/ LABORATORI NAZIONALI DI FRASCATI
SIS — Pubblicazioni

LNKF-96/032 (P)
15 Luglio 1996

The FINUDA Data Aquisition System

P. Cerello®, V. Filippini®, L. Fiote‘, P. Gianotti?, S. Marcello?,
B. Minetti¢, A. Raimondof ¢ INFN, Sez. di Torino, Torino, Italy.

b INFN, Sez. di Pavia, Pavia, Italy.
¢ INFN, Sez. di Bari, Ban, Italy.
4 INFN, Laboratori Nazionali di Frascati, Frascati, Italy.
° Dip. di Fisica, Politecnico di Torino and INFN, Sez. di Torino, Torino, Italy.
! Dip. di Fisica Sperimentale, Universita di Torino and INFN, Sez. di Torno,
Torino, Italy.

Abstract

A parallel scalable Data Acquisition System, based on VME, has been
developed to be used in the FINUDA experiment, scheduled to run at the
D A® N E machine at Frascati starting from 1997. The acquisition software

runs on embedded RTPC 8067 processors using the LynxOS operating
system. The readout of event fragments is coordinated by a suitable trigger

Supervisor. Dataread by different controllers are transported via dedicated
bus to a Global Event Builder running on a UNIX machine. Commands

from and to VME processors are sent via socket based network protocols.

The network hardware is presently ethernet, but it can easily changed to
optical fiber

To be published on
1997 IEEE Inter. Performance Computing and Communications Conf. IPCCC97

1 Introduction

FINUDA (1, 2| is a non focusing magnetic spectrometer approved for con-
struction and continuous running at DA®PNE, the & Factory {3] that will be
operational at INFN — LN F in 1997. The main goal of the experiment [1] is the
fine spectroscopy of A- hypernuclei produced after the K~ capture at rest into
nuclear targets and the study of their non-mesonic decay. The most demanding
feature of the apparatus is the resolution on the charged particles momentum
measurement (Ap/p < 0.3% for p ~ 250 = 300 MeV/c), over a solid angle of
~ 2T 8T.

To achieve this goal a composite tracking device has been designed, consti-
tuted by one octagonal layer of silicon double-sided microstrips[4], two octagonal
layers of Low Mass Drift Chambers [5] and a six layer array of Straw Tubes[6].

The full apparatus will be immersed into a He atmosphere, to minimize the
multiple Coulomb scattering, and will operate inside a superconducting solenoid
providing a field of 1.1 7, homogeneous within 1% over the full tracking volume.

2 General Architecture

The FINUDA Online team has developed a general purpose Data Acquisition
system (FDAQ) with high flexibility and able to manage all the standard opera-
tions that a DAQ system must accomplish. The FDAQ system can be considered
a multiprocessor, tree structured architecture. Data flow through a dedicated bus
in the system, proceeding in the same direction. In their migration, events can be
accessed for various reasons such as merging, monitoring, etc. These operations

are performed by processes running in a set of distributed processors.
The FINUDA experimental setup consists of several detectors, each of them
running almost independently:

e Inner/Outer Silicon Microstrip detectér (SIL);

e Low Mass Drift Chambers (LMD);

e Straw Tubes array (STB);

e Internal and External Time of Flight detector (TOF');
o Global Trigger Supervisor (GTS).

The trigger is considered as a detector, although the associated electronics
essentially concerns the initialization procedure and it does not contribute signif-
icantly to the event size.

Taking into account that all the frontend modules perform the zero and over-
flow suppresion, an event size of about 2 kbytes for a typical event is expected.
The FDAQ is designed to reach an event rate of at least 100 Hz.

The FINUDA on-line architecture is designed to enable centralized acquisi-
tion as well as indepengdent data taking for each detector. The modularity and
complexity of the apparatus are taken into account by a distributed architecture,
with a high level of parallelism, adopted in order to cope with the large amount
of data. |

Fig. 1 and fig. 2 respectively show the scheme of the FDAQ architecture and
of the communications between all the processes involved in the system.

In order to allow fast data acquisition, microprocessors are used on the various
detectors. All the signals coming from the detector’s Front End Electronics (FEE)
flow through a dedicated bus, using the CES VIC8250 module, and they are read
in a parallel mode by one VME CPU (the local event builder) to assemble all
the informations in a single sub-event and to perform a local monitoring. All the
sub-events flow through a dedicated bus, using the CES VIC8251 module up to
an IBM Power PC running the Global Event Builder (GEB) process. '

At present it can read out all the CAMAC and VME modules used by the
FINUDA detectors, but it can be easily extended to other similar situations.

The FDAQ system is a modular program consisting of some main blocks

communicating with each other through socket connections:

e The Finuda Run Control (FRC), running on an IBM Power PC machine,
makes use of the T'cl/Tk package {7| for the Graphic User Interface and
drives all the DAQ system by sending commands, through TCP sockets, to
the VME CPUs of each detector and, through an internal UNIX socket, to
the Global Event Builder.

e The Global Event Builder (GEB), running on the same IBM Power PC

machine used for the FRC, gets commands from it through an internal
UNIX socket. Its main tasks are to read from the mirrored memories of the
VIC8251 modules the pieces of events corresponding to each detector, to
format the global events and to write them on tape. Periodically, the GEB
receives from the Slow Control System a bufter of information concerning
the general conditions of the data taking and it stores them with the physics
data. In addition, it samples some events and sends them through UDP
sockets to the global monitoring processes.

e The Local Event Builder (LEB), available either for FIC8234-OS9 or for
RTPC8067-LynxOS CPUs, controls the read-out of VME and CAMAC
modules and writes the data on the mirrored memory of a VIC8251 module.
Optionally the events are also sent to a local monitoring machine through

a non blocking UDP socket.

¢ The Global Event Monitor (GEM), running on a separate UNIX machine,

gets events from the GEB and, after the reconstruction, it allows a complete
overall data quality control.

¢ The Local Event Monitor (LEM), available either for VMS or for UNIX

machines, receives some monitor events from the LEB process and performs
a local, fast monitoring task, in order to check the performance stability of
each detector.

¢ The Slow Control System (SCS), running on a separated CPU, controls and
monitors the detector power supplies, gas flows, magnet performances etc.

In order to allow a dynamic change of the CAMAC and VME readout config-

uration, a suitable system has been developed. The list of the modules to be read
1s not fixed, but it can be changed before each run reading a configuration file,
shared between the acquisition VME CPU and the monitoring machine through
NFS. In this way there is only one source of information for acquisition and mon-
itoring tasks, avoiding disalignments and errors. At present 8 different types of
VME modules and, using a VME CAMAC branch driver CBD8210, 11 CAMAC
modules can be read out. It is not difficult to add new modules thanks to the
flexibility of the structure. A library of programs, written in C language, has
been created in order to address VME modules using a strategy that reminds the
CAMAC ESONE package.
The FDAQ system 1s described in detail in the following sections.

3 The FINUDA Run Control (FRC)

The FINUDA Run Control process (FRC) allows the operator to drive the whole
data acquisition system, taking advantage of a Graphic User Interface based on
the T'cl/Tk package.

The possible stable states of the system and the commands connecting them
are shown in fig. 3. A Tcl/Tk window corresponding to each stable state (SLEEP,
READY, ACTIVE) is available to the operator for sending commands to the
detectors and the GEB. The main window of the system has a three option
structure: the green button starts the operations by trying to open all the sockets
defined in the program, the yellow button gives access to the tape management,
while the red one stops the program execution. When the green button is chosen,
an intermediate window tells the operator whether the socket connections were
successful or not, allowing to proceed or to try again. In the first case, the
SLEEP state is accessed and the corresponding window is displayed (fig. 4).
In this state, the main run conditions are chosen: the required detectors are
selected and the triggers are chosen, each one with an optional corresponding

prescaling factor. This window gives access to two possible commands: SETUP
and STOP Run Control. When all the parameters have been set, the operator
can send the SETUP command to the selected detectors: the FRC waits for the
answers and, when all of them have been correctly received, deletes the SLEEP
window and prompts the READY window (fig. 5). This state gives access to the
START and the RESET commands, and requires the choice of the output device
(disk, tape or dummy): in case of missing choice, the program does not accept
a START command. This command is sent to the Global Event Builder (GEB),
the Global Trigger Supervisor (GTS) and the detectors in three following steps,
each starting only after a positive answer from the previous one. In this way, the
arrival of triggers before the detectors are ready to take data and the collection
of events before the GEB is ready to manage them are avoided. When all the
detectors send back a positive answer to the FRC, the READY window is deleted
and the ACTIVE and MONITOR windows (fig. 6) are displayed. The ACTIVE
window monitors some of the basic run variables (the number of collected events,
the event length, the amount of data written on tape, etc.) and it is updated
every second. It is possible to check new parameters with simple modifications
of the code. The MONITOR window gives access, on request of the operator, to
some very significant histograms: the buffer length distribution of each detector
and the global one, the event rate and the data flow, sampled every 5 seconds,
as a function of time during the last 10 minutes.

The STOP command is the only operation allowed in this state: it distributes
the command to all the detectors and gives back the READY window. At this
stage, it is possible to directly start a new run or to send a RESET command to
the detectors, if some basic modifications of the run configuration are needed.

4 The Global Event Builder (GEB)

The main task of the Global Event Builder process is to collect the event pieces
coming from different detectors and to build up the complete event to be wrnitten
on the output device and to be sent to the GEM. Moreover, the GEB periodically
receives a buffer from the Slow Control System and adds it to the information to
be written on tape. It is running on the IBM Power PC CPU and it is connected
to the FRC process, in order to receive commands, through an internal UNIX
socket; to the Global Event Monitor (GEM) and to the Slow Control System
(SCS) through UDP sockets.

UDP sockets don’t need an effective connection between the CPUs involved in
the communication: in this way the GEB program can run even if no monitonng
processes are active. On an UDP socket the packets are sent without verifying
that on the line there is an active process receiving them. This is useful in order
to speed up the GEB program and to make possible the parallel run of different

monitor programs.

The GEB starts with an initialization phase, in which the VIC8251 mirrored
memories are cleared and initialized and the output device is defined; then it
waits for the START command coming from the FRC. Once the data taking has
started it looks at the VIC8251 mirrored memories in order to check whether the
event pieces are ready; it reads them and, after having checked their alignment,
it formats the global event and sends it to the writing procedure, which takes
advantage of the Asynchronous Input Output (AIO) facility, provided by the
operating system.

The VIC8251 mirrored memories, corresponding to each detector, are orga-
nized into 8 buffer levels: that gives a pipeline structure to the data acquisition
system and allows to minimize the dead time.

The GEB process makes possible the monitoring of the most important vari-
ables and distributions related to the data acquisition performance through a
memory shared with the FRC. There it periodically writes the information which
is then read by a specific T'cl/Tk function called by the operator from FRC.

5 The Local Event Builder (LEB)

The main task of the Local Event Builder process is to collect data from the
front end electronics of each detectors and to make the information available to
the GEB by writing on the 4Mb mirrored memory of a VIC8251 module. The
LEB processes corresponding to each detector run on separate VME CPUs, con-
nected with the FRC through TCP sockets. When the LEB receives a command
it performs some operations and, if all of them are successfully completed, an
acknowledge message is sent back to the FRC. This message is the identifier of

the stable state to which the LEB program has gone.
The SLEEP state is the LEB starting point. When the LEB is in that state

the run has not been configured yet; the READY state occurs after a SETUP
command, as soon as all the front-end modules have been initialized and prepared
for the read-out. When the LEB receives a START command it goes to the
ACTIVE state, where the data read-out and transfer goes on.

If something goes wrong, the state of the process becomes FAILURE. The only
exception to this scheme is the START command which sends back to the FRC
not only the final state, but also a buffer of data containing all the information
concerning the front-end initialization (discriminator thresholds, TDCs status
word etc...).

This buffer is structured with an header part, containing general information
as buffer length, run number, event number, detector identifier, etc., followed by
the data, structured into equipments, one for each module type.

5.1 FEE Initialization

The module list has been created to make possible a simple run configuration
by editing a data cards file. In this way it 1s not necessary to recompile the DAQ
program if the list of modules to be read has been changed. The file is written
in free format.

To exclude a module from the read-out it is enough to give it a null base

address (if it is a VME module), or a null crate number (if it is a CAMAC
module).

Checks of consistency are made on the read data in order to verify the good-
ness of the information written in the module list.

The electronics initialization is done separately for VME and CAMAC mod-
ules by two similar routines. They make a simple reset of the modules or, where
it is needed, they configure the modules following the indications taken from the
module list file. Moreover, hardware settings are compared with those written in
the module list (i.e. VME scaler cascading) in order to check if the run has been

properly configured.

5.2 Event read-out

The read-out procedure is organized in order to construct the data buffer in

parallel with the CAMAC and VME modules read-out. This bufter is then written
in the mirrored memory of a VIC8251 from which the GEB program will take 1t.
After a START command has been received from the FRC program, a polling is
executed to check the arnval of a trigger signal on the CORBO module or the
arrival of a STOP command from the FRC. The trigger signal starts the read-out,
while a STOP command brings back the program to the READY state.

The event bufler is structured as previously described.

6 VME Libraries

In order to access VME modules in a simple and transparent way a library
of programs, written in C language, has been developed. The modules that are
presently recognized by the library are:

e Corbo;
¢ Multi-Hit Pattern Unit;:

e 16 Channel Scaler (32 bits);

¢ 8 Channel Gate & Delay Generator;

¢ Dual Programmable Logic Unit (PLU);
e 16 Channel I/O Register;

e 64 Channel I/O Multi QDC;

¢ 96 channels TDC;

¢ 2 channel C-RAMS FADC.

Each library function takes care of controlling the validity range of the param-
eters used and gives back an error message, if the action required is not possible,
or a warning message, if this operation is dangerous.

Concerning VIC8251 a library has been created to allow the transfer of the
event fragments to the GEB. There are three main functions in the library. The
first one initializes the VIC8251 and prepares a block pointer: it is called only
once at the beginning of the run. The second one returns a block pointer to the
mirrored memory in which the LEB could write its part of event. Finally, the
last one closes the event writing its length at the top of the buffer.

The program uses also the following standard libraries provided by the CES
company:

e CES VIC8250 - VMYV to VME One Slot Interface
e CES CBDS8210 - Branch Driver

7 Conclusions and Performances

A DAQ system prototype was assembled and it is under test. The acquisition
rate with a simulated buffer of 2 kbytes reaches 100 H=.
The described FDAQ system is based on commercial hardware standards
hke CAMAC and VME. The consistent use of the standard VIC bus as data
path, between FEE and EBs, has led to a high degree of flexibility in the DAQ

architecture. The use of an external module list, read as data card, allows the
change of the hardware configuration avoiding a new compilation of the program.
Furthermore the modular run control software, with its high level man/machine
interface, provided by the Tcl/Tk package, makes the overall DAQ extremely
user friendly.

Thanks to its open structure the system can grow with new demands and can
be adapted to new technologies.

References

(1] The FINUDA Collaboration, INFN Report LNF-93/021 (1993).

12] The FINUDA Collaboration, Technical REport, INFN Report LNF-95/024
(1995).

3] L. Maiani et al The second DA®NE HandBook I-II, LNF-INFN (1995)
(4] L. Celano et al, CERN-PPE/95-106, accepted by Nucl. Instr. Meth.

5] M. Agnello et al, Nucl. Instr. Meth, A367(1995)100.

(6] L. Benussi et al, Nucl. Instr. Meth, A361(1995)180.

(71 John K. Osterhout, T¢l and the Tk Toolkit, Addison-Wesley 1994.

List of Figures

1 The FDAQ hardware architecture. 9
2 The processes involved in the FINUDA data acquisition system

and their communication scheme. 10
3 The possible states of the FINUDA Run Control and the com-

mands connecting them. 000000, 11
4 The SLEEP window.« i i i i i v it i 12
5 The READY window. 13
6 The ACTIVE and MONITOR windows. 14

1ISIM B
0SiM LMOC STHB a { TRIGGER

FRONT - END FRONT - END FRONT - END FRONT - END FRONT - END
ELECTRONICS ELECTRONICS IELECTRONICS ELECTRONICS ELECTRONICS
LEB I LES LED LEB LES
clvl 11 v| [c]¥ C [v] vl Icly vl Jcly
ol , vl et el R 1
ulc c|l Julc ulc uic| | cl |uic
'III!Jl .Ill_l
/R RN TSNS Bh,
[T T ‘;‘ ‘I‘ LEB CPU RTPLCBO067
FElelelele LYNX-0S
ETHERNET DEDICATED BUS
v

GLOBAL MONITOR
EYENT DISPLAY

GLOBAL RUN CONTROL
GLOBAL EYENT BUILDER
RECORDING SYSTEM

POWER PC UNIX

WORKSTATION WORKSTATION
MASS STORAGE (DLT)

Figure 1: The FDAQ hardware architecture.

device

UDP
Sockets

SLOW
CONTROL "

POWER PC 601

‘ RUN
conrzor <>
UNIX Socket ‘Ii

(commands & answers)

TCP/IP DATA
FLOW

Socket

(commands

& answers)

RTPC CPU’ s
(GTS-TOF-SIL-LMD-STRB)

Figure 2: The processes involved in the FINUDA data acquisition system and
their communication scheme.

10

Commands & States

NOT CONNECTED

&
Start Run | l::;;~ Run
CojfrOl Control
CONNECTED ////ﬂ
SLEEP

e
\\\SREADY
&«
™~

ACTIVE

Start Stop

e
AN
e

Figure 3: The possible states of the FINUDA Run Control and the commands

connecting them.

11

e sal
R e e

! et

v
ol
%

i

R

B R R

1

ok

td
3
g

top run control

o
-F:F
SETUP!

The SLEEP window.

Figure 4

12

Figure 5: The READY window.

13

A o, T . e i

Figure 6: The ACTIVE and MONITOR windows.

14

