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Abstract We extend previous results about scalar fields whose Fourier components are
even elements of a Grassmann algebra with given index of nilpotency. Their main interest
in Particle Physics is related to the possibility that they describe fermionic composites
analogous to the Cooper pairs of superconductivity.

We evaluate the free propagators for arbitrary index of nilpotency and we investigate
a ¢* model to one loop. Due to the nature of the integral over even Grassmann fields
such a model exists for repulsive as well as attractive selfinteraction. In the first case
the B-function is equal to that of the ordinary theory, while in the second one the model
is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being
quadratically decreasing/ increasing for attractive/repulsive selfinteraction.

1This work is carried out in the framework of the European Community Research Program”Gauge the-
ories, applied supersymmetry and quantum gravity” with a financial contribution under contract SC1-

CT92-0789 .



1. Introduction and summary

Recently, in the study of a model where the gauge bosons are constructed in terms of
the defining elements of a Grassmann algebra, nonlinear changes of variables in Berezin
integrals have been considered [1]. In the preliminary investigation of such changes of
variables the following program was outlined

1) to construct a perturbative scheme in terms of fermionic composites by introducing
such composites as integration variables in the Berezin integra.l‘which defines the partition
function of the constituents [2]

11) to use such a formalism to construct models in terms of even Grassmann fields

(even polynomials of the defining elements ) assumed as independent variables.

The present paper is mainly devoted to the second part of the program, restricted
to the case of scalar fields defined in terms of Fourier components of given index of
nilpotency. For a model of this kind to be interesting in Particle Physics, such fields
should have a particle interpretation. Now, while the meaning of even Grassmann fields
is clear when they are introduced by a change of variables in the partition function of a
fermionic system, it is no longer so when they are considered as independent variables
from the outset. It would appear most natural to continue to interpret them as fermionic
composites analogous to the Cooper pairs of superconductivity, which are represented in
the partition function by an even field with Fourier components of index 2. But relativistic
theories are severely constrained and we do not know when a given action of even fields
can be obtained as the effective action of a fermionic system, even if such an effective
action need not be entirely consistent: Lack of unitarity at some energy, for instance,
can be the signal of the compositeness and of the importance of the constituents at that
energy.

Surprisingly enough, there appears to be also the ( highly specultaive ) possibility that
even fields can be associated to new particles ( with unusual properties ). We will in fact
see that we have a consistent particle interpretation for the free theory, but we do not

know if consistent interactions can be constructed.

The index of nilpotency of a variable ¢ is the smallest integer n* such that



" =0, forn>n". | (1)

So in this paper we consider fields of given index of nilpotency in momentum space

(#(p))" =0, forn>n*, Vp. (2)

A following paper [3] will be devoted to the study of fields of given index of nilpotency in

configuration space

(H(z))" =0, forn>n* Vz. (3)

The present paper is organized in the following way. We will start by giving in Sec. 2 the
rule of integration over even Grassn;a.nn variables and discussing some of its properties.
We will report the full formalism, although its application in the present paper is confined
to the simplest cases. This because we want to put our results into the perspective of a
possible relation to fermionic composites, and therefore we want to show its generality.
Moreover we need the full formalism to clarify, in Sec.3, the origin of the difference between
the propagators of fields nilpotent in configuration and momentum space. Finally, we need
it to explain the limitations in the interactions of fields nilpotent in momentum space and
the difficulty in proving the reflection positivity of such interactions.

Sec. 3 deals with the free propagators of scalar fields. In ref. [1] it was already shown
that it is possible to define the free action of a scalar field of index 2 in momentum space
( this choice did not have any other reason that simplicity, 2 being the smallest index
with the variables adopted there ) in such a way that its propagator be equal to that
of an ordinary scalar. Here we extend this result to arbitrary index of nilpotency. We
will argue, however, that the thermodynamics of even Grassmann fields must be different
from that of ordinary fields, the former ones obeying an éxclusion principle. In spite of
this, it seems from our derivation that it 1s consistent to associate these fields with new
particles (with unusual properties) although we do not know if consistent interactions can
be constructed ( see Section 4 ). In the negative case the formalism would be interesting

in Particle Physics only if these even fields could be related to fermionic composites.



In ref. [1] we also investigated the propagator of a complex scalar field of index 1 in '
configuration space. This propagator was related to the selfavoiding random walk. Here
we clarify the origin of this difference with respect to fields of given index in momentum

space. The extension to higher values of the index for fields nilpotent in configuration

space can be found in the following paper.

In Sec. 4 we will consider the interactions of our fields. Since gauge transformations
change the index of the Fourier components, in the framework of gauge symmetries a
scalar field with given index in momentum space can only be introduced as the ( gauge-
invariant ) polar radius of a Higgs field. We are thus led to selfinteractions, whose study
was already started in ref.[1] with the ¢* model. We will complete this investigation, whose
main motivation 1s the hope to avoid the triviality of the model with ordinary fields, a
feature whose relevance to the Higgs sector of the electroweak Standard Model has been
discussed by many authors [4]. Triviality with ordinary fields could be avoided if it were
possible to define the model for attractive selfcoupling, in which case it is perturbatively
a.symptotically free [5]. But there seems to be a rather general consensus that it is not
possible to circumvent the obstruction of the euclidean action unbounded from below [6].
Now with even Grassmann fields the model can be defined also for attractive selfcoupling,
at least in the presence of a suitable cutoff, and in its first investigation it was found to
be asymptotically free in perturbation theory. In the presence of selfattraction, however,
one expects a nontrivial vacuum. The natural way to investigate its structure would seem
to use the so called Hubbard-Stratonovich transformation [7], but in the last Section we
will show that this application is precluded by the lack of a small expansion parameter. |

The cancellation of disconnected terms, which is more involved than in the ordinary
case was not proven in ref. (1). In the present paper we show that it does occur, and we
investigate the behaviour of the bare mass with the cutoff, which turns out to be rather
surprising, being quadratically increasing/decreasing for repulsive/attractive selfcoupling.
We perform the analysis for fields of index 1 and 2 finding the same behaviour.

We will not say anything about the physical interpretation of the model. The investi-
gation of a possible relation to fermionic composites is in progress. The alternative that

the ¢-field be a fundamental one, on the other hand, depends on whether the model sat-



isfies or not reflection positivity. The discussion of such a property following Osterwalder
and Schrader {8] appears difficult to us for a reason explained below ( while with fields
nilpotent in configuration space it is similar to that of ordinary fields ).

If a particle interpretation is possible, the model might find an application, admittedly
rather artificial, in the Higgs sector of the Standard Model of electroweak interactions.
Since, as we will see, a gauge symmetry cannot be introduced for a ¢- field with given
index in momentum space, as already said such a field could only be related to the
gauge-invariant polar radius in a polar parametrization of the Higgs field. For the same
reason, if the model is to be considered an effective theory, the "fundamental ” fermionic
constituents of the ¢-field should not partecipate into the gauge transformations of the
Electroweak Model and should therefore be new particles.

Summarizing, even fields with given index in momentum space are easy to treat per-
turbatively, but the possibility of constructing models i1s very limited, and the assessment
of the physical interpretation is still lacking. The physical meaning of fields with given

index in configuration space is instead much more transparent (3].

2. Nonlinear change of variables in a Berezin integral

Let us consider the composites

2N
‘i’f - Z C}I'Z/\QA;?, (4)

t'l ,ig=l

where the A-fields are the generating elements of a Grassmann algebra. The index 12
is assoclated to intrinsic as well as position or momentum degrees of freedom and for

notational convenience we have put

ANgi = A, t=1,..N, (5)
if the total number of degrees of freedom is N.

Our aim 1s to introduce the ¢-fields as integration variables in the composite correlation

functions defined by the Berezin integral



< @p,...Pr, >= 2 / (d)\)dU ¢y, ...¢1,e~ " *Y), (6)
VA
where
2N
[dA] = [[dN, 2 = / [d\]dUe=SCV), (7)
=1

dU is the measure over any additional variables U on which the euclidean action S(A,U)
might depend. Therefore we must define an integral over the ¢’s in such a way that for

an arbitrary function f

[1ddif(@) = [tanfls()] (8)

Eqs.(4) cannot obviously be inverted, namely the A’s cannot be expressed in terms of the
¢’s. In which sense they can be considered a change of variables will be specified below.
We recall that there is only one function ( modulo a numerical factor ) of the constituent

fields which has a nonvanishing Berezin integral. This function is the-product of all the

X-fields

A=A AgN, (9)

and its Berezin integral is

j [dAJA = 1. (10)

To find out the integration rule over the ¢’s, we must therefore determine all their
functions which, when expressed in terms of the constituent fields, are proportional to

A with nonzero coefficient. We call them relevant. Only when relevant functions can

actually be construeted by means of the given composites, can the latter be introduced
as new variables of integration.

The most general function of nilpotent variables is a polynomial. Hence it is sufficient
to determine all the relevant monomials, which are the monomials of maximum degree.

We call them fundamental if they are products of powers of the ¢’s with coefficient 1



On = T 52... = wyA. (11)

These monomials are characterized by the vector index m with components m; restricted

according to

I

Zm;= N (12)

and by the weight w,,.

The fundamental monomials with the quantum numbers of the pion and the nucleon

have been determined in the last of refs. [1].

The integral over the ¢’s can be expressed in terms of the weights. In fact any function

of the ¢’s can be written in the form

f(#) =) fmOm + irrelevant terms. (13)

If we think of f as expressed, via the definition of the ¢’s, in terms of the A’s, its Berezin

integral is

JAF($N) = X fmtom (14)

This result can be directly obtained if we integrate over the new variables ¢ provided we

give as rule of integration

/[dd’]em = Wm | (15)

for all the fundamental monomials, all other integrals being zero. Note that, although in

general different expansions

f(@) =D fnOm +irr.terms =) f1 Op +irr. terms (16)

may exist, the above equality implies

mewm :Zf;twma (17)



since both the l.h.s. and the r.h.s. are equal to the coefficient of A in the expansion of
f(¢) in terms of the generating elements, so that the value of the integral does not depend
on the particular expresssion for f.

It should now be clear in which sense relations like Eq.(4) can be considered a change of
variables. They cannot obviously be inverted, and therefore an action defined in terms of
the A’s cannot in general be expressed through the ¢’s. But in any nonvanishing Berezin
integral the integrand must be proportional to A, which we can always replace by relevant
functions of the composite variables.

This integration rule has some characteristic features

1) The number of degrees of freedom need not be balanced. A discussion of this point
can be found in the last of Refs. [1] and it will not be reported here.

2) The integral of a fundamental monomial is unaffected by an arbitrary shift ¢ = ¢+a.
The integral of an arbitrary function, however, does not enjoy such a property, because its
expansion in fundamental monomials does change as a conseqence of the shift. Unlike the
Berezin integral, therefore, the integral over even elements of a Grassmann algebra is not

translation invariant. It enjoys, however, another property which is sufficient to derive

an equation of motion for even Grassmann fields, as it will be shown in the subsequent
paper .

3) The integral over even Grassmann variables is not invariant under a change from
even to even variables which alters the index of nilpotency. This includes Fourier trans-
forms and more generally unitary transformations. For this reason in the construction
of models with even Grassmann fields as fundamental fields, for most symmetries we

must restrict ourselves to fields nilpotent in configuration space. For instance local gauge

transformations of such a scalar field

$(z) = D g(z) (18)

do not alter its index of nilpotency ( but do change that of its Fourier transform ). It
1s perhaps whorth while mentioning that the restriction to a given index of nilpotency
in configuration space is also compatible with a model where the gauge fields are even

elements of a Grassmann algebra ( first of Refs. [1] ).



Among the various symmetries, Lorentz invariance can be implemented for scalar fields
with given index in configuration or momentum space. The first case is obvious, since
#(z) is Lorentz invariant, while for the second one we observe that under a Lorentz
transformation ( in the continuum, of course ) the Fourier components do not change the

index of nilpotency

$(p) = e~ 4P G(Ap). (19)

4) It 1s easy to evaluate the integral of the exponential of a quadratic form of fields of

index 1

][dqﬁ'dqb]ezfr-’ ¢’;MIJ¢J — pCT‘M, (20)

where per M is the permanent of the matrix M. But the permanent of a matrix cannot
be evaluated by diagonalization, which reflects the noninvariance of the integral under

unitary transformations. As a consequence the evaluation of the propagator of even

Grassmann fields cannot be performed in the standard way.

3. The free correlation functions of a scalar field nilpotent in momentum space

In this Section we show that it is possible to define the partition function of even
Grassmann fields with given index in momentum space in such a way that their free
correlation functions at zero particle density are equal to those of an ordinary, local
scalar field. We will not study the correlation functions at finite particle density, but
we expect them, for a reason explained below, to be different from the corresponding ones
of an ordinary scalar field, so that different should be the thermodynamics.

We will first discuss the case of a real field, and at the end we will report the result for

a complex one.

It is convenient to use the parametrization

o(p) = ——=A(p), A*(p) = A(-p), (21)

where
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w(p) = (p* + m?)7. (22

We start by the case where the A(p)’s have index 1

[ dap)A™(p) = 6(m - 1), Vp (23)

We assume the free action to be minus the standard one

Su(9) = —5 [ 'z o(@)[~0 + m}g(2), (24)

and we define the correlation functions according to

A(p) Alpan) _s,
<¢~(p1) Hpm) o= 5 [lUAI SIS D2 (25)
where
dA] = [T dA(p), 2o = [[dA] ™. (26)

p#0

This definition is analogous to that appropriate to ordinary scalars in terms of holo-
morphic variables. The reason why A(0) is not integrated over is that it does not appear

in Sp. In fact by inserting in Eq. (24) the Fourier transform of ¢

o(z) = flé- zp: eP*¢(p), L = edge of the quantization volume, (27)

we find

S0 = _‘% > A(p)A(-p). (28)

Since A%(0) = 0, Sp does not depend on A(0). Moreover for p # 0 it is a function of the

variables of index 1

in terms of which
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Since B(p) = B(—p), it is convenient to define "star” sums, products, and integrals, where

the momentum p ranges in the domain

p+ Zp4>0

Ps = 0, p3>0
ps = p3=0,p,>0
pe = pa=p2=0,p >0. (31)

We then have

[laa1= [ (a8 (32)

SD - Z B(F)? (33)

P

n

e~ = [](1 + B(p)]. (34)

et
The fundamental monomials are the B(p)’s whose weight is 1. An alternative possibility

is to use the variables A(p), A*(p) for p € P*.
In order to evaluate the correlation functions we observe that they vanish unless the
product of the A’s can be arranged into a product of the B’s, namely unless their argu-

ments fall into pairs of opposite momenta. We can then use relations of the type

Zo = /[dA]e-So = j'[dB]e-So =1,
/ [dA]A(p1) A(pz)e™> = §(p1 + p2) f .[dB]B(PT) e =§(p +p2),  (35)

where

p"=p, if p€ P, p* = —p, otherwise. (36)

In such a way we get for the propagator the expression valid for ordinary scalars

< d(p)d(r) >0 8(p1 + p2) 57— (37)
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This result can easily be generalized to the 2n-point correlation functions. We get a
nonvanishing contribution only when all the momenta fall into d: f ferent pairs of opposite
momenta ( in such a case we will say that the momenta are simply paired, while we will say
that they are multiply paired with multiplicity m if a given momentum and its opposite

occur m times )

N . 1 . B(p?) B(p;, ) -8
< n) >0 = — /dB —L8(p;, + p;, )... ) ion_1 F Pign )€ 0
é(pl) ¢(P2) 0 ZO o p§5n93 [ ]Wz(Pil) (p1 pz) w2(Pign_1) (pz 1 2 )
= H 9(P2h,P2k) Z < &(p;d&(p{,) 20 .- < J’(pizn—l)¢(p52n) >0,
h<k all pairings
Pizp 7& Tpin, h 7& k. | (38)
The §-function appearing in the above equation is defined by
O(p,q) =0, for p=+q, 0(p,q) =1 otherw:se. (39)

Let us now consider these correlation functions in the thermodynamic limit.
At zero particle density, the momenta excluded by the 8-functions belong to a sub-

space of vanishing measure, and the 2n-point correlation functions are equal to those of

a local free field.

The thermodyﬁamics, however, is not expected to be the same as that of ordinary
fields, because if we take the thermodynamic limit at fized nonvanishing density, the
restrictions of the #-functions will act as an exclusion principle.

. The above result can be easily generalizéd to an index of nilpotency n* > 1. Confining

ourselves for the sake of brevity to n* even we normalize the integral over the A’s and the

B’s according to

[dA@A™(p) = n7l8(m—n"), ¥,

(n*1)%6(m —n*), p#£0 ; /dB(O)B"‘(O) = n*1§(m — %n*). (40)

[ dB(p)B™(»)

Notice that
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[lda)= [da@©) [1dB), forn*>1. (41)

It is then easy to see that in order to get a 2-point function equal to that of a local free

field, we must take as free action

1 1

S8(8) = —3n"Sol#) = —3n*B(0) =" 3" B(p) (42)

In fact the exponential of this action has the expansion

1
""T

1_32_
_(ﬂ)
t sk

and repeating the steps which led to Eq.(38) we find the same result when the momenta

(0))°° H Z -——[n"B(p ]*, (43)

P Jp—l p

are simply paired. But now some pairs of momenta can coincide. If the pairing has
multiplicity m, with m < n*, we must insert in the r.h.s. a factor (n*)"™(n*)!/(n* — m)!,
while if m > n* the r.h.s. vanishes. The conclusion about the thermodynamic limit is the
same as for index 1.

Let us finally report the result relative to a complex scalar. The definition of the Fourier
transform remains of course valid, but without the reality condition, so that A(p) and
A*(p) are independent variables. We then find that to have a propagator equal to that of

an ordinary scalar, for index n* we must choose the action

5§47, 9) = —n / dz*¢"(2)[-0 + m?¢(z). (44)

We conclude by two remarks. F irst, nothing in what we have done forces the interpre-

tation of the ¢-field as a fermionic composite, so that it seems theoretically consistent the

existence of a new particle which behaves as an ordinary scalar at zero density, but has a
different thermodynamics. But only if we can construct a consistent interaction, can such
a field become the candidate for a new particle. .

Second, we can clarify why the propagators of fields nilpotent in momentum and con-

figuration space are so different from one another. In the first case there is only one

fundamental monomial
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0 = []l#(p)]"". (45)

If we perform a change of integration variables passing to the field in configuration space
¢(x), we have infinitely many fundamental monomials if the field is defined in continuum
space. If the field is defined on a lattice with N* lattice sites the fundamental monomials

are

On = [[[6(z)]™, m={m.}, Y m.=N*n" (46)

r

This explains why it is easy to evaluate the propagator of fields of given index in momen-
tum space, while we have no analytic expression for fields of given index in configuration

space, whose propagator can only be related to the selfavoiding random walk.

4. The ¢* theory

As already said we are unable to construct gauge interactions for fields with given index
in momentum space, apart from the possibility mentioned in the introduction. We are
then left with Yukawa and selfinteractions. In this Section we consider a ¢* theory where

the ¢-field, assumed as an independent field, has index 1 or 2 in momentum space. The

interaction

1 Alg) (47)

,9L4 ) 5(ql+qz+Qa+Q4)H (@)

21329394

1s the standard function of the Fourier transform of the ¢-field and the correlation func-

tions

<B(p1)-Hpaa) >=  [1dAIBp).. Hpan)e™ (o) (48)

have the standard definition in terms of the partition function

7 = ] [dA]e~(So+SD), (49)
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It should by now be clear why it is difficult to discuss reflection positivity for such
a model. This property is best proven when the integration variables are the fields in
configuration space, and if we perform the necessary Fourier transforms in the above
equations, we are unable to evaluate the integrals, because of the uncontrollable number
of fundamental monomials in configuration space.

Let us emphasize that the model is well defined irrespective of the sign of g, but when
the selfinteraction is attractive we expect a nontrivial vacuum. In this Section we will
confine ourselves, however, to the perturbative expansion with respect to the perturbative
vacuum for both signs of g.

A quaIiﬁcation is in order for index of nilpotency 1. As already said Sy does not depend
on A(0). But the terms involving this variable in Sy cannot contribute to any correlation
function because they contain an odd number of momenta which therefore cannot be
paired. As a consequence for index 1 the variable A(0) is suppressed everywhere.

Let us introduce the renormalized action, with the counterterms necessary for a one-

loop calculation, in the usual way

Sr — SOr + SIr'a (50)
where
» 41 2
S()r = —nNn /dl‘ §¢r($)[_ +mr]A¢r(I)a

| 1 1

Sir = [ de*{—5n"m?6¥(z) + 9. Z,¢4(2)}, (51)
with

6= 2, g=g.7% m=(m?+6ml)/Z. (52)

The suffix A means that the wave operator is regularized. For definiteness one can have

in mind a lattice regularization or a cut off procedure implemented by the replacement

w(p) = w(p)eap( ) (53)
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We will evaluate the 2- and 4-point functions at one loop. For the 2-point function we

have
< ¢(p1)d(p2) >1= Pi(p1,p2)— < $(p1)d(p2) >a D1, (54)
where
1
Dy = / [dA] (=S )e=Sr
' ) ) |
Pilpi,p) = - [[dAIB(p)d(pa)(=Str)e™". (55)
0
Similarly for the 4-point function
< B(p1)9(p2)#(p3)B(pa) >1= A1(p1, P2, P3, Ps) — Ao(P1, P2, P3, p4) Dy (56)

where

Ao(pr,paspssps) = 5 [1dAIBP)Hp2)os) P (=St )e

Ai(p1,p2,p3,P4) = A f [dA]¢(P1)¢(P2)¢(P3)¢(P4) 52 ~Ser, (57)

In the evaluation of the integrals, in order to single out from the beginning the pairings

which occur in S;,, we write the latter in the form, valid for index 1 and 2

9
=) T (58)
1=1

where

1 | .~ -
Ty = 59-7466°(0) 2 #(9)é(—9)
' q#0
i
T, = ;ﬁg,--——-lw (0) Y ¢*(q)$(—2q)
g#0
Ty, = g ——4d(0 o ﬁ&( )
3 = zgrz‘; ‘f’() Z H qnqg QI+Q2+Q3) qh
g1.92,93#0 1 <y=1 h=1
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1 1 -
T, = — —;3Z¢(q)¢(-Q)
1
Iy = 59 L43q;¢09 a1, 92)H(91)(—41)H(92)$(— ¢2)
1 1
To = 5916 2 H 9QtaQJ)5(2QI+Q2+QS)¢2(QI)¢(Q2)¢(Q3)
91,9293 #01<)=1
1 1
T = 5973 Y H 0(gi, 4;)0(q1 + g2 + @3 + q4) H¢’(Qh
) 91,92,93,947%0 1<7=1
T, = —%n*5m2¢2(0)
1 -
Iy, = _En*émzzrﬁ(q)é(-—q). (59)

g#0

To simplify the calculation we exclude the value p; = 0 from the arguments of the

correlation functions, and we restrict the arguments of the 4-point functions according to

pi ¥ £pj, 1# ] (60)

The contributions to P; and D, come only from the terms T4, T4, Ts, Ts, To

Pipi,p) = < é(p1)d(p2) >o ”Z{J/*[dBle_soB(p;){“ g"L_l‘*'[ﬁz f“((j))
1) B¢
-I-IQE 0(q1,q2) EZI;MZ((qq:) + 12 2(((()))) ; wz((?)]
S 1() B(Q)
+2 ) [wg(o) sz(Q) (61)
. 1 s B2(q B(qﬂﬁ(%)
D, = zof [dB]e™>{ 9*' [Z wi(q) 2«29@“% w?(q1)w?(g2)
B( ) = B(q . m2 B(O) B(Q)
+2w2(0); *(q) ‘5.. [w2(0)+22w2(9) )

Because of the contribution of double pairings ( the factors B%(p) ) the evaluation of P,
and D; must be done separately for index 1 and 2. |

The evaluation of Ag is straightforward and holds for both values of the index

1 T 1
-AO(pI:p?'tpCh p4) = —gr'_zé(pl + P2 + ps + p-‘!) H 2 ) n® = 1,2 (63)
L 1=1 w (p‘)
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Finally A, gets non -connected contributions from the products

TITTs T4T7a T5T71 T7T8) T7T9

Al.ﬂfmwﬂﬂ(plap'bm':)Zl) — AO(Pl P2, P3, P4 / [dB]e SOHB pl

=1

1.1 1 B(q) B(q1)B(g2)
- g"u[zwzw)B(O)sz(q)* 3 o) i

- Lo B(O ., . B

It must also be evaluated separately for the different values of the index.

The connected term comes entirely from the product 7717

Al,con(plaphm&p‘!) - %[%gf_}:]z Z Z 6(2 qm 6(Zk)

-q4F#0 k1 .. kg £0 m=1

1 0a 000k k) | [dA]Hm Han)d(kn)e™S. (65)

Due to the restrictions imposed by the 8- and 4-functions and those on the arguments
of the correlation functions, the above integral does not vanish only when 2 of the p;
are paired to 2 of the g;, the remaining p; to 2 of the k; and the remaining ¢; and k;
among themselves. There are 122 ways to do that. In general such pairings, for index 2,
have multiplicity 2. Due to the aforementioned restrictions, however, only single pairings

contribute so that the evaluation of the integral is the same for index 1 and 2

' 3 1 2 4
Atcon(P1,P2,P3,P4) = _Ao(p13p21p3&p4)§gfﬁ ) 209(’51: kz) H1 Hl9(knpj)5(m + p2 + ki + k2)
152 1=1 )<=
-50 * _
(kl) / [dA]H B(p)B(ki)B(kp)e™, n*=1,2 (66)

We must now transform the integral over the A’s into an integral over the B’s, and for
this purpose we must rewrite the sum over k;, k; as a sum over momenta belonging to

P*. After that the evaluation is straightforward
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3
Aicon(P1,P2,P3,P4) = —Ao(p1,P2,P3,P4) 29 [a 2[5 (P1+p2 + k1 + k2) + 0(p1 + p2 — k1 — k3)
k1 k2
1
) ki — k ) — .
+6(p1 + p2 + ky 2) +0(pr +p2 — k1 + kz)]wz(kl)wz(kg) (67)

Only the last 2 d-functions contribute to the divergent part of this term

3 1 1
A1div(P1, P2, P3, P4) = "'AO(plap%p?Jap‘I)é'grf: ; A(k) (68)

which is equal to that of the ordinary theory, so that also the counterterm is the same

dg, = --g,. Iz Z w“ (k) (69)

It follows that the B-function is that of the ordinary theory

3

and the model is asymptotically free for attractive selfcoupling.
Let us now pass to the evaluation of the quantities which depend on the index of
nilpotency.

For index of nilpotency 1 the terms containing B(0) and B?(p) vanish. The surviving

ones give
p q = < ; / > r 9 9 ' ’
1(P1.p2) ¢(p1)é(p2) >o 9 L4qlzq:2w2(q1)w2(q2) (1, Pl) (92,71)0(q1, q2)
"' 1
+5m2 9 y ’
Dl = -—--}-gr Za ql,qz) ! 5m2i : ’ (71)
27 LY e (QI)Wz(%) . w(9)

so that the 2-point function to one loop results

1
w?(q)

Because of the restriction in the sum over g we see that the mass counterterm cannot

< $(p1)(p2) >1=< J(p1)#(p2) >0 = (lpl){gr-gz; Z 6(q,p1) — ém’}. (72)
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be strictly local, but it is local modulo a term which vanishes in the thermodynamic limit

,_1 11 1
om” = 39 2 g T O Ty

Notice that dm? is increasing/decreasing for positive/negative g, and its absolute value is

)- (73)

equal to that of the ordinary theory.

The above result can also be obtained by an appropriate decomposition of any diagram
vanishing because of nilpotency into the sum of a connected plus a -disconnected graph with
opposite values. The value of the disconnected graph must be such that the cancellation
of disconnected graphs should be complete in the thermodynamic limit. This requires
a positive/negative sign for a connected graph with an even/odd number of crossings
respectively, as shown for fields with given index in configuration space {1].

Let us now pass to index 2. In this case we must retain the variable A(0) and we have,

neglecting terms O(1/(Lm)?*)

Pl(plaPQ) = < é(pl)é(p?) >0 {—4'91» [4 [320 q! wgl(q) [wgl(q) + wg?pl) + W;EO)]
+12 z*: 9(‘?1,Q2)9(Q1,P1)9(92:P1)w2(q1)12(q2)]
1 1 1
dm? ~
¥ [wz(O) ) Z Wz(Q)]}
1 1 -~ 1 1 1
Dl —_— ==y 1, g2 -
I 54{3; 2@ 7@ | c»’2(0)] T 1259 W) (@)
1 - 1
dm? 2 .
IORES rerl 7
Therefore the 2-point function 1is
~ ~ s ~ Tl 1 __1_ ~ 1 2
< &(p1)Hp2) >1=< é(p1)d(p2) >0 wg(pl){ng' T4 ; 22(0) om‘}, (75)

and the cancellation of disconnected terms requires
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, 1 1 1
om _gr A Z (q)a (76)

whose absolute value is half that of the ordinary theory.

Finally A; noncon can be evaluated in a similar way, and it can be shown to vanish after

use of the appropriate value of dm?.

5. The Hubbard-Stratonovich transformation

When the selfcoupling is attractive we can introduce a truly bosonic field o by means

of the so called Hubbard-Stratonovich transformation

cap{ gl [ dz'd(2)} o« / dolexp{~ [ da*[50? x)+‘/g'a(x)¢‘~'(x)1} (77)

We can then rewrite the partition function of a field with Fourier components of index n*

in the form

2 = [{do)lddleap(~ [ dz*{~zn"$(2)[-0 + m?g(z) + 50%(z) ‘/9’ (2)¢%(2)]} (78)

It is perhaps worth while noticing that the integral over ¢ would not exist if this field
were truly bosonic. Now one can proceed to a loop expansion to evaluate this integral
in order to obtain an effective action for the field o, whose vacuum properties could
be studied in the standard way. Unfortunately exponentiating the result of the loop
expansion one gets in the action a logarithm whose expansion gives all the terms of order
1 irrespective of n*. To have a small expansion parameter one should replace n* by (n*)?
in quadratic action of the field ¢. This would produce terms of order (n*)™* for the s-th
term of the expansion of the logarithm. There being at present no justification for such

a choice we have not pursued the calculation.
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