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e The global symmetry G can be promoted to a local one modifying the transformation
laws of [, and r, in

G

Ty =Vuta, — gar#g;l + igﬂaugﬁlv
G - . -
ly=v,—-a, — ngung + ‘gLanng' (4.15)

By this way the gauge fields of electro-weak interactions (§ sect. 3) are automatically
included in v, and a,:

g _1_] g +
v, = —eQA, - 7 [Q cos(20w ) — ; Z, 2 /5 (‘1'+W“ + h.c.) :
G cos Ow [Q 6 Z 2v/2 (T+W“ ' h.c.) ) (4.16)

1 2 0 0 0 Vud Vus
with  Q=3]0 -1 0 and T,=[0 0 0 |. (417
0 0 -1 g 0 O

As a consequence, Green functions for processes with external photons, Z or W
bosons, can be simply obtained as functional derivatives of Z(v, a, 3, p).

The chiral realization of Locp(v,a, s, p), at the lowest order in the derivative expansion,

is obtained by E(Sz') including external sources in a chiral invariant way. For what concerns
spin-1 sources this is achieved by means of the ‘minimal substitution’:

U — DU =90,U —1ir,U+1iUl,. (4.18)
Non-minimal couplings, which could be built with the tensors

F'v = 9H1Y — 91" —i 14 1Y),

Fp¥ = 0*rY - 0"r* —i[r*,r"], (4.19)
are absent at the lowest order since?
U O(p°),
u",a“,v“ O(pl),
Fr'r O(p’). (4.20)

For what concerns spin—0 sources, it is necessary to establish which is the order, in the
derivative expansion, of § and p. The most natural choice is given by?6:37:

S,p O(p?). (4.21)

As we shall see in the following, this choice is well justified a posteriori by the Gell-Mann-
Okubo relation.

¢ From now on, we shall indicate with O(p*) ~ O(8"¢) terms of order n in the derivative expansion.
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4.2.1 The strong lagrangian.

Now we are able to write down the most general lagrangian invariant under G, of order
p*, which includes pseudoscalar mesons and external sources:

F2
£ = —

" (D, UD*UY + xU' + Ux1), x = 2B(3 + 1p). (4.22)

The two arbitrary constants (not fixed by the symmetry) F' and B, which appear in
L) are related to two fundamental quantities: the pion decay constant Fl, defined by

(O|py*vs9|n* (p)) = iV2F,p*, (4.23)

and the quark condensate (0|y1|0). Indeed, differentiating with respect to the external
sources, we obtain

(2)
\/_P2 (Ol I (P)) | (4*24)

(2)
—(01‘5‘C 0) = —F?B. (4.25)

Fy

(0l|0)

It is important to remark that relations (4.24-4.25) are exactly valid only in the chiral
limit, in the real case (m, # 0) are modified at order p* (§ sect. 4.3).

The pion decay constant is experimentally known from the process 7+ — u v: Fy =
92.4 MeV, on the other hand the products Bm,, Bm4 and Bm, are fixed by the following
identities:

M3+ - (mu + md)Ba
M}{i' — (mu + ms)Ba
M}(o = (md + m,)B (4.26)

The analogous equation for M,;‘a contains no free parameter and give rise to a consistency
relation:

IM? =4Mg — M}, (4.27)

the well-known Gell-Mann—-Okubo relation®’.

Assuming that the quark condensate does not vanish in the chiral limit, i.e. that
B(m, — 0) # 0, from relations (4.26) it is easier to understand why we have chosen
8 ~ O(p?). This choice is justified a posteriori by Eq. (4.27) and a priori by lattice cal-
culations of the ratio B/F (see references cited in Ref.?®), nevertheless it is important to
remark that it i1s an hypothesis which go beyond the fundamental assumptions of CHPT.
Eq. (4.21) has also the big advantage to facilitate the power counting in the derivative
expansion (this choice avoids Lorentz-invariant terms of order p***!). The approach of
Stern and Knecht®™, i.e. the hypothesis that the quark condensate could be very small,
or even vanishing, in the chiral limit (so that O(mg) corrections to Eqs. (4.26) cannot

35



be neglected) gives rise to a large number of new operators for any fixed power of p and
strongly reduces the predictive power of the theory.®

4.2.2 The Inon—leptonic weak lagrangian.

The lagrangian (4.22) let us to calculate at order p? Green functions for weak and elec-
tromagnetic transitions, beyond the strong ones, in processes with external gauge fields,
like semileptonic kaon decays. However, the lagrangian (4.22) is not sufficient to describe
non-leptonic decays of K mesons, since, as shown in sect. 3.2, in this case is not possible
to trivially factorize strong-interaction eflects. The correct procedure to describe these
processes, is to build the chiral realization of the effective hamiltonian (3.30).

Under SU(3)L x SU(3)r transformations, the operators of Eq. (3.29) transform linearly
in the following way:

011 02& 09 (8L1 IR) + (27[” IR)a
fa ga 033 041 051 06 (8L1 IR)a (428)
OT’, OS (8L1 SR)

Analogously to the case of light—quark mass terms, chiral operators which transform like
the O; can be built introducing appropriate scalar sources. As an example, to build the
(82, 1r) operators, we introduce the source

x-S g, :\g;"l (4.29)

and we consider all the operators, invariant under G, linear in A (operators bilinear in
A correspond to terms of order G% in the effective hamiltonian). Successively, fixing the
source to the constant value

. | _
A= A= -2-(/\6 — 1A7), (4.30)

we select the AS = 1 component of all possible (8., 1r) operators. For (27,1 r) terms
the procedure is very similar, the only change is the source structure. On the other hand
for (8.,8r) operators, generated by electromagnetic-penguin diagrams (§ sect. 3.2), is
necessary to introduce two sources, corresponding to charged and neutral currents. The
lowest order operators obtained by this procedure are!®0:101.

Wa?) = (AL, L") (8L,1r)  O(p?),
W32 = (L,)2a( L) + 2(Ly)2a1(L* )13 (271, 1R) O(p?), (4.31)
W) = F2AUTQU) (82,8r) O(r"),

where L, = u'u,u. Whereas singlets under SU(3)r are of order p?, the (8L,8Rr) operator
is of order p°. This however is not a problem, since electromagnetic—penguin operators at
the quark level (O7 and Os in the basis (3.29)) are suppressed by a factor €? with respect

° See Ref.?® for a complete discussion about the relation between ‘standard’ CHPT (§ ~ O(p?)) and
‘generalized’ CHPT (s ~ O(p)).
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1 Introduction

Since 1949, when K mesons were discovered!, kaon physics has represented one of the
richest sources of information in the study of fundamental interactions.

One of the first ideas, originated by the study of K meson production and decays, was
the Gell-Mann? and Pais® hypothesis of the ‘strangeness’ as a new quantum number. Al-
most at the same time, the famous ‘4 — 7 puzzle’* was determinant in suggesting to Lee and
Yang® the revolutionary hypothesis of parity violation in weak interactions. Lately, in the
sixties, K mesons played an important role in clarifying global symmetries of strong inter-
actions, well before than QCD was proposed®~2. In the mean time they had a relevant role
also in the formulation of the Cabibbo theory?, which unified weak interactions of strange
and non-strange particles. Finally, around 1970, the suppression of flavor changing neutral
currents in kaon decays was one of the main reason which pushed Glashow, Iliopoulos and
Maiani'® to postulate the existence of the ‘charm’. Hypothesis which was lately confirmed
opening the way to the unification of quark and lepton electro-weak interactions.

In 1964 a completely unexpected revolution was determined by the Christenson,
Cronin, Fitch and Turlay observation of K — 27 decay!!, i.e. by the discovery of a
very weak interaction non invariant under C' P transformations. Even if more than thirty
years have passed by this famous experiment, the phenomenon of C P violation is still not
completely clear and is one of the aspects which makes still very interesting the study of
K mesons, both from the experimental and the theoretical point of view.

To date, in the framework of nuclear and subnuclear physics, there are no evidence of
C P violation but in K decays, and within these processes all the observables indicate
clearly only a C P violation in the mixing K°— K°. Nevertheless, as shown by Sakharov!? in
1967, also the asymmetry between matter and antimatter in the universe can be considered
as an indication of C'P violation. Thus the study of this phenomenon has fundamental
implications not only in particle physics but also in cosmology!®.

As it is well known, strong and electro-weak interactions seem to be well described
within the so—called ‘Standard Model’, i.e. in the framework of a non-abelian gauge theory
based on the SU(3)c x SU(2)r x U(1)y symmetry group (§ sect. 3). C'P violation can be
naturally generated in this model, both in the strong and in the electro-weak sector.

- CP violation in the strong sector, though allowed from a theoretical point of view!415,
from the experimental analysis of the neutron dipole moment turns out to be very sup-
pressed. This suppression, which does not find a natural explanation in the Standard
Model, is usually referred as the ‘strong C' P problem’®. One of the most appealing hy-
pothesis to solve this problem is to extend the model including a new symmetry, which
forbids (or drastically reduces) C P violation in the strong sector. However, all the propos-
als formulated in this direction have not found any experimental evidence yet!®.



C P violation in the electro-weak sector is generated by the Kobayashi-Maskawa
mechanism'’. This mechanism explains qualitatively the C P violation till now observed
in the K® — K° system but predicts also new phenomena not observed yet: C P violation
in |AS] = 1 transitions (measured with precision only in K — 2 decays, where turns
out to be compatible with zero within two standard deviations'®) and in B decays.

In the next years a remarkable experimental effort will be undertaken, both in K and in
B meson physics, in order to seriously test the Standard Model mechanism of C' P violation.
Assuming there is no C P violation in the strong sector, in the framework of this model all
the observables which violate C P depend essentially on one parameter (the phase of the
Cabibbo-Kobayashi-Maskawa matrix). As a consequence, any new experimental evidence
of C P violation could lead to interesting conclusions (even in minimal extensions of the
model new phases are introduced and the relations among the observables are modified,
see e.g. Refs.192%). Obviously, to test the model seriously, is necessary to analyze with great
care, from the theoretical point of view, all the predictions and the relative uncertainties
for all the observables which will be measured.

In the framework of K mesons is not easy to estimate C'P violating observables
with great precision, since strong interactions are in a non-perturbative regime. In the
most interesting case, i.e. in K — 27 decays, this problem has been partially solved
by combining analytic calculations of the four—quark effective hamiltonian®'-*? with non-
perturbative information on the matrix elements?>?*. The latter have been obtained from
lattice QCD results?* or combining experimental information on K — 27 amplitudes and
1/N. predictions?®. Nevertheless in other channels, like K — 37 and K — 27y decays,
the theoretical situation is iess clear and there are several controversial statements in the
literature.

The purpose of this review is to analyze in detail all the predictions for the observables
which will be measured in the next years, trying, where possible, to relate them with those
of K — 2r. The predictions will be analyzed assuming the Cabibbo-Kobayashi-Maskawa
matrix as the unique source of C P violation in the model (i.e. we shall assume that exists
a symmetry which forbids C' P violation in the strong sector). The tool that we shall use
to relate between each other the different observables is the so—called Chiral Perturbation
Theory?>~?7 (§ sect. 4). This Theory, based on the hypothesis that the eight lightest
pseudoscalar bosons (7, K and n) are Goldstone bosons?®, in the limit of vanishing light
quark masses (m, = mg = m, = 0), can be considered as the natural complement of lattice
calculations. From one side, indeed, relates matrix elements of different processes, on the
other side allows to calculate in a systematic way the absorptive parts of the amplitudes
(typically not accessible from lattice simulations).

The paper is organized as follows: in the first section we shall discuss C'P violation
in kaon decays in a very phenomenological way, outlining the general features of the
problem; in the second section the mechanism of C'P violation in the Standard Model will
be analyzed, both in K and in B mesons, with particular attention to the estimates of K —
2w parameters € and ¢’; in the third section we shall introduce Chiral Perturbation Theory.
These first three sections represent three independent and complementary introductions
to the problem. In the following four sections we shall discuss the estimates of several



C P violating observables in kaon decays different than K — 2x. The results will be
summarized in the conclusions.

2 Phenomenology of C' P violation in kaon decays.

2.1 Time evolution of the K% — K% system.

The state |¥) which describes a neutral kaon is in general a superposition of | K°) and | K°)
states, with definite stra.ngeness[ eigenstates of strong and electromagnetic interactions®.

g:; ], so that {¥) = ¥;|K?) + W3] K°), the time evolution

of |¥), in the particle rest frame, is given by:

. i -
= W(t) = H¥(1) = (M - sT)¥(1) (2.1)

Introducing the vector ¥ =

where M and I’ are 2 x 2 hermitian matrices with positive eigenvalues. Denoting by A4
and ¥, the eigenvalues and eigenvectors of H, respectively, we have:

[¥(2)) = coe ™+ |Wy) +ce™ W), (2.2)

Under the discrete symmetries P, C' and T (parity, charge conjugation and time re-
versal), strangeness eigenstates transform in the following way?9!:

PIK®) = —|K"), PIK®) = —|K°),
C|K°) = e |K9), C|K?) = e~ |K?), (2.3)
T|IK®) = e®-2)[K?),  T|K®) = eit+29|K0),

where a. and 0 are arbitrary phases®. Since strangeness is conserved in strong and elec-
tromagnetic interactions, is possible to redefine |K°) and |K°) phases in the following
way:

|K®) — e S|K%) = e@|K%)  |K®) — e *S|K%) = e|K®),  (24)

where S is the operator which define the strangeness®. Thus the evolution matrix H is
defined up to the transformation

H,, Hi, Hy, e**Hj,
__-..} . .
[ Hy Hp } [ e" " H;  Hy (2:5)

Choosing a = (7 — a.)/2, the transformations of |K°) and |K®) under C P are given by:
CP|K®) = |K"), (2.6)

® For excellent reviews about the arguments presented in this section and, more in general, about CP
violation in kaon decays see Refs.?9-39

> Note that T(n|¥)) = n*T|¥).
¢ SIK% = +|K?), S|K® = —|K®), S|non-strange particles) = 0.
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whereas those under © = C PT remain unchanged:

O|K°) = —e“|K?), O|K?) = —e'’|K9). (2.7)
Using this phase choice, the transformation laws of H under CP and C PT are given by:
Hu ng - H22 H21
P) ! = , 2.
CP[ Hy, -H, ] (CP) { H,; Hy, ] (2.8)
Hll H12 -1 — HTZ H12
6[ Hy Hpy ] © [ Hy Hy ] ' (2.9)

From Eqgs. (2.8-2.9) and (2.5) we can easily deduce the conditions for H to be invariant
under CP and CPT. The time evolution matrix is invariant under C PT if H,;, = H,,,
o d
1.e.

M, = M and [y =Ta, (2.10)

no matter of the phase choice in (2.5). Eq. (2.10) 1s a necessary but not sufficient condition
to have invariance under C' P. To insure C' P invariance is necessary to constraint also
the off-diagonal elements of H. The condition following from (2.8), i.e. M3 — i['}3/2 =
M, —1I'7,/2, depends on the phase choice in Eq. (2.5), indeed we can always choose a in
such a way to make M), or I'y; real. The supplementary condition to insure C P invariance,
independently from the phase choice 1n (2.5), is

arg (-—Aﬁ:{) = 0. (2.11)
12

For now on we shall consider the K° — K system assuming C PT invariance. In this
case the matrix H can be written as

Hy,, H);
H = | :
[ Hy Hy ] (2.12)

and solving the eigenvalue equation one gets:

1
,\ == H o . .
+ 1 x \/Hnth W o [ ﬂ:\/Hgl/le ] (2.13)

In the limit where also CP is an exact symmetry of the K° — K° system, i.e. the CP
operator commutes with H, from Eq. (2.11) follows that

M12 —1['y2/2
/7 T\ M- 1[\;2;2 \2.14)

d Note that M;; and I'y; are real and poeltwe since M and T are hermlt.la.n and positive.




is just a phase factor and, with an opportune phase transformation (2.5), the normalized
eigenvectors (conventionally called |K}) e | K3)) are given by:

K1) = %(IKO)-HRO)), (2.15)
1 _
) = == (1K) - 1K) (2.16)

On the other hand, if CP is an approximate symmetry of the K° — K?° system, the eigen-
vectors of H are usually written as |

Ks) = ——— (IK\) +K2))

V1 + [
m (1 +9IK%) + (1 - HIKY)),

(2.17)

1

|KL) = — (| K2) + €|K1))
v1+ I[P
1 -
- B (1 +91K°) - (1 - 9IK?)),

where ¢ 1s given by: B

1+E _ M12—£F13/2 |

11—?‘\} f7, — iTia/2 (2.15)

The ¢ parameter is not an observable quantity and indeed is phase convention dependent.
On the other hand, the quantity

Re(?) _ Q‘m(Flg)ﬁe(Mu) — E}m(Mu)Re(I‘lg)
1+ [¢]? 4| My3}? + |T1a)? ’

that vanishes if Eq. (2.11) is satisfied®, is phase independent and possibly observable.
The two eigenstates of H have different eigenvalues also if C P is an exact symmetry/:

' t 1 4+ €
As = My — 1[‘11 + (Ml‘.Z - "Fu) ( )

(2.19)

2 T3 1 —¢
~ My + ReM;; — %([‘u + Rel'12), (2.20)
i i 1+¢
o= M- 2Ty — (Mo - 2Ta) (7)
~ My, — ReM,; - -;-(rll — Rel},). (2.21)

 In the r.h.s. of Eq. (2..19) we n::glect terms of order Re(¢)?.
/ In the r.h.s. of Eqs. (2.20-2.21) we neglect the imaginary parts of M;, and I'y,.
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From the experimental data'® follows:

My = (Mp+Ms)/2 = (497.672 £ 0.031) MeV,
—ReM,; ~ (Mp—-Ms)/2 = (1.755 £ 0.009) x 10712 MeV, (2.22)
[ + Rel'j2, ~ [s = (7374 + 0010) x 10712 MeV, '
F]l - Rel"lg ~ FL = (1273 + 0010) X ].0“14 MeV.

The big difference among M;; and the other matrix elements of H can be simply explained:
whereas M), is dominated by the strong self-interaction of a strange meson, the other
terms, connecting states with different strangeness, are due to weak interactions. M;;, in
particular, is determined by the |AS| = 2 transition amplitude which connects K° and
K°, whereas I';; and I’y are given by the product of two |AS| = 1 weak transitions (those
responsible of K° and K° decays). Assuming that |AS| = 2 transitions are generated by
the product of two |AS| = 1 traasitions, then is natural to expect? (§ sect. 3)

G% M3 sin’ 0
(27)4

Mlg ~ Fll ~ Flz ~ MK v 10_12MCV. (223)

2.2 K — 2n decays.

If CP was an exact symmetry of the kaon system, then the | K;) {C P-negative eigenstate)
should not decay in a two—pion final state (eigenstate of C P with positive eigenvalue).
However, experiments have shown that both eigenstates of H decay into two—pion final
states!!!8, The |Ks) decays into |27) almost 100% of the times, whereas the |K) has a
branching ratio in this channel about 3 order of magnitude smaller.

To analyze these decays more in detail, i1s convenient to introduce the 1sospin decom-
position of K — 27 amplitudes. Denoting by S,irong the S—matrix of strong interactions
(which we assume invariant under isospin transformations), we define the S-wave ‘re-
scattering’ phases of a two—pion state with definite isospin [ as:

out{27, I27, [}in = (27, I|Setrong|2m, I} = et (2.24)
With this definition, K° — 2= transition amplitudes can be written in the form
3,
out(27r: IIHwea.kIKo)m - "é'AIe Ia (225)

where Hyea indicates the weak hamiltonian of |AS| = 1 transitions. Assuming CPT
invariance, from Eqgs. (2.24-2.25) it follows3?:

- 3 .
out{27, [|Hyeat | K®)in = \/;A}e"s’. (2.26)

9 We denote by Gr, Mp and @ the Fermi constant, the proton mass and the Cabibbo angle, respectively.



The two—pion isospin states allowed in S-wave are [ = 0 and [ = 2, defining A(K —
27) = out(27|Huweak| K }in and using the appropriate Clebsh-Gordan coefficients, we find:*

| i .
AK® 5 n¥tn™) = Age'™ + — Aqe™™,

V2

A(K® = 7°7%) = Age'™ — v24,e%, (2.27)
AK* - n*n%) = —Z-Ageis’.

A(K® — 2r) amplitudes are obtained from (2.28) with the simple substitution A; — Aj.
If CP commuted with Hyeax then we should have, up to a phase factor, A(K® — 2r) =
A(K® — 2r). Thus, analogously to Eq. (2.11), which states the C' P-invariance condition
of AS = 2 amplitudes respect to AS = 1 ones, the C P-invariance condition among the
two A; amplitudes is given by:

A
arg (-Zz-) = (. (2.28)

At this point is convenient to make a choice on the arbitrary phase of the weak amp-
litudes. Historically, a very popular choice is the famous Wu-Yang convention*:

arg(Ao) = 0. (2.29)

Since Ao is dominant with respect to the other A(K°, K® — f) amplitudes, this convention
is useful because from the unitarity relation

Fl? = 2 Z in(ROIHweakIn)out ‘out (anwea.leo>in6(MK — Eﬂ.) (230)
~ 27 Z in(I?O'HweaEIQTr)out ‘out (QWIHweakIKO)mJ(MK — E‘hr), (231)
2x(1=0)
it follows

thus Eq. (2.29) implies also arg(I';;) ~ 0. By this way all weak phases are ‘rotated’ on
suppressed amplitudes, like A; and M,;;. From (2.18-2.19) follows also

ﬂe(Mlg)
Re(T12)

M, - _{‘.”’5] = (43.6 £ 0.1)°. (2.33)
[z — s

arg (€lwy) — arctan [2

arctan [2

However, in the following we shall not adopt the Wu-Yang phase convention, which is not
the most natural choice in the Standard Model (§ sect. 3), but we shall impose only

arg(Ag) < 1, (2.34)

A We assume Al < 3/2.



in order to treat as perturbations weak-amplitude phases.

From the experimental information on ['(Ks — 27) and [(K* — 7*#°)'®, neglecting
C P violating eflects, one gets*

Re(Ag) = (2.716 £0.007) x 10™* MeV, (2.35)
_ %6(;40)
l —— e o

As anticipated, Re(Ag) > Re(A,), i.e. the Al = 1/2 transition amplitude is dominant
with respect to the Al = 3/2 one (‘Al = 1/2 rule’).

Conventionally, in order to study C P violating effects, the following parameters are
introduced:

. AKp—on¥tn™) | , _
Ny_ = AKs o nins) €+ €, (2.37)
0.0
oo = A(KL T ) = e€—2¢. (238)

A(Ks — n%79)

Using Eqs. (2.17) and (2.27), and neglecting terms proportional to Sm(A;)?/ Re(A;)? and
w?3Im(A;)/Re(A]), € ed € are given by:

- .Sm(Ap)

€ €+ 1 Re(Ag) = €lwy (2.39)
, e'ha=%)  T3m(A4,;) Sm(Ao)
¢cE = 1 \/5 - 3?6(/12) Re(AO) ) (240)
Both ¢ and ¢ are measurable quantities with definite phases:
arg(e) = arg(€lyy) =(43.6 £0.1)°, (2.41)
a.rg(e') = (52 - (50 + E) — (45 + 6)0, (242)

2

and both vanish in the exact-C' P limit: ¢ vanishes if Eq. (2.11) if satisfied, whereas ¢
vanishes if Eq. (2.28) is satisfied. The e parameter is referred as the ‘indirect’ C P-violating
parameter, since Eq. (2.11) could be violated by a non-zero weak phase in |AS| = 2
amplitudes only. On the other hand, € is called the ‘direct’ C P-violating parameter, since
a non-zero weak phase in |AS| = 1 amplitudes is necessary to violate Eq. (2.28).

It 1s interesting to note that the first identity 1n Eq. (2.41) could be violated if C PT was
not an exact symmetry. Thus, given that arg (€] ) ~ arg(¢’), a large value of Im(€’'/¢)
( Sm(e'/e) 2 Re(€'/€) ) would be a signal of CPT violation.>

* Due to small isospin-breaking effects, amplified by the suppression of A; (§ sect. 3.3), the value of
(82 — 8p) extracted by K — 2= data is not reliable. We shall adopt the prediction of Gasser and Meifner*!
that is in good agreement with the value of (§; — §y) extrapolated from » — N data*?.
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From the analysis of experimental data on K; — 27 decays'® follows:

le] =(2.266 +£0.017) x 10~° arg(e) (44.0 £ 0.7)°, (2.43)
¢ ¢
Re(—c-) =(1.5+08) x 107  Sm(-)

€

(1.7£1.7) x 1072, (2.44)

Whereas |e| is definitely different from zero, |€’| is compatible with zero within two standard
deviations. This implies that the so-called ‘super-weak’ model proposed by Wolfenstein
more than 30 years ago****, a model where C P violation is supposed to be generated by
a very weak (~ GE M} sin? §/(2n)*) new |AS| = 2 interaction, is still compatible with the
experimental data. Of course there is no confirmation of the Standard Model mechanism
(§ sect. 3), which predicts also direct C P violation. However, as we shall see in the next
section, the fact that |€¢/| is much smaller of |¢| could be explained also in the Standard
Model where, for large values of the top quark mass, the weak phases of Ay and A,
accidentally tend to cancel. Then, within the Standard Model, the fundamental condition
for the observability of direct C P violation tends to lack in K — 27 transitions:

[1] A necessary condition in order to observe direct C P violation in (K°, K°) — f
transitions, is the presence of at least two weak amplitudes with different (weak) phases.

2.3 Semileptonic decays.

Up to now C P violation has been observed in the following processes: Ky — 27, K —
ntn~y and Ky = nlv (I = p,e).

As we shall discuss better in sect. 6, the amount of C' P violation till now observed in
K; — ntn~~ is generated only by the bremsstrahlung of the corresponding non-radiative
transition (Ky — n*7~) and does not carry any new information.

In the K; — wlv case, the selection rule AS = AQ), predicted by the Standard
Model and in perfect agreement with the data, allows the existence of a single weak
amplitude.’ Consequently, from the condition [1], we deduce that within the Standard
Model is impossible to observe direct C P violation in these channels.

The selection rule AS = AQ implies:

A(KO -+t~ = A(R/O - 7~ {ty) =0, (2.45)
thus defining
A(K® = =~ lty) = A, | (2.46)
from CPT follows A(K® - n*l" ;) = A} and the decay amplitudes for K; and K5 are
given by:
1—¢€
(1+ [€?)
1+¢€
A;.
2(1 + )™

I AS =.—-AQ transititms are allowed in the Standard Model only at O(G%); explicit calculations*®4®
show a suppression factor of about 10=¢ — 10",

A(Ks =+ ntl" ) = -A(Kp - st~ p) = 5 A, (2.47)

A(KS — 1T-1+Vg) — A(KL —> 7T_-I+V;) —

(2.48)
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If CP was an exact symmetry of the system we should have

A(Ky = n¥l7o)| = |[A(KL — =~ 7 y))
= |A(Ks = n*"m)| = |A(Ks = 7™ 1*u)], (2.49)

thus C P violation in these channel can be observed via the charge asymmetries

D(KLs — m-1*y) - [(Kps = ntl=5;)  2Re(?)

oLs = n = - A .
LS = NKps o 7-1"0) = N(Kps = 7t 15) 148 (2.50)
sensible to indirect C P violation only.
The experimental data on &, is'®:
6r = (3.27 £0.12) x 107>, (2.51)

in perfect agreement with the numerical value of Re(¢) obtained form Eq. (2.43).

2.4 Charged—kaon decays.

Charged-kaon decays could represent a privileged observatory for the study of direct C P
violation since there is no mass mixing between K* and K~.

Denoting by f a generic final state of K+ decays, with f the charge conjugate and
defining

out(.{leeale+>in = Af . (252)
out(lewcale*ﬁn = A], (2.53)

if C P commuted with Hyeak then |A¢| = |Af|. Thus CP violation in this channels can be

observed via the asymmetry

_ 1A/ - 145
|As| + Al

which, differently form (2.50), is sensible to direct C P violation only.

To analyze more in detail under which conditions A, can be different from zero, let’s
consider the case where |f) is not an eigenstate of strong interactions, but a superposition
of two states with different re-scattering phases. In this case, separating strong and weak
phases analogously to Eq. (2.25), we can write

A (2.54)

Ar = ases 4 be's. (2.55)
In addition, imposing C PT invariance, it is found

Aj = aje’ + bje'™, (2.56)
thus the charge asymmetry A/ is given by:

B 28m(a%bys) sin(ds — dp)
 lag|? + [bs|? + 2Re(atby) cos(bs — &)

A (2.57)
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As it appears from Eq. (2.57), in order to have A different from zero, is not only necessary
to have two weak amplitudes (a; e b;) with different weak phases (as already stated in
[1]), but is also necessary to have different strong re-scattering phases.

[2] A necessary condition. in order to observe (direct) CP violation in K* — (f, f)
transitions, is the presence of at least two weak amphtudes with different (weak) phases
and different (strong) re—scattering phases.

As we shall see in the next sections, the condition [2] is not easily satisfied within the
Standard Model, indeed C P violation in charged~kaon decays has not been observed yet.
To be more specific, the most frequent decay channels (99,9% of the branching ratio) of
K* mesons are the lepton channels |iv) and |7lv), together with the non-leptonic states
|27} and |37). In the first two channels there is no strong re-scattering. In the |27) case
the re-scattering phase is unique (is a pure I = 2 state). Finally in the |37) case there are

different re-scattering phases but are suppressed, since the available phase space is very
small (§ sect. 5).

3 CP violation 1n the Standard Model.

The ‘Standard Model’ of strong and electro-weak interactions is a non—abelian gauge
theory based on the SU(3)c x SU(2)r x U(l)y symmetry group®.

The SU(3)c subgroup is the symmetry of strong (or color) interactions, realized a la
Wigner-Weyl, i.e. with a vacuum state invariant under SU(3)¢. On the other hand, the
SU(2). x U(l)y symmetry, which rules electro-weak interactions®*~>*, is realized a la
Nambu-Goldstone®*?®, with a vacuum state invariant only under the subgroup U(1)q of
electromagnetic interactions.

The interaction lagrangian of fermion fields with SU(2); x U(1)y electro-weak gauge
bosons is given by:

~ L % l / Lo |
Low = 3 QP (gTsWu 59 YB,.) x
o 1 ’ aj
b Ty (T + 59V B,) ¥
- 3 (39YB.) Jn (3.1)

where g, T;, W!(i = 1,3) and ¢, Y, B, are the coupling constants, the generators and the
gauge fields of SU(2). and U(1)y, respectively. The index a can assume 3 values, according
to the quark or lepton family to which 1s referred, whereas f indicates the sum over all
right—-handed fermions. As anticipated, the SU(2); x U(l)y symmetry is spontaneously
broken in such a way that the photon field A, remains massless. Introducing the weak
angle Oy, defined by the relation tan fw = ¢’/g, and the field Z, (combination of W3 and

¢ For excellent phenomenological reviews on gauge theories and, in particular, on the Standard Model see

Refs. 47— 51
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leptons

[ — type. v — type
— p..... #
IE5.7][1777 <7x104<027{ <31 ]

—1
quarks ]

d — type ) u — type
| s b u c ¢
[~150]~4300] ~5 [~1200]~1.7 x 10°

-1/3 +2/3

Table 1: Masses and electric charges of quarks and leptons (see Ref. '® for a discussion
about the definition of quark masses).

B, orthogonal to A,):

( w3 ) _ ( sin Ow corsﬂw ) ( A, ) | (3.2)
B,, CcCOS 9w — Sl ew Zp
Eq. (3.1) becomes:
L:e—-w — 6Zf7“QfA#
+ cos@w Zf‘? (Qz Qg%) fZ,
+ 5:/_5 [Za: a(@)yn (1 — vs) dWH + h.c.}
g (o). (a)pp/+
+ — 1 —5) W7 + h.c.}, | 3.3
zﬁ{;b’ 7 (1 =) u T C] (3.3)

where e = ¢’ cosOw, Q% = T3 — Qsin’ 8y and Q4 = T;.

As in the case of gauge boson masses, quark and lepton masses (§ tab. 1) are dynamic-
ally generated by the Yukawa coupling of these fields with the scalars that spontaneously
broke SU(2)r x U(1)y symmetry. The effective lagrangian for quark and lepton masses
can be written in the following way

£ = UMyU + DMpD + LML, (3.4)

u d e
) ) el
t b T

where



My = diag{m,,m.,m,}, Mp = diag{my4,m,,my} and M = diag{m.,m,,m,} (we as-
sume massless neutrinos). The fermion fields which appear in Eq. (3.1) are not necessarily
eigenstates of mass matrices. Introducing the unitary matrices Vi;, Vp and V, so that

ull) d) [
«® | = VU, d® | =VpD,  and (D =ViL,  (3.6)
w3 d® ‘ ()

thus writing electro-weak eigeﬁsta.tes in terms of mass eigenstates, Eq. (3.1) becomes

-Ce—w : CZf‘Y”Qpr

+ Zf'r ( z+Q§75)qu

coSs 9w

+ ‘Q‘T[U(VUVD)'T (1= 7) DW;} +h.c|

g [Z Ny* (1 — ~3) LW: + h.c.] : (3.7)

+

575

- (1) { v.
N=V/| v® | =| v |. (3.8)
(2 Vy

Since fermion mass matrices commute with electric charge and with hypercharge (Y) the
only difference among Egs. (3. 1) and (3.7) is the presence of the unitary matrix Vi Vp.

As we have seen in the previous section, a necessary condition to induce C P violation in
kaon decays is the presence of weak amplitudes with different weak phases. In the Standard
Model framework, this condition is equivalent to the requirement of complex coupling
constants in L._,,. These complex couplings must not to be cancelled by a redefinition
of field phases and leave L.., hermitian. From these two conditions follows that the
only coupling constants of L._,, which can be complex are the matrix elements of V;}Vp.
This matrix, known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix®1%17 is the only
source of C P violation in the electro-weak sector of the Standard Model.

As anticipated in the introduction, in this review we will not discuss about possible
effects due to C P violation in the strong sector.

where

3.1 The CKM matrix.

In the general case of Ny quark families, Ucxa = Vi Vp is a Ny x N; unitary matrix. The
number of independent phases, np, and real parameters, ng, in a N; x N, unitary matrix
1S given by:

Ng(N;s+1 Ny(N;-1

Vi 3 ) ad  np= fLQL ) (3.9)

nep =
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Since the 2N, — 1 relative phases of the 2V, fermlon fields are arbitrary, the non trivial
phases in Ucga are

"G _Nf(hg+1) IN, 41 = (Nf-—l)?( Ny -2) (3.10)

In the minimal Standard Model N; = 3, thus the non-trivial phase is unique.

Parametrizing Uck s in terms of 3 angles and one phase, it is possible to write®®—°%:
Vud Vua Vs 1 .
Uckm = | Vaa Voo Vo (3.11)
‘/td Vu v:‘.b

| C"&Ca SECa Sae '
= —S,C, — CﬂSgS-reis CoC; — Sasﬁsfﬁi's_ C,S, ; (3.12)
SeS, — CS,Cre*  —C4S, — S¢S,Cre C,C,

where Cy and Sy denote _sin‘e and cosine of the Cabibbo angle®, C, = coso, S, = sing,
etc... '

It is important to remark that the CKM phase would not be observable if the mass
matrices Mp and My, introduced in Eq. (3.4), had degenerate eigenvalues®®°. As an
example, if m. was equal to m,, then Vy would be defined up to the transformation

Ww - ( é U(g,(i) )Vu, (3.13)

where U(9,4;) is a unitary 2 x 2 matrix. Thus adjusting the independent parameters of
U(9,4;) (1 angle and 3 phases) the phase of Ucxa could be rotated away. In other words,
the phenomenon of C' P violation is intimately related not only to the symmetry breaking
mechanism of the electro-weak symmetry (or better of the chiral symmetry, § sect. 4), but
also to the breaking mechanism of the flavor symmetry (the global SU(N,) symmetry that
we should have if all the quark masses were equal). The two mechanisms coincide only in
the minimal Standard Model. _

There is an empirical hierarchy among CKM matrix elements (S, < S, < Sp < 1),
which let us express them in terms of a single ‘scale-parameter’ A = Sy ~ 0.22 and three
coefficients of order 1 (A, p ed n)*". Defining

S, =AM, S,=ANo, oel=p+in (3.14)
and expanding Eq. (3.12) in powers of A up to O(\3) terms, one finds:
| 2 .
1= A 2 AX(p — in)
Uckm = - — 2 AN? (3.15)
| AN(1 —p—in) —AN 1

An interesting quantity for the study of C P violation is the ‘so—called’ Jop parameter®®:

Jep = Sm (VWi Vi Vi) - o (316)
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Process | Parameter
Konlv] X 0.2205 + 0.0018
b— clv A 0.83 £0.08
boulv | o 0.36 £ 0.14
K, —nm| cosé | 0.47+0.32

Table 2: Experimental determination of CKM matrix elements (in the parametriza-
tion (3.14)) and relative processes from which are extracted!® (see sect. 3.3 for the de-

termination of cosd).

As can be easily shown, any observable which violates C'P must be proportional to this
quantity®. The unitarity of Uckas insures that Jop is independent of the choice of a,b,1
and j (a # b and 1 # 3). In the parametrization (3.14) Jcp is given by:

Jep = nA%*A° + O(A®) 51074, (3.17)
Form Eq. (3.17) we can infer two simple considerations:

e C P violation is naturally suppressed in the Standard Model due to CKM matrix
hierarchy. |

¢ Transitions where C P violation should be more easily detected are those where also
the C P-conserving amplitude is suppressed by the matrix elements V,; and V4.

3.2 Four—quark hamiltonians.

Differently than weak and electromagnetic interactions, strong interactions are not in a
perturbative regime at low energies (E < A, ~ 1 GeV), i.e. at distancesd 2 1/A, ~ 10714
cm. This happens because the strong coupling constant has a divergent behaviour in the
infrared limit and, presumably, this is also the main reason why quarks and gluons are
confined in hadrons. With-respect to the scale A, quarks can be grouped in two categories
according to their mass (§ tab. 1): u, d and s are ‘light’, since my, 4, < A,, whereas ¢, b and
t are ‘heavy’, since A, < my ;. As we shall discuss better in the next section, the lightest
hadrons with light valence quarks are the pseudoscalar mesons n, K and n (§ tab. 3).
Kaon decays, i.e. [AS| = 1 transitions, being processes where initial and final state
differ for the number of s quarks (S]s) = —|s)), involve the exchange of at least one W
boson (see Eq. (3.7) and fig. 1a). In principle one could hope to calculate these decay
amplitudes solving separately two problems: 1) the perturbative calculation of the weak
transition amplitude at the quark level, i1) the non—-perturbative calculation of the strong

® Let’s consider, as an example, the elementary process zi,,d,— — uqd;. The amplitude is the superposition of
at least two processes: u,d; = W¥d;d; — u.d; and usd; = usW ™ up = u,d;, thus A ~ aVai Vy; +8Vy; Vi

The charge asymmetry, analogously to Eq. (2.57), will be proportional to Sm(V,; Vj; Vai Voi)-
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meson | valence quarks | m(MeV)

Tt ud- 139.6 ,+1) |0
0 uit — dd 135.0 (1,0) n
| du 1396 | (1,-1) [0
K+ u3 493.7 | (1/2,+1/2)
K° |  ds 497.7 [(1/2,-1/2) [ +1
K° sd 497.7 [(1/2,+1/2) | -1
K- st | 4937 [(1/2,-1/2) -1
n |ui+dd—2s5| 5475 0,00 |0

Table 3: Valence quarks, masses, i1sospin and strangeness of the pseudoscalar octet (for
simplicity we have neglected 7%7-n' mixing).

SN
A

Figure 1: a) Tree-level feynman diagrams for |[AS| = 1 transitions, at the lowest order
in Gr and without strong-interaction corrections. b) The same diagram in the effective
theory Mw — oc.

transition between quark and hadron states. Obviously this separation is not possible, at
least in a trivial way, and is necessary to manage strong interaction effects among initial
and final state also in weak transitions (§ fig. 2a). Fortunately, both A, and meson masses
are much smaller than the W mass and this helps a lot to simplify the problem.

If we neglect the transferred momenta with respect to My, the W-boson propagator

becomes point-like |
1 1
- _) — e
My - My

and the natural scale parameter for the weak amplitudes is given by the Fermi constant

(3.18)

2

Gr _ g
V2  8Mj

In purely non-leptonic |AS| = 1 transitions, neglecting strong interaction eflects, the
amplitudes can be calculated at the lowest order in G using the four—quarks effective

~ 10~°GeV.

(3.19)
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hamiltonian

_ 4G } |
HGT™! = -755 [Au(3y*ur)(ary*dr) + Ac(5ey e )(epy¥dr) + h.c ], (3.20)

where Ay = V,V,4 and g1 = 3(1—7s)q (due to their large mass, we neglect, for the moment,
the effect of b and t). As it will be clear later, it is convenient to rewrite Eq. (3.20) in the
following way:

AS|= 4GF -
plasi=t - s q;ﬂ A (0F +07) +hec, (3.21)

where | _
O = 5 [(3c7"qu)(qry*de) * (807"dL)(qLy"qr)] - (3.22)

As can be seen from fig. 2, QCD corrections can be calculated more easily in the
effective theory, i.e. with a point-like W propagator, than in the full theory. Indeed, in the
first case, feynman diagrams with four ‘full propagators’ are reduced to diagrams with only
three ‘full propagators’, simplifying the calculation. However, the presence of point-like
propagators induces new ultraviolet divergences, not present in the full theory, that must

be eliminated by an appropriate renormalization of the four—quarks operators®0:®!:<.
) |
(FHETNI) = L [ d'zDg (e, Mw)(FIT (Ju(2)J(0)) 1)
G
— -—\]-g- > Ciu)(FlOi(p)l1). (3.23)

This procedure is nothing but an application of the Wilson’s ‘Operator Product
Expansion’®?, the technique which let us expand a non-local product of operators, in
this case the weak currents, in a series of local terms. The scale u, which appears in
Eq. (3.23), is a consequence of the renormalization procedure which eliminates the ‘artifi-
cial’ divergences of the eflective operators. The requirement that the product C;(u)O;(u),

and thus all physical observables, be independent of u, fix unambiguously the evolution of
the coeflicients C; as a function of u:

[6.;5 (p% + Bs(9s) 31) - 75(9:)} Ci(u) = 0. (3.24)

Eq. (3.24), known as the Callan-Symanzik equation for the coefficients C;, takes this
simple form only in a ‘mass-independent’ regularization scheme®+®. The functions 3(g,)
and v;,(g,) are defined by

3, .
B, = ”559’(”) and  v; = ¥ — 29,6, | (3.25)

¢ The first identity in Eq (3.23) follows from Eq. (3.7), defining J,(z) = ff(z)(VJ Vb) v (1 — vs) D(z)
and denoting by Dy (z, Mw) the W propagator in spatial coordinates.
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Figure 2: QCD corrections, of order g;, to the diagram in fig. 1: a) in the full theory; b)
in the eflective theory. '

Figure 3: Penguin diagrams: a) ‘gluon penguin’; b) ‘electromagnetic penguin’.

where %;; is the anomalous dimension matrix of the eflective operators? and 7, is the
anomalous dimension of the weak current. In addition to Eq. (3.24), which rules the
evolution of the C; as a function of y, in order to use Eq. (3.23) is necessary to fix
the values of the C; at a given scale, imposing the identity in the last term (‘matching’
procedure). This scale is typically chosen to be of the order of the W mass, where the
perturbative calculations are much simpler (g,(Mw) < 1).°

If we consider only the diagrams in fig. 2 and we neglect the effects due to non-
vanishing light quark masses, the operator O; which appear in Eq. (3.23) are just the

4 Given a set of operators O;, which mix each other through strong interactions calling Z;; the matrix of
renormalization constants of such operators (07" = Z'-"‘;IO‘,-LI the anomalous dimension matrix is defined

by vi; = 2. u - Zk;
y 7'] tk pg“—‘ k." _ -
° For a wider discussion about matching conditions and about the integration of Eq. (3.24) see Ref.22:65,66
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Oq‘t of Eq. (3.22). These operators are renormalized only in a multiplicative way, as a
consequence 7;; is diagonal:

2 T 2
= g, T+ 0 — g, +1 0
= 472 [ 0 ~_ ] "~ 4n? [ 0 -2 ] ' (3.26)

Since CF(Mw) = AJ[1 + O(g,(Mw))], solving Eq. (3.23) one finds®"!/

pjast=: _3% 5, {[g.(Mw)}z%m )[g.(Mw)] 0= #)} he

gs(1) (1)

7 E (-G ()| ot

+ [1+z % (1) 1og ( - )]0 (#)}+h.c., (3.27)

where 3o = -(33 — 2Ny) is defined by

2

|

S|
N

2

2 (Bogs + O(g)) - (3.28)

Bs(gs) =

Eq. (3.27) is a good approximation to the weak hamiltonian for m. < 4 < my. The
coefficients C*(u) keep track, indeed, of all the leading QCD corrections; i.e. of all the
terms of order gs(p)™ log(Mw /u)". However, Eq. (3.27) is not sufficient to study C P-
violating eflects: in this case is necessary to consider also other diagrams. As it is well
known, an important role is played by the so—called ‘penguin diagrams™’-7? (§ fig. 3)
which, though suppressed with respect to those in fig. 2, give rise to new four—quark
operators with different weak phases. The suppression of the diagrams in fig. 3 is nothing
but a particular case of the famous GIM mechanism'!®% due to the unitarity of CKM matrix,
their contribution vanishes in the imit m, = m, = m,.

The complete set of operators relevant to non-leptonic |AS| = 1 transitions, is given
by the following 12 dimension-six terms?*9:

O1 = (83v*dL.)(#7v*uLp),
O; = (537"dis)(@]7v*uLa),
O35 = (3§7%dra) Y. (@L.RrY*qL.RS);

q=u,d,s,c

Osus = (377"d1s) Y (TL.RY"L.Ra);
qg=u,d,s,c

Ore = (337"dLa) Y. eq(@L.RY"qL.R8),
g=u,d,s,c

! For simplicity we negI::ct the effect due to the b threshold in the integration of Eq. (3.24).
9 The number of independent operators decrease to 11 and 7, for y < my and g < m., respectively?4.
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Os10 = (577"dLs) Z qg,a‘?”QL,Ra),
+ qg=u,d,3,C
0f = (377*dLa)(Ev*cLo); ,
05 = (33v*dLs)(ELr*cLa); (3.29)

where a and 3 are the color indices and e, is the electric charge of the quark g. Using the
relation A\, + A + A = 0, in the basis (3.29) the weak hamiltonian assumes the following
form:

HETE =~ LA CWOi W) + Ca(wOa(w)]
= [C1(p)O5 (1) + Ca(p)O5(p)] — A _}_:Cf(u)O.-(p)} +he.  (3.30)

In Refs.?!2? the 10 x 10 anomalous dimension matrix of the coefficients C;(u) has been
calculated at two loops, including corrections of order a?, a,ae.m and a?,,. Correspondingly
the initial condition for the Ci(u), at 4 = Mw, have been calculated including terms of
order a,(Mw) and a..(Mw). Using these results is possible to calculate all the next-to-
leading—order corrections to the Wilson coefficients of the effective hamiltonian.

After the work of Refs.?!?2 is useless to push further the perturbative calculation of
‘the Wilson coefficients. At this point, the main source of error in estimating C P violation
in kaon decays, is represented by the non-perturbative evaluation of the hadronic matrix
elements of Eq. (3.23). In the next subsection, following Ciuchini et al.?*, we shall see how
this problem has been solved in K — 27 using lattice results.

3.3 K — 2n parameters ¢ and €.

3.3.1 7{5'?':2 and the estimate of e.

In the Standard Model the value of € cannot be prédicted but is an important constraint
on the CKM phase. From Egs. (2.19) and (2.33), assuming arg(¢) = n/4 and neglecting
terms of order |¢|?, follows |

e'*/4 (S}liz) B et /4 (Q‘mMu) (3.31)

- 2\/§ RGM]Q B \/i AM}( ' -
In order to calculate M,; is necessary to determine the eflective hamiltonian responsible
of |AS| = 2 transitions. In this case the situation is much simpler than in the |AS| =1

case, previously discussed, since there is only one relevant operator, the one created by

the box diagram of fig. 4. Thus the effective hamiltonian for |AS| = 2 transitions can be
written as

= G3
MG = MGy dL) Nim F(z.) + XmF (z.)

+2A A F(z., z¢)] + h.c., (3.32)
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Figure 4: a) Box diagram for |AS| = 2 transitions, without QCD corrections.

where F(z,) and F(z,, ;) are the Inami-Lim functions™, z, = m3/M%,, and n; = 14+0(g?)
are the QCD corrections, calculated at the next-to-leading order in Refs.™ ™. Since

1 ~0(1/185|=2 '
Im(Ma) = 53—Sm (KOS 1K) (3.33)
from the previous equations (3.31-3.33) follows

G My 216 . o E
= — A?XS0 sin S(KOI(5r~*dr ) KO
W M AMe O (K7I(3L7"dL)"|K7)

X [173F(:1:c, ) —mF(z.) + A*A*(1 — o cos J)mF(xt)] (3.34)

1

€]

where A, A, § and o are the CKM parameters defined in sect. 3.1.
Few comments about Eq. (3.34) before going on:

e Both the n; and the matrix element (K°|(5.7*dLr)?|K°®) depend on u, but their
product is scale independent.

e Due to the large value of the top mass, the term proportional to F(z;) is relevant
even if it is suppressed by the factor A?A*.

o In order to avoid the calculation of the matrix element (K°|(3.v*d.)*|K°), one

could try to evaluate AMg using ’H!je'flﬂ. However, this is not convenient since
Re(M,,) receive also a long distance contribution that is difficult to evaluate with
high accuracy™.

In Ref.?* the matrix element has been parametrized in the following way:
- 8
(K°|(37#(1 = 15)d)*|K°) = 3 fig Mg Breas (u)™™, (3.35)

where fx = V2Fx = 160 MeV is the K-meson decay constant (§ sect. 4) and Bg
is a pu—-independent parameter.” Lattice estimates of this matrix element at scales u ~

 If one considers also the next—-to—leading terms in the 5;, then Eq. (3.35) must be modified, in order to
preserve the u invarniance of By.
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2 — 3 GeV imply”” Bx = 0.75 £ 0.15. With this result and the experimental value of
¢, Eq. (3.34) imposes two possible solutions for cosd, with different signs (§ fig. 5). The
negative solution can be eliminated imposing additional conditions (coming from lattice
estimates the By — B; mixing) and the final result of Ref.?* is:

cosd = 0.47 + 0.32. (3.36)

3.3.2 The estimate of €.

As shown in sect. 2.2, assuming the isospin decomposition of K — 27 amplitudes, it

follows |
, ) e'(s‘l—sﬂ) W

€ =1 —\/i RGA;

Actually the decomposition (2.28) is not exactly true, it receives small corrections due to
the mass difference m, — my # 0, which breaks isospin symmetry.

The main effect generated by the mass difference among u and d quarks, is to induce
a mixing between the 7° (I = 1) and the two isospin-singlet n and n’. As a consequence
the transition K° — #%7° can occur also through the intermediate state 7°7(n’) (K® —
7°n(n') = #°7%). Due to the hierarchy of weak amplitudes (Redy > ReA;), we can
safely neglect isospin-breaking terms in Ay. Furthermore, we know that K° — =%p(n’)
amplitudes are Al = 1/2 transitions, thus the global effect of isospin breaking in ¢ can
be simply reduced to a correction of ImA,; proportional to Sm Ay, Following Refs.”®7™
we define

{w"li}m(Ag) — S‘m(Ao)] : (3.37)

ImA, = Q‘mA; + QpwSm Ay, (338)

where A} is the ‘pure’ Al = 3/2 amplitude (without isospin-breaking terms). In order to
estimate §;p is necessary to evaluate #° —  — 1’ mixing and the imaginary parts of K° —
m%n(n’) amplitudes. The first problem is connected with the relation among quark and
meson masses, and can be partially solved in the framework of Chiral Perturbation Theory
(§ sect. 4.2.1). On the other hand, the second problem requires the non-perturbative
knowledge of weak matrix elements. Evaluating these elements in the large N, limit, Buras
and Gerard™ estimated Q5 =~ 0.25. Due to the large uncertainties which affect this
estimate, in the following we shall assume® Q;5 = 0.25 + 0.10.

Using Eq. (3.38), the expression of ¢ becomes

. ei(JQ“JO) W '

V2 ReAg

where Ag and A) can be calculated using the effective hamiltonian (3.30) in Eq. (2.25).}
Analogously to the case of ¢, is convenient to introduce opportune B-factors to parametrize

w'Sm(A}) — (1 - Qup)Im(Ao)], (3.39)

' Bertolini et al.®! pointed out that a non—negligible contribution to ¢ could be generated by the dimension-
9 gluonic—dipole operator, not included in the basis (3.29). The matrix element of this operator is however

suppressed in the chiral expansion (see the discussion about the electric—dipole operator in sect. 6.2) and
was overestimated in Ref. 81,



L em, 001K ) v1a | V5 Cm 2000K v 1a

O3 | +X/3 ] 0

A +X
Os - =Z/3 1
Os -2

O:| +2Y/3+ 2/6 + X/2

Os| +2Y +2Z/2+ X/6

Qo X3
O +X/3
: ¥X

Table 4: Matrix elements of the four-quarks operators of ?-[L?f'zl in the vacuum insertion

approximation; X = f,(M% — M2), Y = fe Mg /(m, + m4)* and Z = 4Y (fx — f+)/ f~-

HL?flﬂ matrix elements. Following again Ref.?* we define:
147
(2, [O:(u)|K®) = B;* (u)(2x, I|O:i| K®)v 14, (3.40)

where (27, I|O;| K®)v 4 indicates the matrix element calculated in the vacuum insertion
approximation®?.

VIA results for matrix elements which contribute’ to 3m(Ag) and Im(A}) are reported
in table 4, in tables 5 and 6 we report Wilson coefficients and corresponding B-factors at
u = 2 GeV. The two column of table 5 correspond to different regularization schemes: the
't Hooft—Veltman scheme (HV) and the naive-dimensional-regularization scheme (NDR).
The differences among the C; values in the two tables give an estimate of the next-to-
next-to—leading—order corrections which has been neglected.

The dominant contribution to the real parts of Ap and A, is generated by O, and O;.
The lattice estimates of the corresponding B-factors, which must be substantially difterent
from one in order to reproduce the observed Al = 1/2 enhancement, are affected by large
uncertainties and are not reported in table 5. Fortunately this uncertainty does not affect

the imaginary parts, which in the basis (3.29) are dominated by Og and Os:

Im(Ag) ~ -—GJ_%ASAQU sin J(C’GB;NZ),

Im(A;) ~ —GpASA%ssiné(CeBY%Y). (3.41)

Using these equations we can derive a simple and interesting phenomenological expression
(similar to the one proposed in Ref.??) for Re(e'/¢):

Re (%) ~ (3.0 x 107%) [ Bg/* — 7Bg'?| A%o'sin 6 = (2.6 £2.3) x 107, (3.42)

j O; and O, do not contribute since Im(A,) = 0; Ojp has been eliminated through the relation Oyp =
Os + O4 — O3 which holds for u < my.
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el il i M

HV NDR

(—3.29 £ 0.37 £0.00) x 10~! [ (=3.13 £ 0.39 £ 0.00) x 10"
(104.13 £ 0.54 £ 0.00) x 10~2 | (11.54 + 0.23 + 0.00) x 10~!
(1.73 £0.26 £ 0.00) x 10~% | (2.07 £0.33 £ 0.00) x 102
(—3.82 £0.44 £0.01) x 10~% [ (=5.19 £ 0.71 £ 0.01) x 10~
(1.20 £ 0.11 £ 0.00) x 10-? | (10.54 £ 0.16 £ 0.02) x 10~

(—5.08 £0.72 £ 0.03) x 10~2 [ (=0.72 £ 0.13 £ 0.00) x 10~
(0.01 £0.00 £0.18) x 10~3 | (0.01 +0.04 + 0.20) x 10~

(0.77 £0.12+£0.12) x 10~3 | (0.81 £0.16 £ 0.14) x 10~

(—6.71 £0.27 £ 0.68) x 10~ | (—7.49 + 0.15 £ 0.75) x 10"

Table 5: Wilson coeflicients of HL?!SI“I operators, at y = 2 GeV, calculated including next-
to-leading—order corrections in two different regularization schemes?*. The first error is
due to the uncertainty on a,(u), the second to the uncertainty on m;.

E_i]sz Bg 2
1.0 £ 0.2 [ 0.62 + 0.10

Table 6: B—factors, defined in Eq. (3.40) at 4 = 2 GeV. The entries marked with ‘*’ are
pure ‘theoretical guesses’, whereas the others are obtained by lattice simulations?*.

where

V2  |Cs

T o e (0.6 £0.2). (3.43)
From Eq. (3.42) it is clear that the weak phases of Ay and A, accidentally tends to cancel
each other. As anticipated in the previous section, this cancellation is due to the large value
mq, which enhance Cy (for my ~ 200 GeV we found 7 ~ 1, whereas for m; ~ 100 GeV,
r ~ 107!). Nevertheless, the other essential ingredient of this cancellation is the ‘AT = 1/2
rule’, 1.e. the dynamical suppression of Al = 3/2 amplitudes with respect to AT = 1/2
ones (the w™! factor in Eq. (3.43) is essential for the enhancement of 7).

An accurate statistical analysis of the theoretical estimate of Re(€’/¢) has been recently
carried out by Ciuchini et al.?. In fig. 5 we report some results of this analysis. Histograms
have been obtained by varying, according to their errors, all quantities involved in the
calculation of ¢ and €: Wilson coefficients, B~factors, experimental values of a, and my,
CKM parameters, {5 and m, (the latter is extracted by lattice simulations). The final
estimate of Re(€'/¢) thus obtained is%*:

r =

Re (i—) = (3.1 £2.5) x 107*, (3.44)
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in agreement with previous and more recent analyses®*-3:%%%,

Actually, in Ref.% the final error on Re(¢'/¢€) is larger since the various uncertainties
have been combined linearly and not in a gaussian way, like in Ref.?*. A large uncertainty
has been obtained also in Ref.®3, where the matrix elements have been estimated in a
completely different approach. Nevertheless, all analyses agree on excluding a value of
Re(€’/€) substantially larger than 1 x 107°.

3.4 B decays.

C P violation in kaon decays is strongly suppressed by CKM-matrix hierarchy: ¢, as an
example, is of order O(A*) ~ O(107°). On the other hand, in the decays of By and B,
mesons this suppression is avoidable in several cases®* (see the discussion at the end of
sect. 3.1) and the study of C P violation turns out to be more various and promising.

With respect to the K° — K° system, B; — By and B, — B, systems have the following
interesting differences:

¢ Due to the large number of initial and final states, both even and odd under C' P, the
difference of the decay widths is much lower than the mass difference, i.e. |I'j3]| <
| Mi2]. As a consequence, according to Eq. (2.18), the mixing parameters ¢g, and ¢p,
have very small real parts.

o Mass differences are originated by box diagrams (similar to the one of fig. 4) which,
differently from the K° — K? case, are dominated by top—quark exchange not only

in the imaginary part but also in the real part. In the CKM phase convention of
Eq. (3.12) one finds:

1 — Vi :
* CBJ z t' :5: e-—::ﬁ, (3'45)
1 + ¢p, th
1 — €B “/ts

s o~ — o~ . 3.46
1 + es, ts (3.46)

Since real parts of ¢g, and epg, are small, the study of C' P violation via charge asymmetries
of semileptonic decays (§ sect. 2.3) is not convenient in neutral-B-meson systems. The
best way to observe a C P violation in these channels®*®® is to compare the time evolution
of the states |B,(t)) and |B,(t)) (states which represent, at ¢ = 0, B, and B, mesons) in
a final C P-eigenstate | f) (CP|f) = ns|f)):

[(By(t) = f) oce ot 1 —nydssin(AMp,t)| (3.47)
[(By(t) = f) o e 2 [1 4 nsAssin(AMp,t)] . (3.48)

An evidence of A; # 0 necessarily implies C P violation, either in the mixing or in the
decay amplitudes. As we shall see in the following, for particular states |f), the CKM
mechanism predicts Ay = O(1).

27



m,={174+17) GeV A o =(330+ 100) MeV

6000
: 2500 "
5000 f I , R
; 2000 I
4000 | y :
f ' : |
3000 | 1500 : _ .
2000 1000 . :
1000 500 &
0 —rt '-'.j ' L‘J 0 L S AN N |
-1 -0.5 0 0.5 1 O 0.2 0.4 0.6 0.8 1
cos § sin 28
7000 | 6000 - '
6000 5000
5000 4000 [
4000 -
3000
3000
2000
2000 -
1000 | 1000 ;_"
O ol Py O -, ‘_. ‘--‘ .
-0.05 0 005 0.1 -0.002 0  0.002 0.004
x 10
/€ e/e (A n)”"

Figure 5: Distributions (in arbitraryi units) of cosd, sin 203 = 23m(Vq)Re(Via)/|Via|?, € /¢
and €'/¢(A*n)~" as obtained by Ciuchini et al.’*. Dotted histograms have been obtained
adding the additional constraint coming from By — B; mixing.
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Figure 6: Unitarity triangle in the complex plane.

If C P violation was originated only at the level of B, — B, mixing, A\; would not depend
on the decay channel. On the contrary, in the Standard Model A; assumes different values
according to the channel. In all transitions where only one weak amplitude is dominant,
is possible to factorize strong interaction effects and to extract CKM matrix-elements
independently from the knowledge of hadronic matriz elements. According to the dominant
process at the quark level, A, assumes the following values®®: '

Af =sin2ﬂ Bd, b—e¢
As =sin2(f + 4) = sin2a By, b = u
Af — B,, b— ¢ (349)
Ay =sin2é B,, b > u

where 4§ 1s the CKM phase in the parametrization (3.12) and 3, already introduced in Eq.
(3.45), is given by:
o sin n

tanf = 1—ocosd 1-p (3:50)

The phases a, # and 4, which appears in Eq. (3.49), have an interesting phenomeno-
logical interpretation: are the angles of the so—called ‘unitarity triangle’ (§ fig. 6). Indeed,
from CKM-matrix unitarity, which implies

VisVua + VaVea + VyVia = 0, (3.51)
1.e., at the leading order in A,
=+ Vig = AN, | (3.52)
follows the relation |
a+pB+4é=nm. (3.53)
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Obviously, CKM-matrix unitarity impose also other constraints, in addition to Eq. (3.51),
which can be re-formulated in terms of different triangles. However, the one in fig. 6 is the
most interesting one since the three sizes are of the same order in A and thus the triangle
is not degenerate.

Limits on CKM-parameter p and n (§ tab. 2), coming both from K and B physics, put
some constraints on the angles a, 3 and §. Recent correlated analyses of such limits?4®’
leads to the conclusion that, whereas sin 28 and sin2a can vanish, sin 203 is necessarily

different from zero and possibly quite large:
0.23 <sin28 < 0.84. | (3.54)

Fortunately, the measurement of sin 23 is also the most accessible from the experimental
point of view. Indeed, the decay By -+ ¥ Kgs is dominated*® by the tree-level process
b — cés, thus, according to Eq. (3.49), from this decay is possible to extract in a clean
way sin 20 = Agx. The measurement of Agx is one of the main goal of next-generation
high-precision experiments on B decays and will represent a fundamental test for the
CKM mechanism of C P violation.

The measurements of the other two phases (a and §), very interesting from the the-
oretical point of view, both to exclude new ‘super-weak’ models (models where CP is
generated only by |AS| = 2 and |AB| = 2 interactions) and to test CKM-matrix unit-
arity (limiting the presence of new quark families), are much more difficult. In the case
of a, for instance, the most promising channel is the decay By — nn, dominated by the
tree-level transition b — uiid, but the very small branching ratio and the contamination
of penguin diagrams with different weak phases3®, makes the measurement of A, quite
difficult and the successive extraction of sin2a not very clean. A detailed analysis of all
the processes that can be studied in order to measure these phases is beyond the purpose
of this article, we refer the reader to the numerous works on this subject which are present
in the literature (see e.g. Refs.?>%%=90 354 references cited therein).

4 Chiral Perturbation Theory.

As already stated in the previous section, color interactions between quarks and gluons are
non perturbative at low energies, and the confinement phenomenon is probably the most
evident consequence of this behaviour. Nevertheless, from the experimental point of view
1s known that at very low energies pseudoscalar-octet mesons (§ tab. 3) interact weakly,
both among themselves and with nucleons. Therefore it is reasonable to expect that with
a suitable choice of degrees of freedom QCD can be treated perturbatively even at low
energies. Chiral Perturbation Theory?*~%7 (CHPT), using the pseudoscalar-octet mesons
as degrees of freedom, has exactly this goal.®

L

* Actually there is also a small contribution coming from the penguin diagram b — sqd, however this term
has the same weak phase (zero in the standard CKM parametrization) of the dominant one.

® For excellent reviews on CHPT and, in particular, for its applications in kaon dynamics see
Refg 38.39,51,91-95
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Neglecting light quark masses, the QCD lagrangian

. . Aa 1
Locp= ), ¢* (16” — g,-é—G:) q— ZG:,G’"“” + O(heavy quarks), (4.1)

q=u,d,s

a part from the local invariance under SU(3)c, posses a global invariance under
SU(Nyu)r x SU(Ny)r x U(1l)v x U(1)4, where Ny = 3 is the number of massless quarks.
The U(1)y symmetry, which survives also in the case of non-vanishing quark masses,
is exactly conserved and its generator is the barionic number. On the other hand, the
U(1)4 symmetry is explicitly broken at the quantum level by the abelian anomaly!4.
G = SU(3)L x SU(3)r is the group of chiral transformations:

_ u
Y. n —G+ gz.,R'[’L.m where Y = ( d ) and 9.r € G, (4.2)

S

spontaneously broken by the quark condensate ({0}44|0) # 0). The subgroup which re-
mains unbroken after the breaking of G is H = SU(3)y = SU(3)r+r (the famous SU(3)
of the ‘eightfold way™), as a consequence also the coset G/H is isomorphic to SU(3).
The fundamental idea of CHPT is that, in the limit m, = mq = m, = 0 (chiral limit),
pseudoscalar—octet mesons are Goldstone bosons generated by the spontaneous breaking of
G into H. Since Goldstone fields can be always re-defined in such a way that interact only
through derivative couplings®®, this hypothesis justify the weak behaviour of pseudoscalar
interactions at low energies. If these mesons were effectively Goldstone bosons, they should
be massless, actually this is not the case due to the light—quark-mass terms which explicitly
break G. Nevertheless, since m, 4, < A,, is natural to expect that these breaking terms
can be treated as small perturbations. The fact that pseudoscalar-meson masses are much

smaller than the typical hadronic scale (M?/A] < 1) indicates that also this hypothesis
is reasonable. Summarizing, the two basic assumptions of CHPT are¥:

[1] In the chiral limit, pseudoscalar—octet mesons are Goldstone bosons originated by
the spontaneous breaking of G into H.

[2) The mass terms of light quarks can be treated as perturbations.

According to these hypotheses, to describe QCD interactions of pseudoscalar mesons
is necessary to consider the most general lagrangian invariant under G, written in terms
of Goldstone-boson fields, and add to it the breaking terms, which transform linearly
under G.?® The problem of this approach is that the lagrangian built in this way is non
renormalizable and thus contains an infinite number of operators. Nevertheless, as we shall
see in the following, in the case of low energy processes (E < A, ), the error done by

considering only a finite number of such operators is under control (of order (E/A,)") .

4.1 Non-linear realization of G.

Goldstone-boson fields parametrize the coset space G/H and thus do not transform lin-
early under G. The general formalism to construct invariant operators, or operators which

31



transform linearly, in terms of the Goldstone-boson fields of a spontaneously broken (com-

pact, connected and semisimple) symmetry, has been analyzed in detail by Callan, Cole-
man, Wess and Zumino®®. In this subsection we shall only illustrate the application of
this formalism to the chiral symmetry case.

First of all is possible to define a unitary matrix u (3 x 3), which depends on the
Goldstone-boson fields (¢;), and which transforms in the following way: |

u(¢) = gau(#)h™'(g,4:) = h(g, 4:)u(di)g;"
u(@)' 2 g,u(8)'h7 (g, i) = hlg, di)u(4:)'g;, (4.3)
where h(g, ¢;), the so—called ‘compensator-field’, is an element of the subgroup H. If

g € H, h is a unitary matrix, independent of the ¢;, which furnishes a linear representation
of H: if ¥ is a matrix which transforms linearly under H, then

\I',' —E'> h(gs Qbi)\l’ih—l(gs él) | (44)

There are different parametrizations of u in terms of the fields ¢;, which correspond to

different choices of coordinates in the coset space G/H. A convenient parametrization is
the exponential parametrization:’

U2=U — eiﬁ‘i/F’
r° s
—_— 4 — 1I"+. K+
VAR
ves V2 V6 ’ |
K- K° 218

V6

where F is a dimensional constant (dim[F]=dim[®]) that, as we shall see, can be related

to the pseudoscalar-meson decay constant. Note that U <, grUgr".
Successively, it is convenient to introduce the following derivative operators:

u, = i(u'du — udu') = w'g Uu' = uL U, <, hu,h!, (4.6)
which transforms like ¥, and
1
[, = E(u"a#u + ud,ut) = -t T, -3 hT A + hO,AT, (4.7)
which let us build the covariant derivative of ¥:

v,V =0,¥ - [T, ¥ (4.8)

® We denote by ng the octet component of the n meson.




With these definitions is very simple to construct the operators we are interested in: if A is
any operator which transforms linearly under H (like ¥, u, and their covariant derivatives),
then uAu' and u'Au transforms linearly under G, whereas their trace is invariant:

G -
udu! < gR(uAuf)gRI,

uldu = gL(quu)g:l. (4.9)

4.2 Lowest—order lagrangians.

In absence of external fields, the invariant operator which contains the lowest number of
derivatives is unique:® (u,u*) = (8,U3*U"). Fixing the coupling constant of this operator
in order to get the kinetic term of spin-less fields, leads to:

e

2
£ = HBUPVY) = 10,80°8 + 0(8"). (4.10)

This lagrangian is the chiral realization, at the lowest order in the derivative expansion,
of Lqcp.- |

To include explicitly breaking terms, and to generate in a systematic way Green func-
tions of quark currents, is convenient to modify Lgcp, i.e. the QCD lagrangian in the
chiral limit, coupling external sources to quark currents. Following the work of Gasser and
Leutwyler®®#”| we introduce the sources v,, a,, 5§ and p, so that

Tu = Uy +a,

G
—
I, = g1
#“v“-—a“ gLPgL!
R ‘- G
s+ip —
G
—

i—ip S g, (3-ip)g]) (4.11)

and we consider the lagrangian
£QCD(U! a, *§1 ﬁ) - EQCD + ';7#(0# + 0“75)¢ - ’/;(5 - ‘!ﬁ’)’s)d). (4'12)
By this way we achieve two interesting results®:

e The generating functional
eiZ(v,a,i,ﬁ) — /Dqu—DG eifd"zﬁqcp(v,a,i,ﬁ) (4.13)

1s explicitly invariant under chiral transformations, but the explicit breaking of G
can be nonetheless obtained by calculating the Green functions, i.e. the functional
derivatives of Z(v, a, s, p), at

v,=a,=p=0 $ = M, = diag(m,,, my4, m,). (4.14)

° We denote by (A) the trace of A.
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to the dominant terms. Thus the chiral lagrangian for |AS| = 1 non-leptonic transitions,
at order (Grp®e®) + (Grp®e?), is glven by:

Y oW + g w‘°’] +h.c. (4.32)
1=8,27

The three constants g; which appear in C%:,) are not fixed by chiral symmetry but is
natural to expect them to be of the order of the Wilson coefficients of table 5. The g; are
real in the limit where C' P i1s an exact symmetry.

In principle, the g; could be determined either by comparison with experimental data,
on K — 27 or K — 37, or by by comparison with theoretical estimates, coming from
lattice QCD or other non—perturbative approaches’®192=1%_In practice, the choice is re-
duced because: i) there are no experimental information on the imaginary parts of the
weak amplitudes; ii) lattice calculations for the real parts of K — 27 amplitudes are still
not reliable (the estimates are dominated by the large errors on the B-factors of O, and
O2); ii1) all the other non-perturbative approaches are affected from large theoretical un-
certainties. As a consequence, in our opinion the best choice to determine the g; is to fix
the real parts by comparison with experimental data (those on K — 27 for simplicity),
and to fix the imaginary parts by comparison with lattice calculations'®®.

Using the lagrangian (4.32) at tree level, from Eq. (2.28) follows:/

V3F [ (M2 — M) (G8 + -I-Gg-,) _ -g-F*c;g] | (433)
F [—-G,-, - M?) - %F’Gs] (4.34)

Ao

A;

where, for simplicity, we have introduced the dimensional couplings G; = GrA.g:/ V2.

Neglecting the contribution of the (8., 8g) operator,? the comparison with the experimental
data (2.35-2.36) leads to:

IGs] = 9.1 x 107 GeV~2, (4.35)
9v/ 2%
927/98] = —5— =5.7x107". (4.36)

For what concerns imaginary parts, the comparison with the results shown in sect. 3.3
leads to!%°:

Smgs = SOm (,\ ) C;‘B‘“JFCQB‘/’ 03333”’+C4Bj/2

il ]

/ In the following we will neglect isospin-breaking effects but in € /¢ (§ sect. 3.3), since there are not
sufficient data to systematically analyze isospin breaking beyond K — 2x91:106

9 As can be seen from Eq. (3.30), the contribution of (8,,8Rr) operators in the real parts is completely
negligible.
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O(p

) — prediction

l'a.rflplituaLe ‘exper. fit

a. —954+04] —76.0+0.3

a, | +844+06] +69.9+0.6
b [-269%03] -175+01 |

b, |-281+05] -18.0+0.2

b | —3.9+04 —3.1+04

Table 7: Comparison between experimental data and lowest order CHPT predictions for
the dominant K — 37 amplitudes'® (§ sect. 5).

)
Smgyr = Im (-,-\-t-) _f.;_g?_ 3/2],
Smgs = Sm (2t |~C1B7"* — 3CsBg"?] ) (4.37)
2 A 7 1\ V2F3

Once fixed the ¢;, by comparison with K — 27 amplitudes, the theory is absolutely
predictive in all other non-leptonic channels: the comparison between these predictions and
the experimental data leads to useful indications about the convergence of the derivative
(or chiral) expansion. In table 7 we report the results of a fit!® on the experimental data,

together with the predictions of ££f), for the dominant K — 37 amplitudes (§ sect. 5).
As can be noticed, the discrepancy between lowest order (order p?) chiral predictions and
data is about 30%. To obtain a better agreement is necessary to consider next—order (order
p*) corrections'®. As we shall see in sect. 6, the need of considering O(p*) terms is even
more evident in the case of radiative decays, where the lowest order predictions vanish
except for the bremsstrahlung amplitudes.

4.3 Generating functional at order p*.

In the previous subsection we have seen how to build the chiral realization of Lqcp and of
the non-leptonic eflective hamiltonian at the lowest order in the chiral expansion. At this
order Green functions can be calculated using the above lagrangians at tree level. On the
other hand, at the next order, is necessary to calculate the whole generating functional to
obtain Green functions in terms of meson fields.

In the case of strong interactions we can rewrite the generating functional (4.13) in the
following way:

eiZ(u,a,i,ﬁ) —_ fDU(‘b) eifd‘ixﬁs(U,v,a,.i,ﬁ) (438)

where Lgs(U,v,a,s,p) is a local function of meson fields and external sources. Since
Z(v,a,s,p) is locally invariant for chiral transformations, except for the anomalous
term %19 it is natural to expect that also Ls(U, v, a, 3, p) be locally invariant?®. Indeed,
it has been shown by Leutwyler!® that the freedom in the definition of U/ and L let us
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always to put the latter in a locally—chiral-invariant form. Only the anomalous part of the
functional cannot be written in terms of locally-invariant operators!!%11!,

The expansion of Ls in powers of p, by means of the power counting rules (4.20—4.21),

Ls=LP+cP+.., (4.39)

induces a corresponding expansion of the generating functional. At the lowest order we
have

ZD(v,a,3,p) = /,d‘xc‘s”(v,v, a,3,p). (4.40)

At the next order is necessary to consider both one-loop amplitudes generated by £
and local terms of C_(;). As anticipated at the beginning of this section, E?) 1S NON renor-
malizable, however, by symmetry arguments, all one-loop divergences generated by 5?)
which cannot be re-absorbed in a re—definition of C(sn coeflicients have exactly the same
structure of Cf;) local terms. The same happens at order p®: non-re-absorbed divergences
generated at two loop by E?) and at one loop by 5(54) have the structure of £(56) local terms.
Thus the theory is renormalizable order by order in the chiral expansion.

It is important to remark that loops play a fundamental role: generating the imaginary
parts of the amplitudes let us to implement the unitarity of the theory in a perturbative
way.

yFurthermc:»rc:-':, the loop expansion suggest a natural scale for the expansion in powers of
p, i.e. for the scale A, which rules the suppression (p?/A3}) of O(p**?) terms with respect

to O(p") ones. Since any loop carries a factor 1/(4nF)? (1/F? comes from the expansion
of U and 1/1672 from the integration on loop variables), the naive expectation is!!?

A, ~ 4nF, = 1.2 GeV. C (4.41)

Obviously Eq. (4.41) 1s just and indicative estimate of A,, more refined analysis suggest
that is lightly in excess (see the discussion in Ref.%®), but is sufficient to understand that
in kaon decays, where |p| < M, the convergence might be slow, as shown in the previous
subsection. .

At order p4, beyond loops and local terms of £(54) there is also the anomalous term, the
so—called Wess—Zumino-Witten functional*%!!! (Zy 2w ). Thus the complete expression
of Z* js:

ZW(v,a,3,p) = [ Bz, v,0,5,5) + 2P+ Zwaw. (4.42)

1-loop

Whereas Zw zw is finite and 1s not renormalized (§ sect. 4.3.2), Zl(i)loop is divergent and is

necessary to regularize it. Using dimensional regularization, chiral power counting insures
that the divergent part of Z{i’,wp is of order p* and, as already stated, has the structure

of Ef;) local terms. In d dimension we can write

2 00p = —A(1) 3. %0 + 2000 (), (4.43)
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where

l‘dﬂni 1 1 ’
Ay) = W{m-§[1n(4n)+1+r(1)]}, (4.44)

(4)f1in
1—-loop

By this way, calling L; the coefhicients of Cg) operators:

v; are appropriate coefficients, independent of d, and Z (1) 1s finite in the limit d — 4.

£ = Z L0, _- (4.45)

and defining
Li = Li () + viA(p), (4.46)

the sum of the first two terms in Eq. (4.42) is renormalized:
[d42£9(L) + 28, = [ d2LP(Li(w) + 2000 (). (4.47)

4.3.1 O(p*) Strong counterterms.

The most general lagrangian of order p*, invariant under local—chiral transformations,
Lorentz transformations, P, C and T, consists of 12 operators?®:

£y = L{DU'D*U)? + Ly(D,U'D,UYD*Ut D*U)
+ Ly(D,U'D,UD*U'DU) + LD, UD*U){x'U + Uly)
+ Ls(D,U'D*U(x'U + Utx)) + Le(x'U + Utx)* + L+{x'U — Utx)?
+ Le(x'Ux'U + U'xU'x) — iLo(F&* D, UD*Ut + F**D,U'D*U)
+ Lio(U'FR'UFLu) + Lu(FR Fru + F£ Fru) + Lia(xx").- (4.48)

Sl(n)ce at order p* this lagrangian operate only at the tree level, the equation of motion of
LG

DUU*—UDU":xUt—Uxt—-é—(xUT—Ux*), (4.49)

has been used to reduce the number of independent operators?®.

The constants L; + Lyo of Eq. (4.48) are not determined by the theory alone and
must be fixed by experimental data. The value of the renormalized constants, defined by
Eq. (4.46), together with the corresponding scale factor +; and the processes used to fix

them are reported in table 8 at 4 = M, ~ 770 GeV. To obtain the Lf(u) at different
scales, using Eq. (4.46) we find

r r l‘Q
Li(p1) = L{(p2) + (4 )2 lﬂ (4.50)

It 1s important to remark that the processes where the L7(u) appear are more than those

used to fix them, thus the theory is predictive (see e.g. Refs.?*° for a discussion on CHPT
tests in the strong-interaction sector).
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i | LT(M,) x 1C process
1 04+03 | K., nn = nn
2 1.35+0.3 Ky, 7> nw
3| -35%1.1 K., 7 = nn
41 -35%£05 Zweig rule
9 1.4 £0.9 Fy/F,
6| -02+03 Zweig rule
7| —-0.4+£0.2 |Gell-Mann-Okubo, Ls, Lg
8 0.9+03 Mygo — Mg+, Ls
9 6.9 £0.7 (r3)},
10 —-5.5%0.7 T — evy
11 |
12

Table 8: Values of the L7(M,), processes used to fix them, and relative scale factors'!*

The constants L,; and L;; are not measurable because the corresponding operators are
contact terms of the external-field, necessary to renormalize the theory but without any
physical meaning.

Finally, using the L7(M,) fixed by data, we can venfy the reliability of the naive
estimate of A, (4.41). Using, as an example, Lg(M,) (the largest value in table 8), from
the tree-level calculation of the electromagnetic pion form factor, follows

' 2L,(M
femr () =1+ ()t +0(t*) =1+ QP('? p)t + O(t?), (4.51)
which implies
2 F2 M'Z
AS 2 Le( M,j (4.52)

4.3.2 The WZW functional.

The generating functional which reproduces the QCD chiral anomaly in terms of meson
fields was originally built by Wess and Zumino'!?, successively has been re-formulated by
Witten!!! in the following way:

N,
240,;-2
/d‘:r:e‘“’"" WU, 1L,1)uw — W(Q,1L1) 000, (4.53)

szw(l,r) d%:c‘j""“(U"B;UB-U*BkUBIU‘BmU)

481r2

where

1 |
WU L) e = (ULLLUr + ZUI“UTr,Ul,,UTr, +1U8,1,1,Utr,
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+19,r, UL U, — U, UL U, UL, - 8,U'0,r,Ul,

+a, U, uUr,Ul, + U3 ULB,l, + U'A UL,

Ut ULLL, + %U*aﬂw,ufa‘,wq +:U'9,U8,Uta,Ul,

(U ULl or,)). (4.54)

The Zwzw functional let us to compute all the contributions generated by the chiral
anomaly to electromagnetic and semileptonic decays of pseudoscalar mesons. This does
not mean that there are no other contributions to these decays. However, since Zwzw
satisfies the anomalous Ward identities, contributions not generated by Zwzw must be
locally invariant under chiral transformations.

Chiral power counting insures that Zwzw coeflicients are not renormalized by next-
order contributions (for a detailed discussion about the odd-intrinsic-parity sector at

O(p®) see Refs.1149%),

4.3.3 O(p*) Weak counterterms.

Also in the case of non-leptonic transitions, in order to calculate the Green functions at
order p! is convenient to introduce an appropriate generating functional. Since we are inter-
ested only in contributions of order G, we proceed analogously to the strong interaction
case (§ sect. 4.3) with the simple substitution

cd - P +L3),
c 5 W4+, (4.55)

where £\y) is an O(p*) lagrangian that transforms linearly under G like 5(5-2) and con-

sequently absorbs all one-loop divergences generated by 5(32) X £(“2,).

The operators of order p* which transforms like (81,1g) and (27, 1r) under G, have
been classified for the first time by Kambor, Missimer and Wyler!?®: the situation is worse
than in the strong case because the number of independent operators is much larger. For
this reason, since Al = 3/2 amplitudes are experimentally very suppressed, following
Ecker, Kambor and Wyler''® we shall limit to consider only (8;,1g) operators.

In Ref.''® the number of independent (8, 1r) operators has been reduced to 37 using
the lowest order equation of motion for U and the Cayley-Hamilton theorem. Successively,
terms that contribute only to processes with external W bosons (i.e. terms which generate
O(G%) corrections to semileptonic decays) and contact terms have been isolated. By this
way, the number of independent operators relevant to non-leptomc kaon decays at O(Ggp*)
turns out to be only 22.

In the basis of Ref.!'° the (81,1r) component of the O(p*) weak lagrangian is written
in the following way

37
£ = GsF?*Y. NW™ + hec, (4.56)
1=1
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Wim decay channel Vi
(Oufu,ubu,u’u) > 3 2
(Au*u”u,,u"u“u) > 3n -1 /2

Outu,u,u) (@) > 3r 0
(Autu,u)(ubu,u”) > 3r 1
(M {x4, uuu*}u) >2n 3/2
(tus,u) (2 ) S2r | -1/A
('\“*X+“)("u““)

O, u)xc)
(Au4[X-’ uuu"] u)
(M X-[-")
(mX+“)(X+)
(»\u X2 u)
(/\u X-u){(x-)
'(’\u HiE, ,u“u,}u)
15 i(AuTu, fu,u)
16 z(Au'{f Y uuu, bu)
17 t(Aufu, f%u,u)

18 (Au! fiuw va) u)
28 16,‘,”((:‘11“11)(11 YuPu’)
(aut [ o — fop wu [ u)
Qulutu)(u’ fr)
O (0 f )

ok | pond oot | et [ b
L ]

EM

Table 9: W' operators, in the basis of Ref.!16, relevant to non-leptonic kaon decays at
O(GF), with relative scale factors. In the third column are indicated the processes which
the operators can contribute to: the symbol > indicates that 7 or 4 can be added, whereas

(E£') and (M) indicate electric and magnetic transitions, respectively; no distinction is made
for real or virtual photons.

43



where the N, are adimensional constants. The 22 relevant—operatof W,-m are reported in
table 9, where, for simplicity, has been introduced the fields

T By f t puv f — po
+ = UFLU +u FR u, f:hpp““epvﬂfi:a

X+ = utxu*:tuxu. (4.57)

Analyzing the eflects of the W,-“) mK -2r, K 93r, K 27", K = nyvy, K = 2ny
and K — 37y decays, some interesting consequences (which we shall discuss more in detail
in the next sections) can be deduced:

¢ It is not possible to fix the coeflicients Ng < N,3: their eflect is just to renormalize
the value of G fixed at O(p?) (in principle, some combinations could be fixed by
off-shell processes, like K — 77*).

¢ Two combinations of N; — N3 can be fixed by widths and linear slopes of K —
3x, then is possible to make predictions for the quadratic slopes of these decays!!?
(§ sect. 5). As shown in Ref.}!®) radiative non-leptonic processes do not add further
information about N, = N;a.

e The coeflicients N4 + N;g and three independent combinations of N5 —~ N3; could
in principle fixed by the analysis of radiative non-leptonic decays (unfortunately
present data are too poor). Then, also in this case several predictions could be

made’!? (§ sect. 6).

Obviously, the above statements are valid only for the real parts of the coefficients N;.
For what concerns the imaginary parts, related to C P violation, to date there are neither
useful experimental information nor lattice results. In order to make definite predictions
1S necessary to implement an hadronization model. Nevertheless, as we shall see in the
following, chiral symmetry alone is still very useful to relate each other different C P-
violating observables.

4.4 Models for counterterms.

Due to the large number of O(p*) counterterms, both in the strong and expecially in
the non-leptonic weak sector, it is interesting to consider theoretical models which let
us to predict the value of counterterms at a given scale. By construction these models
have nothing to do with the chiral constraints, already implemented, but are based on
additional less-rigorous assumptions dictated by the phenomenology of strong interactions
at low energy.

There are different classes of such models (for an extensive discussion see Ref.3839);
one of the most interesting hypothesis is the idea that counterterms are saturated, around
p = M,, by the contributions coming from low-energy-resonance (p, w, 7, etc...)
exchanges'?>'?!. In the framework of this hypothesis (known as ‘chiral duality’) it is as-
sumed that the dominant contribution is generated by spin-1 mesons, in agreement with
the old idea of ‘vector meson dominance’.
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In order to calculate the resonance contribution to counterterms, is necessary: i) to con-
sider the most general chiral-invariant lagrangian containing both resonance and pseudo-
scalar meson fields; ii) to integrate over the resonance degrees of freedom, in order to
obtain a non-local effective action for pseudoscalar mesons only; iii) to expand this action
in terms of local operators. Since strong and electromagnetic coupling constants of reson-
ance fields are experimentally known, in the case of [,(54) this procedure leads to interesting
unambiguous predictions!?!.

As an example, to calculate spin-1 resonance effects, we can introduce two antisymmet-
ric tensors V#* and A*¥, which describe the SU(3).4r octets of 17~ and 1** resonances,

and which under G transform in the following way:
R* s h(g,4:)R* h~'(g, ;) R* = Vi AW (4.58)

The lowest—order chiral lagrangian describing V*” and A*¥ interactions with pseudoscalar
mesons and gauge fields is:"
Fy

B = Lain(V) + Liin(A) + —=(V,, f2
£V,A ktn( )+ k:n( )+2\/§( }-W+>

1Gy F,
—(V,, u*u” —— (A, ft"), 4.59
+\/§(#u")+2\/§(n ) ( )

where y |
Liin(R) = —§(V”an Ve %) + ZM}t(RwRW)* (4.60)

Integrating over resonance degrees of freedom and expanding up to O(p*), leads to identify
the following contribution to the L;:

G? FvGy
LY = gaz LY = -LY/3=2LY, Ls = 5wz
, Fi R v v v v Co (a6

The constants Gv, Fy and F4 can be experimentally fixed by the measurements of I'(V —
xw), [(V — ete™) and I'(A — ), respectively. The results obtained by this procedure
for the non—vanishing L) are reported in the second column of table 10: as can be noticed
the agreement with the fitted L, is very good. For the constants L,_g, which do not receive
any contribution from spin—1 resonances, is necessary to calculate the contribution of scalar
resonances. At any rate, as can be noticed from table 8, these constants have smaller values
respect to the dominant ones (L3, L9 and L;q) to which spin-1 resonance contribute. We
finally note that imposing on the lagrangian (4.59) Weinberg sum rules'?® and the so—
called KSFR relations'**'* (which are in good agreement with experimental data) then
Fv, Gy, F4 and M, satisfy the following identities:

Fv =2Gy = V2F, = V2F,, M, =V2My. (4.62)

" Actually, the choice of Eqs. (4.58-4.60) to describe spin—1 resonances couplings is not unique, there exist
different formulations which however lead to equivalent results!?2.
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1 | Li(M,) x 10

1 [ 0403
2| 1.35+£03
3] -35+£1.1
9| 6907

10| -55£0.7

Table 10: Comparison between the fitted L7(M,) (first column) and the vector-meson-
dominance predictions (4.61). The values in the second column have been obtained with
Fv. Gy, F4, My and M, fixed by experimental data, the corresponding errors are related
to the different possibilities to fix these constants (Fy, as an example, can be fixed either
from I'(p — e*e”) or from [(w — e*te™)). The values reported in the last column have
been obtained using the relations (4.62) and fixing My = M,.

As a consequence, in this case the LY can be expressed in term of a single parameter:
My . The values of the LY thus obtained are reported in the third column of table 10: in
spite of the simplicity of the model, even in this case the agreement is remarkable.

4.4.1 The factorization hypothesis of L.

Clearly, in the sector of non-leptonic weak interactions the situation is more complic-
ated since there are no experimental information about weak resonance couplings. To
make predictions is necessary to add further assumptions, one of these is the factorization
hypothesis'®126:137 Gince the dominant terms of the four-quarks hamiltonian are factor-
izable as the product of two left-handed currents, we assume that also the chiral weak
lagrangian has the same structure.

As we have seen in sect.4.2, the lowest—order chiral realization of the left-handed
current §ry“qr is given by the functional derivative of Z(?) with respect to the external
source [;:

§Z3(,r, 3, p) 1
(1) _ A\D TS P) g2

Furthermore, since the lowest-order weak lagrangian can be written as

LV = 4Gs(AJWJ#*My 4 hec, (4.64)
the factorization hypothesis of Cw consists of assuming the following structure:
LY o = 4k Gs(A{ID, J*O}) + hec,, (4.65)

where k; is a positive parameter of order 1 and J*®) is the chiral realization of the left-
handed current at order p3. In general J*(® can be expressed as functional derivative of
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L, with respect to the source I, and in this case depends on the value of the LT(u).
In order to make the model more predictive, relating it to the vector-meson-dominance
hypothesis previously discussed, one can assume L{(M,) = L.

To date, experimental data on weak O(p*) counterterms are very poor, not sufficient
to draw quantitative conclusions about the validity of the factorization hypothesis. At any
rate, 1n the only channels where there are useful and reliable experimental information,
i.e. K — 3x and K* — wntete™ decays, the estimates of the sign and of the order of
magnitude of counterterms, effectuated within this model, are more or less correct!!®.
Only in the next years, when new high-statistics data on both neutral and charged kaon
decays will be available, it will be possible to make an accurate analysis of the non-leptonic
sector. With the expected new data it will be possible not only to test the factorization
model, but also to study in general the convergence of the chiral expansion at O(p*) in
the non—leptonic sector.

9 K — 3w decays.

5.1 Amplitude decomposition.

There are four distinct channels for K — 37 decays:

K* — nipty¥ I=1,2,

K¥ 5 70x0pd I =1,2,
K°%(K°) — n*nx¥n0 I=0,1,2, (5-1)
K°(K°) — n%n%x0 I=1

Near each channel we have indicated the final-state isospin assuming Al < 3/2.

In order to write the transition amplitudes, it is convenient to introduce the following
kinematical variables:

1

. 1
S = (PK "p{)g.’ &nd Sg = -:-3-(31 ..|. S9 + 33) — 3

1 3

M}( + '5 Z M:N (5.2)
=1

where px and p; denote kaon and 7; momenta (73 indicates the odd pion in the first three

channels). With these definition, the isospin decomposition of K — 37 amplitudes is given
byl28- 130.

Ary- = A(KY - n¥n¥n7) = 2A(s1, 82, 83) + Be(s1, 82, 53) + Ba(s1, 2, 83),
Ao = A(K"’ — ‘n'oﬂoﬂ’+) = Ac(sl, 32,83) — Bc(31s32’ 33) + 32(31, 52, 33),
Ar—o = V2A(K® 5 117 1°) = Aa(s1,82,83) — Ba(s1, 52, 33) + Co(s1, 82, 83)
* +2{B;(s3, 82, 81) — Ba(s1, s3,52)]/3,
Ao = \/§A(K° — 1r°1r°1r°) = JAn (31, 32, 33). (5.3)

The amplitudes A;, B; (i1 = ¢,n,2) and Cp transform in the following way under s per-
mutations: the A; are completely symmetric, Cy is antisymmetric for any exchange s; ¢ s;,
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finally the B; are symmetric in the exchange s; ¢ s; and obey to the relation
Bi(s1, s2,83) + Bi(s3, 32, 81) + Bi(s1,53,32) = 0. (5.4)

For what concerns isospin, A., and B, belong to transitions in I = 1, whereas B, and
Co belong to I = 2 and I = 0, respectively.

Differently than in K — 2, in the first three channels of Eq. (5.3) there are two
amplitudes, which differ for the transformation property under s;-permutations, that lead
to the same final state (I = 1). For this reason is convenient to introduce the two matrices

2 1 1 -1

which project the symmetric and the antisymmetric components of the I = 1 state in the
physical channels for charged and neutral kaon decays:

)-n(48) ()=

— Tc c\v1 +-0 — Tﬂ LA ) 5‘6

( ALY, B.(s:) Ao, Ba(s;) (56)
Experimentally, the event distributions in K — 37 transitions are analyzed in terms

of two adimensional and independent variables:

89 — 84 83 — 8o
and Y =

=" M7

(5.7)

the so—called Dalitz variables. Since the three—pion phase space is quite small (Mg —3M, <
100 MeV), terms with elevate powers of X and Y, corresponding to states with high
angular momenta, are very suppressed (see Ref.'®! and references cited therein). Until
now the distributions have been analyzed including up to quadratic termsin X and Y

JA(K = 3n)° x 1 + gY + ;X + hY? + kX2 (5.8)

The parameters g + k are the ‘Dalitz Plot slopes’. In table (11) we report the experimental
data for the different channels.

To relate the decomposition (5.3) with experimental data is necessary to expand A;,

B; and Cy in terms of X and Y. According to the transformation properties under s;-
permutations follows:

Ai = a;+c(Y*+X%3)+..,
B, = Y +di(Y? - X?*/3)+eY (Y + X?¥/3) + ...,
Co = foX(Y?-X2/9)+ ..., (5.9)

where dots indicate terms at least quartic in X and Y. The parameters a;, b;, ... fo are real
if strong re-scattering is neglected and C P is conserved.

Since we are interested only in C P violating effects, we shall limit to consider only the
dominant terms in each amplitude and we will neglect completely the Cy amplitude that
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hannel [T~ X 10 X 10

atxtr— | 4.52+£0.04 | —2.15+0.03 /
r-x-xt | 452+0.04 [-2.17+0.07 /
ot 1.40 +£0.03 | 5.94 £0.19 /
(7¥x= %), | 239+0.04 | 6.70+£0.14 [1.1+0.8
/
! ,

-

(r*n~n%)s | 4.5

or7%)L 4.19 £ 0.16 /

(x7n°xNs < 0.4 /

!

I

——

Table 11: Experimental data for widths and slopes in K — 37 decays!®13%133, The symbol
/ indicates terms forbidden by Bose symmetry.

is very suppressed. With this assumption, the decomposition (5.3) contains at most linear
terms in Xand Y:

Apr. = 2a.+ (b + b)Y,
Aoy = a.-— (bc - bg)Y,
A+..0 = Qan — bny + 'gng,
AG)O - 301-;- (5.10)

5.2 Strong re—scattering.

As we have seen in sect. 2, to estimate C P violation in charged-kaon decays is fundamental
to know strong re-scattering phases of the final state.

Differently than in K — 27, K — 37 re-scattering phases are not constants but
depend on the kinematical variables X and Y. Furthermore, in the I = 1 final state,
the two amplitudes with different symmetry are mixed by re-scattering!*®. Projecting, by
means of T, and T,, I = 1 physical amplitudes in the basis of amplitudes with definite
symmetry, is possible to introduce a unique re-scattering matrix R, relative to the [ = 1
final state, so that

A(l) - - A, - A(l) _
( AEEO ) — TCR( B. ) = TCRTC 1 ( A‘E:')n : (5.11)
R
A A, o AY

The matrix R has diagonal elements which preserve the symmetry under s;—permutations
as well as off-diagonal elements which transform symmetric amplitudes into antisymmetric
ones (and vice versa). Since the phase space is limited, we expect re-scattering phases to
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be small, i.e. that R can be expanded in the following way:

=141 a(s;) B'(si)
R=1+ ( o'(s) B(s:) ) , (5.13)

with a(s;), B8(s:), a'(s;), 8 (s;) < 1. Analogously, for the re-scattering in / = 2 we can
introduce a phase §(s;) < 1, so that

BQ(S,')R = BQ(S,') [1 + 16(3,)] . (514)

Moreover, from the transformation properties of the amplitudes follows'*

0(3,') = Op+ O(x‘Z, Yz),
a'(si) = ahY + O(X3,Y?),
B(s;) = B+ O(X)Y), (5.15)
B'(si) = By(Y*+ X?/3)/Y + O(X?,Y?),
i(s;) = s+ O(X,Y).

With these definitions, the complete re-scattering of Eq. (5.10), including up to linear
terms in X and Y, is given by:

(Aps-)r = 2a.[l +iao +1apY/2] + bY [l + iBo] + b2Y[1 + o]
= 2a.[l + 1] +bY [1 +1 (ﬁo + %—‘f-a:,)] + b5Y[1 + 14y},

(Aoos)r = ac[l +iao —iapY] — b Y[1 + if0] + bY[1 + 6o}
(Av-o)n = an[l +iao— iahY] - baY[L + iBo] + -g-b,xu + i)
| | a2 |
= a1 +ico] - baY [1 +i (ﬂo + -‘-;-:ao)] + 26X [0+ ido],
(Aoso)r = 3an[l +100). (5.16)

The first three amplitudes have been expressed in two different ways to stress that Y-

dependent imaginary parts receive contributions from the re—scattering of both symmetric
amplitudes (a.,) and antisymmetric ones (b. ).

5.3 CP-violating observables.

Considering only widths and linear slopes (as can be noticed from table 11, quadratic

slopes have large errors), we can define the following C P-violating observables in K — 3=
transitions: |

N4+-0 = AL =€+ -0 (5'17)
+



Figure 7: One-loop diagram for K — 37 re-scattering phases.

Nooo = %xﬂzoﬁwegm, (5-18)
X, = (gi%::jg;)x=y=oﬁc+c{_o, (5.19)
6), = T, (520
5,), = i-:z_i___j::. (5.21)

The first three observables belong to neutral kaons and, as explicitly shown, have an
indirect C P-violating component. On the other hand (4,). and (4,)_, are pure indices of
direct C P violation. In principle, analogously to Egs. (5.20-5.21), also the asymmetries of
charged-kaon widths can be considered. However, since the integral over the Dalitz Plot
of the terms linear in Y is zero, the width asymmetries are very suppressed respect to the
slope asymmetries'® and we will not consider them.

Using the definitions of K5 and K, and applying C PT to the decomposition (5.16),
leads to

€0 = €00 = 1(27::: - 1’::) (5.22)
X = ;(1’;‘;‘: _ ;":jo"), (5.23)
o - Sty
o, - SRR

where Ap is the X' = 27 decay amplitude in / = 0.
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5.4 Estimates of CP violation.
The lowest order (p?) CHPT results for the weak amplitudes of Eqs. (5.22-5.25) are:

M2 3F?
a = 3K [Gs + -G'n + -M*;Ga] ; (5.26)
3
dy, = -A%E* [Gs - GQ?] ’ (527)
7 15 3F?

— 2 _ -

b = +M> [Ga =G (1 > p,) T Gs (1 + p,,)] , (5.28)
15 1 3F2
— — 2 S —

where p, = M2/(M% — M2) ~ 1/12.

To estimate re-scattering phases at the lowest non-vanishing order in CHPT, is neces-
sary to calculate the imaginary part of one-loop diagrams of fig. 7. The complete analytical
results for the phases introduced in sect. 5.2 can be found in Refs.'®"'%, for what concerns
the parameters which enter in Eqs. (5.22-5.25) we have:

VI—4Mi/s0 o M2y~ 013 5.3
Qp = 35“1}';:.‘.5'“""(30'*'-,)- . ’ (0)
\/1 - 4M3/30 2 |
ﬁo = —-60 = = '321‘I’F2 "'(80 — Mt) ~ (.03. (531)

Using Egs. (5.26-5.31) and the estimates of the imaginary parts of L) coefficients
(§ sect. 4.2.2), we can finally predict the value of the observables (5.22-5.25) within the
Standard Model'*4.

5.4.1 - Charge asymmetries.

In figs. 8 and 9 we show the results of a statistical analysis of (4,), and €, obtained imple-
menting in the program of Ref.?* (§ fig. 5) the calculation of (4,),.> The most interesting
aspect of this analysis, as already stressed in Ref.'®, is that in (4,),, differently than in
¢, the interference between weak phases of (81, 1r) and (81,8r) operators is constructive.
Thus, within the Standard Model, charge asymmetries in K* — (37)* decays could be
more interesting than ¢’ in order to observe direct C'P violation. Unfortunately, the theor-
etical estimates of these asymmetries are far from the expected sensitivities of next-future
experiments (at KLOE!? ¢[(4,),] is expected to be® ~ 1074).

The results for (8,), are very similar to those of (4,),, a part from the sign which is
opposite!®® we will not show them in detail since (4, ), is more interesting from the exper-
imental point of view. The mean value of (4,), and (4,),/, together with the corresponding
width asymmetries, are reported in table 12. As anticipated, the width asymmetries are

¢ For the real pa.r;s of the amplitudes a., b. and b, we have used the experimental data.
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Figure 8: Predictions for the charge asymmetry (,), at the lowest non-vanishing order in
CHPT. The two histograms represent the probability distribution in arbitrary units, like
in fig. 5; the dashed one has been obtained adding the supplementary conditions coming
from By — Bd mixing .

definitively suppressed with respect to the slope asymmetries. Analogous results to those
reported in table 12 have been obtained also by other authors!36:137:%,

It is important to remark that the previous analysis has been obtained using the lowest-
order CHPT results for the weak amplitudes and, differently than in K -+ 27, could be
sensibly modified by next—order corrections. The difference between K — 27 and K — 3«
is that in former the C P-violating interference is necessarily between a Al = 1/2 and a
Al = 3/2 amplitude, whereas in the latter the interference is between two Al = 1/2
amplitudes (a. and b.). At the lowest order there is only one dominant (8;,1r) operator,
thus the phase difference between a. and b, is determined by the suppressed (27.,1R)
operator. At the next order, O(p*), there are different (8., 1r) operators and we can expect
that the interference is no more suppressed by the w factor’®. Unfortunately in this case is
not easy to make definite statements, since there are no reliable information about O(p*)-
operator weak phases. Nevertheless, according to general considerations, is still possible
to put an interesting limit!*® on (4,),.

® Actually, in Ref.13%, as well as in Ref.!%, also some isospin breaking effects have been included. We
prefer to neglect these effects for two reasons: i) there are not sufficient data to analyze systematically
1sospin breaking in all K — 3x channels; ii) as we will discuss in the following, these effects are completely
negligible with respect to possible next-order CHPT corrections.




exp. limit th. estimate

(%) —(0.70 £ 0.53) x 10~* | —(2.3 +0.6) x 10~
(6r), | (0.04£0.06) x 10-2 | —(6.0 +2.0) x 10~
) - (13304 <107
(dr) |- (0.0+0.3) x 10-7 | (2.4+0.8) x 10"

Table 12: Experimental limits and theoretical estimates for the charge asymmetries in
K* - n*n*x¥(r) and K* — 7*7%%(r’') decays, calculated at the lowest non-vanishing
order in CHPT.

From Eq. (5.24), neglecting Al = 3/2 amplitudes, follows

— Rea.
(), = Eﬁ‘ﬂ S‘mbcﬁzz — Sma.} : (5.32)
since Pegl®
Imal? - T2 QmbD = wImal (539
€0c

expanding imaginary parts at order p* we obtain, as anticipated, a result proportional to
w. On the other hand, expanding the imaginary parts up to O(p*), and neglecting O(w)
terms, leads to

Smb®  Imal®
(59)1- = (aO — Do) [ Reb@_ = Rea?)l .

In the more optimistic case we can expect that the two O(p*) phases are of the same order
of SmAg/ReAo and that their interference is constructive, thus!3®

ImAg

RC Ao

(5.34)

1(d9)r] < 2(c0 — Bo)

< 107°. (5.35)

A final comment on the value of (4;), before going on. The limit (5.35) is proportional
to the phase difference (ap — Bo) ~ 0.08 which is not equal to the difference between
constants and Y -dependent re-scattering terms, as explicitly shown in Eq. (5.16). In the
literature this subtle difference has been sometimes ignored (probably due to numerical

analysis of the re-scattering) and, as a consequence, overestimates of (4,), have been
obtained!®.

5.4.2 The parameters ¢/, _; and €} _,.

Defining the ‘weak phases’

S}mGa _ E}mGg-; F 2 S‘mGg
RGGS ’ ¢27 B ReGn and ¢§' B M?( Reczv ’

s = (5.36)
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Figure 9: Comparison between (4,), and €'/¢. Full and dotted lines indicate 5% and 68%
contours around the central value, respectively.

we can write

v [bs ~ bu1 + 241+ Ow,p0)]
i[#21— b+ 5508+ O(wrpn)|. (5.37)

T"L:
1

For €/ _, the situation is exactly the same as for (4,),, i.e. the w—suppression could be re-
moved by next-order CHPT corrections™. On the other hand for €_,, which is necessarily
proportional to the phase difference between a Al = 3/2 (b;) and a Al = 1/2 amplitude,
the lowest—order prediction is definitively more stable with respect to next-order correc-
tions.

At the leading order in CHPT there is a simple relation between €, _pand €

€4-0 = —2i[€'[[l + O(Qp,w, p,)), (5.38)

It is interesting to note that this relation, obtained many years ago by Li and Wolfenste-
in'*%] who considered only (8.,1g) and (27., 15) operators, is still valid in presence of the
lowest—order (8.,8g) operator.

For what concerns next—order corrections, analogously to the case of (4,),, we can
estimate the upper limit for the enhancement of ¢}_, and ¢,_, with respect to ¢. In
the more optimistic case, we can assume to avoid the w-suppression and the accidental
cancellation between Bg and Bg in (3.42), without ‘paying’ anything for having considered

39



next-to-leading-order terms in CHPT. According to this hypothesis, from Eq. (3.42)
follows

1€, ol 1€X_ol $ 3 x 10-3%w™!|¢] A% sin & ~ 5 x 105, (5.39)

5.5 Interference measurements for 73, parameters.

The parameters nogo, 74+-0 and n5_g, being defined as the ratio of two amplitudes (ana-

logously to n4. and ngo of K — 2r), can be directly measured only by the analysis of the

interference term in the time evolution of neutral kaons. This kind of measurement, achiev-

able by several experimental apparata'4!:14?, agssumes a particular relevance in the case of

the ®—factory!3!14339 Since this method is very general and is useful for instance also in

K s — 2n~y decays, we will briefly discuss it (see Ref.® for a more detailed discussion).
The antisymmetric K® — K° state, produced by the ® decay, can be written as

\/_[K‘” K- '”-—-K},‘”Kg"”], (5.40)

where ¢ denotes the spatial momenta of one of the two kaons and N is a normalization
factor. The decay amplitude in the final state |[a{?)(¢,), b{~7)(¢;)) is thus given by:

A (a(?)(tl),b('?)(tz)) = %[A(KS — a)e-flsh A(KL - b)e-i,\Ltg
~A(KL - a)e™ 1 A(Ks = ble™s|.  (5.41)

Integrating the modulus square of this amplitude with respect to ¢; and ¢, keepmg fixed

the difference ¢t = ¢; — t3, and integrating with respect to all possible directions of q leads
to

[(G, b;t - /qudtldtglA(G(tl), b(tg))|26(t1 - tg -— t)
-l"ltl

....Q.E
o7 I 46 |2 t
+ALP| APt 3 — 2B [AS A AL Al etom) ), (5.42)
where
[' = FS ;- FL ) Al = Fs — FL and Am = mp —MmMgs. (5.43)

I(a,b;t) represents the probability to have in the final state Ks; — a and Kps — b
decays separated by a time interval ¢.

By choosing appropriately |a) and |b), is possible to construct interesting asymmetries.
As an example, a convenient choice to study K — 37 amplitudes is given by |a) = |37)
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Figure 10: The a.symmetries A%0(t) (full line) and A+'°(t) (dotted line). The plots have
been obtained fixing n°%° = n*-0 = |¢|e'™/4.

and |b) = |wlv) (as shown in sect. 2.3, |A(Ks — nlv)| = |A(KL — =lv)]), which let us
consider the following asymmetry™®

S (x'w’n3, Fr=y;t) = I(w'w?n, " aty;t)] dbse dis,
(=} ﬂ'27|'3 I+r-v; t) + I('rr xx3 I-nty: t)] ddsr ddrs,’
(Rc)e — 2R ( 1236+:Am1)

rias

et ¥t 4 —ﬁxe"%’:‘ ’

I

Al23(t)

(5.44)

where d¢;, and d¢y,, indicate final-state phase-space elements.

The peculiarity!** of A'#(t), with respect to analogous distributions measurable in
different experimental set up, like fixed-target experiments, is the fact that A'%(t) can
be studied for t < 0. Events with ¢ < 0 are those where the semileptonic decay occurs
after the three—pion one, thus, as can be seen from Eq. (5.44) and fig. 10, are much more
sensible to the C P-violating Ks — 3n amplitude. Obviously the statistics of these events
is very low, and tends to zero for t < 0, but for small times (|t| < 575) the decrease of
statistics does not compensate the increase of sensibility.

The asymmetry A'?3(t) is very useful to measure both ngge and 7,_¢. The measurement
of n¥_, is more difficult since it requires an X-odd integration over the Dalitz Plot®® which
drastically reduces the statistics.

At any rate, the sensitivity which should be reached on 7900 and n4_o¢ at KLOE is
of the order of 1073, still far form direct-C P-violating effects expected in the Standard
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Model. Present bounds on n,_g are of the order of 10-2.141.142

6 K — wmy decays.

6.1 Amplitude decomposition.

The channels of K — nr~ transitions are three:

K* o =*a%,

K°(K°) — wtxy, (6.1)
K°(K®) — n% 0,

in any channel is possible to distinguish an electric (£) and a magnetic (M) amplitude. The
most general form, dictated by gauge and Lorentz invariance, for the transition amplitude

K(px) = mi(p1)7a(p2)7(e, q) is given by:

A(K = 7nv) = €, [E(2:)(gmps — apapl) + M(2:)€" % pr.p2,qo) Mk, (6.2)

where

z;i—ﬁ% (i=1,2) and z3i21+zg=%l%.

E and M thus defined are adimensional. Summing over the photon-helicity states, the
differential width of the decay is given by:

dr Mx . )
Todn, = a(anp VEGI +IM(2))

X [2122(1 —2z3 — 12 —13) - riz3 — rng] : (6.4)

(6.3)

where r; = M, , /Mg. Thus there is no interference among £ and M if the photon helicity
is not measured.

In the limit where the photon energy goes to zero, the electric amplitude is completely
determined by the Low theorem'*®, which relates A(K — wnry) to A(K — =nr). For
this reason is convenient to re-write F£ in two parts: the ‘bremsstrahlung’ Frp and the
‘direct—emission’ Epg. The bremsstrahlung amplitude contains the term fixed by the Low
theorem, which diverges for £, — 0 and that corresponds in the classical limit to the
external-charged-particle radiation. If eQ); is the electric charge of the pion «;, we have

Erp(z;) = E.’..‘;.(_I;J:zjlﬂz) (9_‘2_ _ &) | | (6.5)

<2 21

The electric direct emission amplitude is by definition Epg = £ — Eg and, according to
the low theorem, we know that Epg = cost. + O( E,). The magnetic term by construction
does not receive bremsstrahlung contributions (is a pure direct—emission term) thus, ana-
logously to the previous case, M = cost. + O(E.,). As can be noticed by table 13, in the
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decay B R(bremsstrahlung) | BR(direct emission)

K* 5 t*n'% Te—(55—90VM eV (2.57 £0.16) x 10~ (1.8 £ 0.4) x 10~

Ks = ntny (Bs>soMev) | (1.78 £0.05) x 107 <9 x 10"

K o ntrny (Es>20Mev) | (1.49 £0.08) x 10~° | (3.19 £ 0.16) x 10~
Ks - n%x% ‘ A -
KL—+1r7r7_ ] l <35.6 x107°

i e o - I

Table 13: Experimental values of K — wry branching ratios'® (E and T, are the photon
energy and the #* kinetic energy in the kaon rest frame, respectively).

Table 14: Suppression factors for K — nw+y amplitudes: - = allowed transitions, CP =
C P-violating transitions, w = amplitudes suppressed by the Al = 1/2 rule, / = completely
forbidden amplitudes (by @Q; = @2 = 0 or by Bose symmetry).

cases where the corresponding K — w7 amplitude is not suppressed the pole for E, — 0
naturally enhances the bremsstrahlung contribution respect to the direct emission one.

The last decomposition which is convenient to introduce is the so—called multipole
expansion for the direct-emission amplitudes Epg ed M:

Epe(zi) = Ei+ Ey(z1 — )+ O [(’-’1 - 32)2] a (6-6)
M(z) = M+ M(z1—2)+0 (21 - 22)?)]. (6.7)

This decomposition is useful essentially for two reasons: i) since the phase space is limited

(121 — 22| < 0.2) high—order multipoles are suppressed; ii) in the neutral channels even

and odd multipoles have different C P-transformation properties: CP(E;) = (-1)7+!,
CP(M,) = (-1).

6.1.1 ( P-violating observables.

As can be noticed by tables 13 and 14, Ks — #*n~v and Ks; — #%°1% decays
are not very interesting for the study of CP violation. The first is dominated by the
bremsstrahlung, which ‘hides’ other contributions, whereas neutral channels are too sup-

pressed to observe any kind of interference. The theoretical branching ratios for the
latter!4°—14% 3re below 1078.
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Interesting channels for CP violation are K* — #*7% and K — #x*n—~, where
the bremsstrahlung is suppressed and consequently it is easier to measure interference
between the latter and other amplitudes. If the photon polarization is not measured and
the multipoles E; and M, are neglected, we can define only two observables which violates

C P:

A_(_KL -~ F+7_‘::7)E;B+_§l
A(Ks = ¥ n=7)E 54+ E\ ,
NKY — nta%y) - T(K~ = n~x%)

[(K+ — n+n%y) + [(K- - x-x%)
In the case where also F, and the photon polarization are considered, is possible to add
other two K; — mtn~~ observables, proportional to the interference of (E;p + E;) with
E, and M,. The first is the Dalitz Plot asymmetry in the #* & n~ exchange, the second
is the - —¢ asymmetry, where ¢ is the angle between the y-polarization plane and the
m+ — n~ plane. However, these observables are less interesting than those of Eqs. (6.8-6.9),
because are not pure signals of direct C P violation and are suppressed by the interference
with higher order multipoles'4*!4®. In the following we will not consider them.
By the definition of n,_., using the identities

N4—~ (6.8)

o =

(6.9)

Eig(KL) = n4+-Es(Ks), (6.10)
El(KL) - EEI(Kl)-l-El(Kz), (611)

follows

. _ Eip(KL) + Ex(Kp)
e E1s(Ks) + Ei(Ks)

(€ — ne— ) Er1(Ky) + Er(K3) E\(Ks)
AL [1 +0 ( o KS))] (612)

From the previous equation we deduce that, contrary to the statement of Cheng!™, the
difference

= N4t

Cf}-—q = N4y — N4- (6.13)

is an index of direct C P violation. Identifying in Eq. (6.2) the (p,, pz) pair with (p;,p-)
and factorizing strong phases, we can write

E\(K;)) = e’"RekE,, (6.14)

E\(K;) = ie*"SmE,, (6.15)
. 2R

Eip(Ks) = —e* (e;;zfio) [1 + O(w,€)}, (6.16)

where E, is a complex amplitude which becomes real in the limit of CP conservation.
Using this decomposition we find

eCn=d0)Mpz. 2 ReE, [, .[SmAy SmkE,
[E T ( Redo —ReE:)} (1+0(w,¢))

-y T evV2Re A
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L |

1e’n=S) M 2. 2_ReE, (S}on E}mE,;) (6.17)

‘ev/2ReAq Red;, Rek,

where the second identity follows from the fact that the weak—phase difference between A
and £, is not suppressed by w.

The observable dI' is a pure index of direct C'P violation. Actually, analogously to
the case of K* — (37)* decays, instead of the width asymmetry is more convenient to
consider the asymmetry of quantities which are directly proportional to interference terms
(hke the g* slopes in K* — (37)%). For this purpose is useful to consider the quantities

[55(E3), defined by

BF(K* = 1*x%) OL(K* = n¥n%);p

+ .\ _ d EAE—— —_— ~

Ibe(E7) A E, [ E. 3E. , (6.18)
where I'( K* — n*#x%y),p is obtained by Eq. (6.4) setting £ = E;g and M = 0. In the
limit where the magnetic term in Eq. (6.4) is negligible, the expression of

(6.19)

is very simple: setting (p1,p2) = (p+,po) and factorlzmg strong phases analogously to
Eqs. (6.14-6.16)

E\(K*) +e*E,, (6.20)

T ¢iba (_:ff_aeAL) | (6.21)

QMKZiZo

{

E;p(K?)

we obtain:

S‘m(AgE"")sm(Jg - )
Re(AE?) cos(8; — 8,)
If the magnetic term is not negligible, Eq. (6.22) is modified in

ol'pE = 6+01 tan(d. — 4;). (6.22)

€40y
JFDE = '1—::?2' ta.n(5¢ - 62), (623)

where |
= {/ dz,dz [z+zo(l —223 -1 —r3) —rizd - rgz:‘;_] IM(z.-)Iz} X
{2dz+dzo [z.,.zo(l —2z3—ri —rd)—r2z — roz+] Re( £ (2)Er5( z,))} - (6.24)

Analogously to €, __, also

SmE. S}mAg) B (E}mEc S‘on) - V2|€| (6.25)

oy = (ReEc " ReA, ReE, ReA,
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Figure 11: Tree-level diagrams for the transition K+ — n*x%y. The black box indicates
the weak vertex.

6.1.2 K — nwny amplitudes in CHPT.

The lowest order CHPT diagrams which contribute K — #n#+ transitions are shown in
fig. 11. At this order only the bremsstrahlung amplitude is different from zero. As can
be easily deduced from Eq. (6.2), is necessary to go beyond the lowest order to obtain
non-vanishing contributions to direct emission amplitudes. At order p* electric amplitudes
receive contributions from both loops (§ fig. 12) and counterterms, whereas the magnetic
amplitudes receive contributions only by local operators!#®.° |

The complete O(p*) calculation of electric direct—emission amplitudes, carried out in

Refs.146:151.148 give rise to two interesting results:
e The loop contribution is finite both in #*#% and n#*n 4.
e In both channels the counterterm combination is the same.

Neglecting the small contribution of 7 — K and K —n loops, the explicit O(p*) expression
of the weak amplitudes E,, and F. is:

6G3M?( 647I'2M}2(

— (M2 0) - NW
Eﬂ = 41?2F, 1 n o ﬁBCm(MK, 0) NEl .
~ CGQIM?( (4)
~ —F 1.3 - NgJ, (6.26)
6G3Mi— (4)
Ec vl 87|'2F' NEl ’ (6'27)

where the function C(z,y) is defined in the appendix, p, = M?/(M% — M?) and

NI(;:) = (47‘,)2 [NH — Nis — Nig — Nyl (6.28)
1S a u—independent combination of Ew coefhicients (§ sect. 4.3.3). For what concerns strong

% In #%#%+ channels there is no contribution even at O(p*).
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Figure 12: One-loop diagrams relevant to the direct emission amplitudes in K — 7=y
decays; for simplicity we have omitted the photon line, which has to be attached to any
charged line and to any vertex.

phases, always at O(p*), we find:

6472 M2 ImCo( M2, 0)
5,, = arctan} —mMmMmMmMmMmmm——— — '——"'——"-(Ti'
6472 Mg ReCao( M5, 0) — (1 + px)ReNg,
0.5
~ —arctan| ——— |, 6.29
_ (1.3 — ReN g)) (6.29)
o, = 0. (6.30)

Up to date it is impossible to determine the value of ReN ,‘;,’ using experimental data,
since available information on K* — x*x%y are not accurate enough to distinguish
between electric and magnetic amplitudes. To estimate Re N ,(3:) is necessary to assume some
theoretical model. In the framework of the factorization model discussed in sect. 4.4, which

we expect give correct indications about sign and order of magnitude of counterterms, the
result is

82 F3
ReNS = —k, ’;w' = —(0.5 + 1), (6.31)

thus:

o In K* 5 ntn% the interference between E, and E;p is positive (the loop contri-
bution is negligible).

e In Ks - xtr~~ loop and counterterm contributions are of the same order of the
same sign and interfere destructively with the bremsstrahlung.

For what concerns higher order electric multipoles, local O(p*) contributions to E,
are forbidden by power—counting, but the kinematical dependence of the loop amplitudes
generate a non-vanishing contribution of this kind in K* — n*x% and K° — ntx—4.
However, the O(p*) prediction for this higher order electric multipole is very small:146:148

6G3M13(

E£4)(K2) = 8n°F

[0.005(z; — 2_)] (6.32)
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and we belive that the dominant contribution is generated only at O(p®), where coun-

terterms are not forbidden. Indeed, following Ref.'*®* we can write
(6) eGsMi \i(6)
EO(K) = S NS (e - =) (6.33)

and by power counting we expect N ,‘5? ~ 0O(1).
For a detailed discussion about magnetic multipoles we refer the reader the analysis of

Ecker, Neufeld and Pich**®.

6.2 Estimates of C'P violation.

Using Eqs. (6.26-6.27) and the O(p?) expression of Ay, is possible to relate each other the
direct—C P-violating parameters of K — #nr7y:

ie'Cn=S M2 ReN z+ 2 Sm N (4)

€y = _—_mﬁ“ ReN“) L1 + (8, w, px)], (6.34)
g - E}mN(“) \/2:'_6_’_! o ze‘(5° JT)F:? g \/§|g| (6.35)
T ReN {;1’ W ReN “’M}}z.,.z_ N w '

Eq. (6.35) is the analogous of Eq. (5.38), which relates direct-C P-violating parameters
of K - 2nm and K — 37. However, since it does not imply O(w) cancellation among
Al = 1/2 amplitudes, Eq. (6.35) is definitively more stable than Eq. (5.38) with respect
to next-order CHPT corrections.

For what concerns numerical estimates of €,,, and €, __, proceeding similar to the
K — 37 case, i.e. assuming that all weak phases are of the order of SmAy/ReAy and that
interfere constructively, we find

€y £ (3 x107%)z42_, and o, ] S 1074 (6.36)

Since the parameter R introduced in Eq. (6.23) is positive (due to the constructive inter-
ference between E;p and E, in K+ — n+x%) the limit on |€/, 4 | imply

6Cpe| $10°*  and  |6T] < 107° (6.37)

in agreement with the estimates of Refs.!52:153.154
Actually, the four—quark-operator basis used for K =& 27 and K — 3r decays is not
complete for K — wr+y transitions. In this case we should add to Hij'fsl“ the dimension-—

five electric—dipole operator™:

1AS|=1y _ 4 asi=1  4GF
Heyy 7 = Heyy 73

Oy = i(m,ERade + mdng#ydR)F“". (639)

[AeC11(1)O11(p) + h.c], (6.38)
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This operator generates a new short-distance contribution to the weak phases of Al = 1/2
amplitudes. However, the matrix elements of O,, are suppressed with respect to those of
Og¢ (the dominant operator in the imaginary part of Ag), because are different from zero
only at O(p®) in CHPT. Indeed, according to the chiral power counting exposed in sect. 4,
we have m, ~ O(p?), F** ~ O(p?) and §o,.q ~ 0,60,¢ ~ O(p*) (for an explicit chiral
realization of O,; see Ref.1*®). Furthermore, since the Wilson coefficient of this operator
is quite small™1%% |C};| < 2 x 1072, it is reasonable to expect that limits (6.36) are still
valid.®

Also in the K — wmv case the situation is not very promising from the experimental
point of view:

¢ The parameter n,_, has been recently measured at Fermilab'®®, with an error

0(N4—+) ~ 3 x 1074, In the next years new high-statistics fixed-target experiments
should reach o(n;-,) 2 107°.

e The asymmetry in the widths will be measured at KLOE'*® with an error® ¢(6I'pg)
21073,

7 Decays with two photons in the final state.

7.1 K — vy.

According to the photon polarizations, which can be parallel (~ F**F,, ) or perpendicular
(~ €400 F**F??), we can distinguish two channels in K°(K°) — 44 transitions. The two
channels transform under C P in such a way that the parameters

- A(KL — 27") ,
. A(Ks — 2'}'_1_) . ,
S AR Doy, T (7:2)

measurable in interference experiments,® would be zero if C P was not violated!59:160.35
It is useful to separate the amplitude contributions into two classes: the long- and
the short-distance ones. The first are generated by a non-leptonic transition (K — 7 or

K — 27), ruled by H!f}fs':l, followed by an electromagnetic process (* — vy or 77w — )
which produces the two photons. The latter are determined by new operators, bilinear in the
quark fields, like the electric-dipole operator (§ sect. 6.2) and the operator generated by the
box diagram of fig. 13. By construction short-distance contributions, recently analyzed by
Herrlich and Kalinowski'®!, are either suppressed by the GIM mechanism or forbidden by

° The value of € ;. obtained by Dib and PecceilS?, that overcame the limit (6.37), is overestimated, as
recently confirmed by one of the authors3®.
% The need of interference experiments would drop if photon polarizations were directly measurable.
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el

decay branching ratio
"KL > vy |(5.73£0.27) x 10|
"Ks = vy (2.4 +£1.2) x 10°°

Ky — 7%y [(1.70 £0.28) x 10~% |

TKE S nEyqy ~ 1078

= |

Table 15: Experimental data on K s — 4y and K — 7y~ decays!®1°7:1%8

W u,c,t

Figure 13: Short-distance contribution to K — v+ transitions.

the Furry theorem®. By comparing the short-distance calculation!®! with the experimental
widths, we find:

Ashort-d( K = )
Alcmg—d(K — 77)
In CHPT the first non-vanishing contribution to Ks — vy starts at O(p*) and is

generated only by loop diagrams (§ fig. 14). The absence of counterterms, which implies
the finiteness of the loop calculation, leads to the unambiguous prediction!$%163;

< 107*. (7.3)

BR(Ks — vy)°?®") = 2.1 x 1078. (7.4)

This result is in good agreement with the experimental data (§ tab. 15). Indeed, we expect
that O(p®) contributions in this channel are small because: i) are not enhanced by near-by
resonance exchanges, i1) unitarity correction to m — 7 re-scattering are already included
in the constant Gjy.

It CP is conserved then K — 77 does not receive any contribution at O(p*): at
this order the pole diagrams with 7° and 5 exchange (§ fig. 15) cancel each other. Due
to the large branching ratio of the process, this cancellation implies that, contrary to the

Ks — 77 case, O(p®) operators have to generate large effects. Since the C P-violating
phase of these operators contribute to n,, it is reasonable assume

eyl < 1€l (7.5)

However, since'® |¢/ |1 ~ |€/|, we expect that also |¢,| is dominated by local O(p°)
contributions.
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Figure 14: One-loop diagrams for the transition Kg — v7.

Figure 15: Polar diagrams for the transition K — ~+. The P — v+ vertices of order p*
are generated by the anomalous—functional Zw zw .

Neglecting for the moment short distance effects, analogously to K — 37 and K — w7y
cases, we find

RS

(7.6)

For what concerns short distance contributions, due to the suppression (7.3), even if the
new operators had a C' P-violating phase of order one, their effect on ¢, and ¢ could not
overcome the limit (7.6). Results near to this limit have been obtained for instance in

Refs.164:165

7.2 K- 71'0’7’)/.

K°(K°) — n%y~ transitions are not very interesting by themselves for the study of C P
violation. However, the process K; — 7%y~ has an important role as intermediate state in
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the decay K — n°ete™, that is very interesting for the study C P violation (§ sect. 8.1).
The C P-invariant decay amplitude of K; — #%yv can be decomposed in the following
way:

M(KL(p) 4 WO(P’)’Y(QIJI)'Y(%: 52)) — 51p-52vMuy(p1 qi, QQ) ) (77)
where
Aly, 2 o y
M® = gg )(‘?g% ~ 1929"")
K
QB ,z v 7 v '
+ A(f‘ )( P01P929" — qaP”p” + 1@y " + pp @) (7.8)
K

and the variables y and z are defined by

y = p(q — 92)/M12( and z=(q + %)Q/Mfc - (7.9)

Due to Bose symmetry A(y,z) and B(y, z) must be symmetric for ¢ ¢ g2 and con-
sequently depend only on y°.
The physical region in the dimensionless variables y and z is given by the inequalities

W<, 0<z<(-r)?, (7.10)

where r, = M, /Mg and A(a, b, c) is a kinematical function defined by
Mz,y,2) =z +y* + 2° = 2(zy + yz + 2z) . (7.11)
From (7.7) and (7.8) we obtain the double differential decay rate for unpolarized photons:

d’T' Mg
dy dz 2973

1 2
{22|A + B+ [y2 _ ZA(I,z,r:)] |B|2} . (7.12)

We remark that, due to the different tensor structure in (7.8), the A and B parts of
the amplitude give rise to contributions to the differential decay rate which have different

dependence on the two-photon invariant mass z. In particular, the second term in (7.8)

dI'(K °
( L(;: ™) in the limit 2 — 0. Thus the

kinematical region with collinear photons is important to extract the B amplitude, that
plays a crucial role in K — n%te™ (§ sect. 8.1).

Analogously to K's — 77, also K — 7°yy receive O(p*) contributions only by loops,
which thus are finite!®*'°" and generate only an A-type amplitude. The diagrams are very
similar to the ones of Ks — v (§ fig. 14) in the diagonal basis of Ref.!®, The shape of
the of the photon spectrum at O(p*) (§ fig. 16), determined by the cut K; — 37 — 7y~,
1s 1n perfect agreement with the data (§ fig. 17), however the branching ratio

gives a non-vanishing contribution to

BR(K; — 7°y7)°®") = 0.61 x 107¢, (7.13)
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Figure 16: Theoretical predictions for the width of K; — 7%y as a function of the two-
photon invariant mass. The dotted curve is the O(p*) contribution, dashed and full lines
correspond to the O(p®) estimates'”"1™ for ay = 0 and ay = —0.8, respectively. The three
distributions are normalized to the 50 unambiguous events of NA31 (§ fig. 17).

is definitely underestimated (§ tab. 15). This implies that O(p°®) effects are not negligible,
nevertheless the B-type contribution should be small. Though the full O(p®) calculation is
still missing, several authors have considered some O(p®) contributions (see, e.g. Ref.!?®
and references cited therein). At this order there are counterterms and loops.

Similarly to the strong sector one can assume that nearby resonances generate the bulk
of the local contributions, however we do not know the weak coupling of resonances and we
have to rely on models. A useful parametrization of the local O(p®) contributions generated
by vector resonances was introduced in Ref.'*®, by means of an effective coupling ay (of
order one):

A

| 2 2
_ GSMKQQV(:}—-;:-'-T‘E_) ’ B:—QGBMKQQ

: 7.14
T - |4 (7.14)

Thus, in general vector exchange can generate a B amplitude changing the O(p*) spectrum,
particularly in the region of small z, and contributing to the CP conserving part of K —
nlete~.

Also non-local contributions play a crucial role. Indeed, the O(p?) K — 37 vertex
from (4.32), used in the K — w%yy loop amplitude does not take into account the
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Figure 17: Distributions of the 50 unambiguously K; — 7%y events reconstructed by
NA31'" (histograms). Crosses indicate the experimental acceptance (scale on the right).

quadratic slopes of K — 37 (§ Eq. (5.8)) and describes the linear ones with 20%-30%
errors (§ tab. 7). Only at O(p*) the full physical X — 37 amplitudes are recovered!°®.
Using the latter as an effective K — 37 vertex for K; — n%y+ leads to a 40% increase in
the width and a change in the spectrum’”®'”! due to the quadratic slopes which generate
a B amplitude (§ fig. 16).

Including both local and non-local eflects, one can choose appropriately ay (ay ~
—0.9) to reproduce the experimental spectrum and the experimental branching ratio!™..
Finally, a more complete unitarization of 7 — 7 intermediate states (Khuri~Treiman treat-
ment) and the inclusion of the experimental vy — #°#® amplitude!™® increases the
K; — m%yy width by another 10% and the resulting spectrum (§ fig. 16) requires a
smaller ay (ay ~ —0.8)'™. This value of ay is consistent with results obtained in the
factorization mode]!™174,

Experiments test the presence of a B amplitude by studying the spectrum of K; —
m%yy at low z. Since NA31'"™ (§ fig. 17) reports no evidence of a B amplitude, this implies,
as we shall see in sect. 8.1, very interesting consequences for K — wn%%e~. In the next
section we shall see how the the relative role of unitarity corrections and vector meson
contributions can be tested!’® also in K* — n¥vy~.
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7.3 Charge asymmetry in K* — n¥+y~.

Analogously to K —» v+ transitions, also K* — r*v+ is dominated by long-distance

effects and receive the first non-vanishing contribution at O(p*). However, since in this

case the final staté is not a C P eigenstate and contains a charged pion, K* — 7*yv receive

contributions not only from loops but also from Zwzw and non-anomalous counterterms.
The O(p*) decay amplitude can be decomposed in the following way:

M(K+ (p) — 7"+(P’)’7(Ql e )7(q2, €2)) =

= €,(q1)e.(q2) [A(ya z)(ngl ‘5429_‘_2_9“_1 + C(y, z)epuaﬂqlg}‘;:ﬁ] y (7.15)

where C(y, z) is the anomalous term. The variables y and z and their relative phase space

are defined in (7.9) and (7.10). The O(p*) result for A(y, z) and C(y, z) is'%:

GsM} A '
Ay, 2) = 82#52 [(r: —-1-2)F (-;—2-) +(1-r2—-2)F(2)+ cz] , (7.16)
C’(y 2’) _ G,BM?{CI 2= ri1 B > — 3-!;3:- (7 17)
’ T Z""i"‘irt% Z—"rg ’ .

where r; = M; /Mg (i = 7,n), F(z) is defined in the appendix and ¢ is a finite combination
of counterterms:

12872
3 [3(Lg + LLI_O) + Nijg — Nys — 2N13] : (7.18)

Very similarly to K — 7%y (§ sect. 7.2), at O(p®) there are i) unitarity corrections
from the inclusion of the physical K — 37 vertex in the loops, and ii) corrections generated
by vector meson exchange!”®!73, Differently from K — #%yv one expects!®®17%173 that
the O(p®) vector meson exchange is negligible. However, unitarity corrections are large
here too and generate a B-amplitude (see Eq. (7.8)) as in K; — #%yv. The resulting
diphoton spectrum is shown in fig. 18 for two values of ¢ 0.0 and -2.3, corresponding
to the theoretical predictions of the weak deformation model (WDM) and of the naive
factorization (NF), respectively. In fig. 19 is shown the BR(K* — n*vv) as function of ¢.
Brookhaven!®® has actually now 30 candidates for this channel with a tendency to ¢ = 0.

Since loops generate an absorptive contribution, if ¢ has a non-vanishing phase, the

condition {2] of sect. 2 is satisfied and is possible to observe direct C P violation. Indeed,
from Eqs. (7.15-7.16) it follows!'®:

¢ =

_ _ Smé|Gsal* M3,
NKY 5 atyy) - T(K~ =17 yy) = — lzisoﬂ.ls K? x
(1-rx)? 1
x / T daMi(1,2,72)(r — 1~ 2)2SmF(z/r), (7.19)
4ars

where A(a, b, ¢) 1s the kinematical function defined in (7.11). Unitarity corrections to this
formula have been taken into account in Ref.!”™ and lead to

51y < [LUE* = whyy) = DK~ o> n=y7)]
(Kt - ntyy)+ (K- = = y7)

< |Smél. (7.20)
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Figure 18: Theoretical predictions for the normalized width of K+ — 7%y as a function
of the two—photon invariant mass for ¢ = —2.3 (NF, dashed line) and ¢ = 0 (WDM, full

line) 17°.

For what concerns the estimate of Qmcé, the situation i1s completely similar to the

K — 4+ case. Since short-distance contributions!?”:16! are suppressed at least by a factor
10~4, we argue |
ID(K* = 7¥yy) = [(K™ = 7799

P(K* — ntyy) + (K~ — 77 y7)

Since BR(Kt — n*y4) 5 107°%, the above result implies that also this asymmetry is far
from the near-future experimental sensitivities.

< 107*. (7.21)

8 Decays with two leptons in the final state.

8.1 Ko nff.
K — nff decays can be divided in two categories:
(a) K = nl*l~ and (b) K — nvp, (8.1)

where | = e, u. Even if the branching ratios of these processes (§ tab. 16) are very small
compared to those considered before, the different role between short- and long-distance
contributions make them very interesting for the study of C' P violation.
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Figure 19: BR(K* — nt47) as a function of é. The dashed line corresponds to the O(p*)
CHPT amplitude. The full line corresponds to the amplitude including the evaluated O(p®)

corrections!’®.

Short-distance contributions are generated by the loop diagrams in fig. 20, which give
rise to the following local operators:

Orf' = Sy dLfv*f, (8.2)
Ofy = srvdify*rf. (8.3)

Due to the GIM suppression, the dominant contribution to the Wilson coeflicients of these
operators is generated by the quark top and is proportional to \;. Thus short-distance
contributions carry a large C' P-violating phase.

There are two kinds of long-distance contributions. First of all K — w+*(Z*) trans-
itions, ruled by the non-leptonic weak hamiltonian (3.30). Secondly, but only for case (a),
K — m~~ transitions followed by yy — I*{~ re-scattering.

Both sort—distance and K — 74*(Z"*) contributions produce the lepton pairin a J¢F =
17~ or 1+ state, so that CP|n%ff) = +|r°ff). As a consequence, in K — 7o+ (vi)
these two contributions violate C' P. Since the phase of A, is of order one and the phase of the
weak hamiltonian (3.30) is very small (~ SmAy/ReAp), the short—distance contribution is
essentially a direct C'P violation whereas the long-distance contribution is dominated by
indirect C P violation. Only the re-scattering vy — (1™, that is however very suppressed,
generates a (' P-invariant contribution.
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Figure 20: Short-distance contributions to K —¥ n ff decays.

decay " branching ratio

K —Hr e+ (274:[:023))(10'
K* — n*vi <5.2x10"
o

KL—-Hrp_;i"r < 5.1 x10°°
K — n%i < 2.2 x10°

Kg — nlte” <1.1 x 10~

Table 16: Experimental data on K — = ff decays!®.

K; — wn%*!~(viv) decays have not been observed yet and certainly have very small
branching ratios (§ tab. 16). However, if the short-distance contribution was dominant
then an observation of these decays would imply the evidence of direct C P violation!”
In the following we will try to analyze under which conditions this is true.

8.1.1 Direct CP violation in K — 7°ff.

The effective hamiltonian describing short distance effects in these decays is™:

- 2G Qem

As anticipated, in spite of the A, suppression, the dominant contribution in (8.4) is obtained
for ¢ = t. The coefficients V;; and A); have been calculated including next-to-leading-

order QCD corrections'™®, for y ~ 1 GeV the result is

VE=34401 V., =-At = %Af; = 1.6 0.2.  (85)

Differently that in (3.30), in this case the y—dependence and the uncertainties related to
a, are quite small: the error is dominated by the uncertainty on m,.
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The hadronic part of O} and Off matrix elements is well known because is related, by

isospin symmetry, to the matrix element of K* — n%*v,:*
, RAC: f-(¢°) '
(*poldnustKpi) = D+ p)u+ L e = p (86
where ,
fo(@®) =1+ A A;, and A = (0.030 + 0.002). (8.7)
xt

Using the previous equations, in the limit m; = 0, we find:®

iGpa,mE}m/\tf+(q2) X
x(pK + pe)u@(k)y* |Vi7 + Al p1s] v(K'), (8.8)

A(K; — Woff)

I

which implies
BRecp_air (KL = 7°f ) = (1.16 x 107°) [(V/)? + (4%)*] (AN°n)%.  (8.9)

Using for A, A and n the values of tab. 2 and summing over the three neutrino families,
we finally obtain

1.3 < 10%? % BRCP-J{,-(KL —> 1r°e"'e') < 5.0,
0.8 < 10" x Bch_dg,-(KL -3 11'01217) < 3.3, (8.10)'
0.3 < 10! x BRcp_4ir( KL — uty~) < 1.0.

8.1.2 Indirect CP violation in K — n°ff.

Neglecting the interference pieces among the different terms, the indirect-C P-violating
contribution to the branching ratio is given by

BRop_ina(Ky — 7°ff) = lel'*‘{%j-BR(Ks 5 2Of )

= 3x 1072 x BR(Ks = n°ff). (8.11)

Unfortunately, present limits on Ks — #°ff branching ratios (§ tab. 16) are not suffi-
cient to establish the relative weight between Eq. (8.11) and Eq. (8.10). Thus we need to
theoretically estimate I'( Ks — #°f f).

This process receives contributions both from the effective hamiltonian of Eq. (8.4) and
from the one of Eq. (3.30). The former is negligible since generates a width of the same
order of I'cp_4ir (K — 7°ff) estimated in the previous subsection. The long—distance

contribution generated by Hﬁflﬂ must be evaluated in the CHPT framework. The lowest

¢ It 1s possible to derive the same result also by means of CHPT (§ sect. 4.2.1), but is necessary to keep
also O(p*) contributions to obtain the correct form—factor behaviour at ¢2 # 0.
b The contribution of f_(g°) is proportional to m; and thus negligible in the case of et e~ and v pairs.
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Figure 21: One-loop diagram (in the diagonal basis of Ecker, Pich and de Rafael'®®)
relevant to K — «w ff transitions.

order result vanishes both in the K5 — n%y* case!™ and in the K — 7°Z* one!®. The

first non-vanishing contribution arises at O(p*).
Before going on with the calculation, we note that the one-loop diagram of fig. 21 with
a Z* is heavily suppressed (~ (Mx/Mz)?) respect to the corresponding one with v*, thus

BR;mg_d(Ks - 7r°ui7) < A/l?(t:!ml 7
BRior, a(Ks = n0te-) - < 107°. (8.12)

Miaw

This result, together with the experimental limit on Ks — #%%*e~ (§ tab. 16), let us
state that the dominant contribution to K; — x°w ts generated by direct C P violation.
Unfortunately the observation of this process is very difficult: requires an extremely good
m%-tagging and an hermetic detector able to eliminate the background coming from K —
mon? (with two missing photons), that has a branching ratio eight orders of magnitude
larger. The KTeV'8! expected sensitivity for K;, = n% is ~ 1078,

Coming back to the O(p*) calculation, the result for Ks — 7%te~ is!™:

w822 () ]
K

Qo+ o= 0 - DG hatkrow), s
where F'(z) is defined in the appendix and

s = Um0 + Nig(u)] - g () (8.14)

Also in this case the counterterm combination is not experimentally known.©

¢ Contrastingly to the cases analyzed before, the counterterm combination which appears in Kg — x%*te~
is not finite. However, the constant ws of Eq. (8.14) is by construction u-independent.
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Expressing K's — n%*e~ branching ratio as a function of ws, leads to''®
BR(Ks — n%*e”) = [3.07 — 18.7ws + 28.4w}| x 107" (8.15)

Within the factorization model (§ sect. 4.4) is possible to relate ws to the counterterm
combination that appears in Kt — ntete™ (§ sect. 8.1.4), the only K — = f f channel till
now observed!1¢-119; |

ws = (0.5 £ 0.2) + 4.6(2k; — 1). (8.16)

In the factorization model earlier proposed in Ref.!™, the choice k; = 1/2 was adopted.
This value of k; essentially minimize Eq. (8.15) and for this reason in the literature has
been sometimes claimed that indirect C P violation is negligible in K; — 7°%ete™ (see
e.g. Ref.37). Though supported by a calculation done in a different framework'®?, this
statement is very model dependent (as can be easily deduced from Eq. (8.16)). Indeed the
choice k; > 0.7, perfectly consistent from the theoretical point of view, implies BR(Ks —
m%ete™) > 1078, i.e. BRcp_ind(Kr — m%*e”) > 3 x 107!, In our opinion, the only
model independent statement that can be done now is:

5x1071° < BR(Ks — n%%e™) < 5x1078,

1.5x 1072 < BRgp-ina( KL — m%te™) < 1.5 x107%, (8.17)

thus today is not possible to establish if K; — nete™ is dominated by direct or indirect
C P violation. The only possibility to solve the question is a direct measurement of ['( Ks —
m%ete™), or an upper limit on it at the level of 1072, within the reach of KLOE'®°. We
stress that this question is of great relevance since the sensitivity on K — n%%*e~ which
should be reached at KTeV is ~ 10™!! (for a discussion about backgrounds and related
cuts in K7 — n%%e™ see Ref.'®).

8.1.3 (CP-invariant contribution of K; — 7%y to K — n%ete~.

As anticipated, the decay K; — n%te™ receives also a C P-invariant contribution form
the two—photon re-scattering in K; — 7%y+ (contribution that has been widely discussed
in the literature, see e.g. Refs 134-187.167.171)

As we have seen in sect. 7.2, the K;, — 7%y~ amplitude can be decomposed in to two
parts: A and B (§ Eq. (7.8)). When the two photons interact creating an e¥e™ pair the
contribution of the A amplitude is negligible being proportional to m..

In the parametrization of Ecker, Pich and de Rafael'®® (§ Eq. (7.14)) the absorptive

contribution generated by on-shell photons coming from the B term is given by'™15717:
BRcp_cons (K — W08+B_)Iaba = 0.3 x 10_12, ay = 0, (8.18)
BRcp-cons (K — 1r°e+e'")|abs = 1.8 x 10712, ay = —0.9. (8.19)

Using these results we can say that the C' P-invariant contribution should be smaller than
the direct-C P-violating one. At any rate, even in this case a more precise determination
of (K — n%y7v) at small z (definitely within the reach of KLOE) could help to evaluate
better the situation.



Another important question is the dispersive contribution generated by off-shell
photons, which i1s more complicated since the dispersive integral is in general not con-
vergent. A first estimate of this integral was done in Ref.!®” introducing opportune form
factors which suppress the virtual-photon couplings at high ¢%. The dispersive contribu-
tion estimated in this way is of the same order of the dispersive one, but is quite model
dependent. A more refined analysis is in progress!2,

Finally, we remark that the difterent C P-conserving and C P-violating contributions to
Kr — n%e*e™ could be partially disentangled if the asymmetry in the electron-positron
energy distribution'®” and the time-dependent interference!®'% of K; ¢ — n%te~ would
be measured in addition to the total width.

8.1.4 K* o nltl-,

Another C P-violating observable that can de studied in K — 7 ff decays is the charge
asymmetry of K*¥ — n*ete™ widths. As we have seen in sect. 2, in order to have a
non-vanishing charge asymmetry is necessary to consider processes with non-vanishing
re-scattering phases. This happens in K* — m*ete™ decays due to the absorptive contri-
bution of the loop diagram in fig. 21.

Analogously to the K° — m°%e*e™ case, the O(p*) amplitude of K* — m*ete™ is given

by179:
- Gaaem : q2 92 _
A(4)(K+ — 7!'+€+6 ) — yp [——F (“M—%—) S 4 (*ﬂz — Wy X
I
S o+ peda = (1~ A L stk (8.20)
where
4 2 r r r ]‘ M}(
Wy = '3“(4“) [Nu(ﬂ) — N15(F) + 4L9(P)] - —glog ";5"‘ - (8-21)

Thus the charge asymmetry is given by:

IGglzaﬁm LMFS(

[ + tTete™) — 'K~ “ete ) = —_— A%
(KT = t%eve™) ( — 1 eve” ) = Smw, T X
(1-r% 2 :
x/ dzA¥%(1, z, 21 /1 - 4%- (1 + 2%—) SmF (%) : (8.22)
4r2 A Z Tx

where : = ¢*/MZ, ri = m;/Mg and X z,y,2) is defined in Eq. (7.11). Integrating
Eq. (8.22) and using the experimental value of I'(K* — n*ete™) we finally get
L(K* > ntete™) —T(K™ 5> nete™)
(Kt - ntete )+ (K~ - 7 ete™)

~ 107 *Smw,. (8.23)

The real part of w, is fixed by the experimental information on the width and the.
spectrum of the decay!®*:

Rew, = 0.8910%4 (8.24)
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On the other hand, we expect that Smuw, is theoretically determined by short distance

contributions. Comparing Eq. (8.20) with the amplitude obtained by_,HL?f'zl;f ! , we find:

ISmw, | ~ 47rA2/\517V;f-, (8.25)
which implies

[T(K* o n¥ete”) —I(K™ —)rree)|~ » ”
T(K+ - ntete”) + [(K- = n-ete- ) 2> 1077 > A%, (8-26)

6T} =

Unfortunately, due to the small branching ratio of the process, the statistics necessary to
test this interesting prediction is beyond near-future experimental programs.

Beside the asymmetry of K* widths, in K+ — n#*u*u~ (and in K~ = 7~ utu~) is
possible to measure also asymmetries which involve muon polarizations. These can be
useful both to study T violation'?* and provide valuable information about CKM matrix
elements'??. However, these measurements are not easy from the experimental point and
thus we will not discuss them in detail (for accurate analyses see Refs.191-193)

8.1.5 Kt — ntup.

As in the K — #n°vp case, also this decay is by far dominated by short distance. This
process is not directly interesting for C'P violation but is one of the best channels to put
constraints on CKM parameters p and 7.

Using the short distance hamiltonian (8.4) we ﬁnd analogously to Eq. (8.8),

A(K+ — ) = Faemf+(q2)2’\ L(pk + px)uti(k)Y* [1 — ) v(K'). (8.27)

As in the previous cases the top contribution is dominant, however, since K+ — ntup

i1s a U'P conserving amplitude, in this case the charm effect is not completely negligible.
Following Buras et al.!"® we can parametrize the branching ratio in the following way:

BR(K"' —> 7r+u£>) =2 x 107! A* {1;2 + -g-(p — pc)? + %(p _ pr)z] (

m, \ 23
MW) . (8.28)

where p° and p” differ from unity because of the presence of the charm contribution; using
m.(m.) = 1.30 + 0.05 GeV from Buras et al.!®® we find

1.42 < p® < 1.55 1.27 < p” <€ 1.38. (8.29)

Present limits on this decay (§ tab. 16) are still more than one order of magnitude far
from the Standard Model value, which however should be reached in the near future.!®

As shown in fig. 22, K — 7 ff measurements would allow in principle a complete
determination of sizes and angles of the unitarity triangle introduced in sect. 3.4. Even if
these measurements are not easy to perform, it is important to stress that could compete
for completeness and cleanliness with those in the B sector.
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Figure 22: Kaon decays and the unitarity triangle.

decay branching ra.tiog_l
Ko ptp= {(74+£04) x107°
K; > ete < 4.1 x 10-H
Ks — ptyu~ < 3.2 x10™
Kg — ete” A < 1.0 x 10°

Table 17: Experimental data'® on Ky s — I*1~.

8.2 K —ltl-
The decay amplitude A(K® — [*l™) can be generally written as
A(K® = I*17) = a(k)(i B + Avs)v(k), (8.30)
then
Mg -~ 4m?\'”?
D(K® = 1117y = — =2 (AP + 8%)|BP), By={1-52L) . (8.31)
&r A MK

Up to now, only the K; — u*u~ decay has been observed (§ tab. 17).

Analogously to previous decays, also in in this case is convenient to decompose amp-
litude contributions in short- and long-distance ones. In both channels (K; and K§) the
dominant contribution is the long—distance one, generated by the two-photon re—scattering
in K7 (Ks) — v+ transitions. Since A(yy — [*{™7) is proportional to m,, this explains why
only the K; — u*u~ has been observed till now.

A and B amplitudes have different transformation properties under C' P: if CP is
conserved K, — [T]™ receives a contribution only from A whereas K; — [*{~ only form
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B. Thus CP violation in K — {*{~ decays can be observed trough the asymmetry

+(1 -
(PO) = T = Sm(AB), 8.32)

where N4 ({7) indicates the number of [~ emitted with positive or negative helicity. In the

K case we obtain: B. 1B
+ €
[(PE)] = B |9 ( A )

where the subscripts of A and B indicate if the amplitudes belong to K, or Kj.

The amplitude B,, responsible of direct C'P violation, is generated in the Standard
Model by the short-distance contribution of the effective operator'®® sdH, where H is the
physical Higgs field. its effect is completely negligible with respect to the mdjrect-C P-
violating one.

The C P-invariant amplitude A; has a large imaginary part (|Red;| <« |SmA,]),
because the absorptive contribution to K; — 4y — utu~ essentially saturates the exper-
imental value of I'(K — ptu™):

, ' (8.33)

BR(KL — p*p7 )., = (6.85 £0.32) x 107°. (8.34)

abs

As a consequence, if we neglect both direct C P violation and ReA,;/ImA,, and we assume
e = |e|e’™4, then Eq. (8.33) becomes:

ol Bulelv2 '
()| ~ A ISm B, — ReB,|. (8.35)

The amplitude B; can be calculated unambiguously in CHPT at the lowest non-
vanishing order (Ks — vy O(p*) + vy = (¥~ O(e?)) since, as in Ks — 77, the loop
calculation is finite!®”. The results thus obtained are

ImB; = +0.54 x 10712, ' (8.36)
ReB, = —-1.25x 107" (8.37)

and imply!®”
(P)| >~ 2 x 1072, - (8.38)

The measurement of (FP; P )) is not useful for the study of direct C P violation within

the Standard Model. However, the above result tell us that a measurement of (P} tu )) at the
level of 10~ could be very useful to exclude new C P~violating mechanisms with additiona.l
scalar fields®’.

Another interesting question in this channel is the short distance'®® contribution to
ReA,, which depends on the CKM matrix element V4. Thus K, — utu~ could in
principle add new information about the unitarity triangle of fig. 22. However, ReA,
receives also a long-distance (model dependent) contribution from the dispersive integral
Ki = v*4* — up*tup~. The smallness of ReA, implies a cancellation among these two
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terms. The extent of this cancellation and the accuracy with which one can evaluate the
dispersive integral, determine the sensitivity to V4. K = v{*{™ and K — vyete utpu~
decays (see Refs.!99299:173 3nd references therein) could bring some information on the
relevant form factor, however the result is still model dependent.

8.3 K — wlv.

Analogousl?l to the previous case, also the transverse muon polarization in K — wuv
decays ({P}” ))) 18 very sensitive to new C P-violating mechanisms with additional scalar

fields (for an update discussion see Ref.®¢). (PJ(_”)) 1s a measurement of the muon polariz-
ation perpendicular to the decay plane and, by construction, is related to the correlation

— - ~P
(3(”) '(P(p) X P,-)) (8.39)

which violates T in absence of final-state interactions. In the K — 7~ u*v case, with two
charged particles in the final state, electromagnetic interactions can generate®°? (PJ(_‘u )) FSI ~

a/n ~ 1073. However, in K% — n°utv this effect is much smaller?? ({Pf'))ps; ~ 10~°)
and T-violation could be dominant.
In the framework of the Standard Model and in any model where the K+ — #%u*y

decay is mediated by vector meson exchanges, (Pf' )) 1s zero at tree-level and is expected
to be very small*®. On the other hand, interference between W bosons and C P-violating
scalars can produce a large effect. Writing the effective amplitude as!®

A(K* = n%utv) « fi(q") [(PK + P )iy (1 = 1 )v + €(q" )my (1 — ’}’s)V] ,  (8.40)
neglecting the ¢* dependence of £(¢*) and averaging over the phase space, leads to?4:
(P¥)y ~ 0.2(Smé). (8.41)
The present experimental determination of Sm¢ is13:

Imé = —0.0017 £ 0.025, (8.42)

but an on-going experiment at KEK (E246) should improve soon this limit by an order of
magnitude®®. From the theoretical point of view, it is interesting to remark that present
limits on multi-Higgs models, coming from neutron electric dipole moment and B —
XTv;, do not exclude a value of Im{ larger than the sensitivity achievable at KEK®S.
Futhermore, an eventual evidence of a non—vanishing Sm¢ at the level of 10~2, would
imply interesting consequence for the next-generation of experiments in the B sector.

84 K — anltl.

The last channels we are going to discuss are K — wwl{*{~ transitions. The dypnamic of
these processes is essentially the same of K — #my transitions (§ sect. 6), with the
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difference that the photon is virtual. For this reason we shall discuss these decays only
briefly. ' _

With respect to K — nmy transitions, K — mwl*[~ decays have the disadvantage that
the branching ratio is sensibly smaller (obviously the e*e™ pair is favoured with respect
to the u*u~ one). Nevertheless, there is also an advantage: the lepton plane furnishes
a measurement of the photon polarization vector. This is particularly useful in the case
of Ki — ntn—e*te,? because let us to measure the C P-violating interference between
electric and magnetic amplitudes (§ sect. 6.1.1) also in experimental apparata where photon
polarizations are not directly accessible. The observable proportional to this interference
is the ¢, /.—distribution, where ¢,/. is the angle between e*e™ and n*n~ planes.

The asymmetry in the ¢,/.—distribution has been recently estimated in Refs.'4%:?% and
turns out to be quite large (~ 10%), within the reach of KLOE. However, since the electric
amplitude of K — n+*7 ™7 is dominated by the bremsstrahlung of K; — w+x~, this effect
is essentially an indirect C P violation. Elwood et al.?® have shown how to construct an
asymmetry which is essentially an index of direct C P violation. In this case, however, the
prediction is of the order of 10~*, far from experimental sensitivities.

9 Conclusions

In table 18 we report the Standard Model predictions discussed in this review for the direct-
C P-violating observables of K — 37, K = 27y, K = nff, K = 4y and K — ny7y
decays.

In many cases, due to the uncertainties of next-to-leading order CHPT corrections,
it has not been possible to make definite predictions but only to put some upper limits.
However, this analysis is still very useful since an experimental evidence beyond these
limits would imply the existence of new {'P violating mechanisms.

The essential points of our analysis can be summarized as follows:

e In K » 3n, K » 2nvy, K = vy and K — 7y, the presence of several Al = 1/2
amplitudes generally let to overcome the w = ReA;/ReAy suppression which de-
presses direct C P violation in K — - 2x. Thus in the above decays direct-C P-
violating observables are usually larger than € of about one ordsr of magnitude.
Nevertheless, due to the small branching ratios, the experimental sensitivities achiev-
able in these decays are well below those of K — 2.

With respect to some controversial questions in the literature, we stress that charge
asymmetries in K* — (37)%, as well as those in K* — 7*7%y, cannot exceed 10-5.

e In K; — #°ff decays, the absence or the large suppression of C P-invariant contri-
butions implies that C P violation plays a fundamental role: the question is whether
the direct C P violation dominates over the other contributions.

4 This decay has not been observed yet, the theoretical branching ratio'!® is BR(Ky — ntx~ete™) =
2.8 x 107,
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ool el sl

channel observable — prediction o

(2)° - €] < 1072 21074
(3m)* 6gl < 107% 2107
(37)° leX ol l€io] < 5x 1078 210~
1r"‘1r"‘7 N4y —n4-] < 5x107° o 2 10™°
mEn0y |6Fpe| < 1074 21073
7Y €l lgl < 107* 121073
rEyy 6T < 1074 2102
7 BR(Kp - n%v) = (0.8+3.3)x1071? 210°%
n%te~ | BR(Ky — n%*e™) = (1.3 +5.0) x 10712 (*) } 10-11
rtete 0T = (0.4+0.2) x 104 21072

-

Table 18: Standard Model predictions for direct—-C P-violating observables of K decays.

In the third column we report a rough estimate of the expected sensitivities, achievable
by combining KTeV'® NA48%2%" and KLOE!® future results. The ‘*’ in K; — n%te
concerns the question of the indirect-C P-violating contribution (§ sect. 8.1.2).
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In K; — 7% the direct C P violation is certainly dominant, but the observation of
this decay is extremely difficult.

In K;, = n%%e™, due to the uncertainties of both O(p*) effects in Ks — n%te-
and the dispersive contribution from Ky — n%y~, is impossible to establish without
model dependent assumptions which is the dominant amplitude. Only a measurement
of BR(Ks — n%%e™) (or an upper limit on it at the level of 107?) together with
a more precise determination of the dispersive contribution form K — #%~ could
solve the question.

To conclude this analysis, we can say that in the near future there is a realistic hope to
observe direct C P violation only in K — 27 and K — n%%e™, but even in these decays
a positive result is not guaranteed. Nevertheless, a new significant insight in the study of
this interesting phenomenon will certainly start in few years with the next-generation of
experiments on B decays?® and, possibly, with new rare kaon decay experiments®®.
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A Loop functions.

The function E':o(x, y), which appear at one loop in K — w7+ direct-emission amplitudes,

is defined as!!®
Co(2,y) — Caolz,0)
y b
in terms of the three-propagator one-loop function Cqo(p?, kp) for k? = 0:

Crol(z,y) = (1.1)

dél o - o
(2m)d {12 — M2][(1 + k)2 — MZ)[(I + p)? — M}]
= ig"*Cao(p’, kp) + O(p*, k*). (1.2)

The explicit expression for z, z — 2y > 4M? is

(47)*ReCoo(z,y) = gzz{(l“%) [5‘°g(iig)“’°'°g (tg.;)]

M? - 1+ Bo 2 (14 8) Yy
+ - [10g2(1_50) —lOg (1—ﬂ)]+2;}, (13)
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8y? T
2M? 1+ Bo 143 y
+ . [log(l__ﬁ-;)—log(-l-:—a‘) +2; , (1.4)
where i
- 4M? | 4M? |
=1/1 Lt and = .1 - +—7F. 1.5
The other one-loop function introduced in the text is'®®:
5 4 1 4
Fz)= 1573, 73 (1 - Z) Gl2), (1.6)
where
V4/z — larcsin (/z/2) z2<4 '
Gl(z) = 1 —-4/1—-4/z 1.7
(2) {—-%\/1——4/2 log \/ / +ir| z22>4 (1.7)
1+ \/1 —4/z
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