.
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Fig.1. x" as a function of temperature at different

frequencies for the CP model. Upper panel : Bo=2mT; lower
panel Bg=20mT

For both models, as the frequency increases, curves of "

obtained by the diffusion equation show the following
features : '

a) an increase of Tp towards T ;

b) a progressive increase (up to a factor =2) of the peak

amplitude respect to the Bean prediction.

Moreover, regardless to the frequency, as the field

amplitude increases, Tp decreases due to the behaviour of the

critical state contribution.
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Fig.2. x"as a function of temperature at different frequencies for
the TM model. Upper panel : Bo=2mT; lower panel : Bg=20mT

The increase of the peak value respect to both the Bean
prediction (¥"'=0.21) and the metallic case (x"'=0.37) [3]is
related to two combined effects: the creep rounding of the
highly non linear I-V characteristics and the strong magnetic

induction dependence of the flux flow resistivity.



For both models near the transition temperature, the

presence of these combined effects clearly appears in the

magnetization curves computed by the diffusion equation.

As shown 1n fig. 3 for the CP model in a Bean approach,
the cycle shapes would suggest an apparent Kim like
decreasing of the critical current density with the local
induction B. It should be noted that at the same frequencies

such feature completely disappears at lower temperatures.
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Fig.3 Magnetization curves at f=0.4Hz for the collective

pinning model .

As far as the temperature dependence of ¥ is concerned,

in the CP model the peak temperatures calculated at the
lowest frequencies are lower than the Bean prediction,
whereas at larger frequencies the reverse is found. As the
applied field increases, Tp moves at lower tempcramres, SO
that the freezing of the thermal activation determines a
similarity between the low frequency diffusion results and
the critical state behavior.

In the TM model, the calculated curves differ remarkably
from the Bean result; indeed, thermally activated processes

play a relevant role since for t>0.9 the pinning potential

Urm(D) 1s much lower thanUcp(t). As a consequence, the x”

peak temperature lies well below the critical state value for

each frequency and field amplitude value used in the

numerical simulations .

CONCLUSIONS
We have investigated the frequency and temperature
dependences of the imaginary part of the complex AC
susceptibility by the numerical solution of the non linear
diffusion equation for the magnetic induction, taking into
account both hysteretic and AC losses. From a comparison
with the results of the pure critical state model, it turns out
that the determination of the critical current density from the
peak temperature of ¥~ should be exploited very carefully.
Indeed, in a collective pinning picture, at larger frequencies.
AC losses can be comparable or larger than the hysteretic
ones. In the TM scheme, the giant creep pheﬁomenon
strongly depresses the critical current and mainly determines
the x" versus T curves. Finally, in both approaches the
amplitude of ¥ peaks is found to be much higher than both

critical and the normal state predictions.
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