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Abstract

We present a general discussion of radiative four-meson processes to O( p*) in chiral perturbation theory. We propose
a definition of “generalized bremsstrahlung” that takes full advantage of experimental information on the corresponding
non-radiative process. We also derive general formulae for one-loop amplitudes which can be applied, for instance, to

n — 3y, 7w — 7wy and K — 37y,

1. Chiral perturbation theory (CHPT) [1-3] 1n-
corporates electromagnetic gauge invariance. To low-
est order in the derivative expansion, O(p?) in the
meson sector, amplitudes for radiative transitions
are completely determined by the corresponding
non-radiative amplitudes. Direct emission, carrying
genuinely new information, appears only at O(p*).
Nevertheless, even in higher orders of the chiral
expansion part of the amplitude is related to the re-
spective non-radiative process. In order to isolate the
direct emission amplitude, an operational definition
of “generalized bremsstrahlung” i1s needed.

In this letter, we investigate in a general manner ra-
diative transitions involving four pseudoscalar mesons
and one real photon. Possible applications to be dis-
cussed elsewhere include » — 37y and w7 — 7wy
in the strong sector and the nonleptonic weak decays
K — 3ry. Our purpose is twofold:

* Work supported in part by HCM, EEC-Contract No. CHRX-
CT920026 (EURODA®NE) and by FWF (Austna), Project Nos.
P09505-PHY, P10876-PHY.

i. We extend Low’s theorem [4] by terms of O(k)
(k 1s the photon momentum) to define gener-
alized bremsstrahlung. This part will include in
particular all local terms of O(p*) that con-
tribute also to the non-radiative four-meson tran-
sition.

it. We give a compact expression for the loop am-
plitude of a general four-meson process with a
real photon. The resulting formula 1s 1mmedi-
ately applicable to both strong and nonleptonic
weak processes. We also consider the limiting
case of a radiative three-meson amplitude to re-
cover known results for K — 27y decays [5-

81].

2. The amplitude for a four-meson transition with
a single photon can be decomposed into an electric
and a magnetic part:

A(@apppcpay) = ee (k) (Ey+ €uupeMP7) , (1)

with
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K“E, =0, €upak*M"° =0

The magnetic amplitude M*?? can only occur in non-
leptonic weak processes (for a review, see Ref. [9]).
It appears first at O(p*) as a tree-level contribution
and will not concern us further. Here, we are only in-
terested in the electric amphitude E, that 1s in particu-
lar sensitive to bremsstrahlung. The kinematics of the
process 1s specified by five scalar variables which we
choose as

s=(p1+p2):, v=p3(p1 —p2),
tf=k'pj (i=1,...,4), (2)
with

4 4
ij+k=0, ZI,'=O
i=1 =1

Any three of the ¢; together with s and v form a set of
independent variables.

The non-radiative transition is characterized by
the two Dalitz variables s and v. Denoting the non-
radiative amplitude by A(s,»), Low’s theorem [4]
amounts to the following expansion i1n the photon
momentum k:

Ef =A(s,v)2H
JA(s, V) JA(s, V)
+ 2 PP Ay A Py (AY3 — A%3)
+ O(k) , (3)

with (the meson charges in units of e are denoted g;)

4
su_ N 4P
el
A‘:j = Aj: = (QIIJ qu:)DS ’
M H
pi P
D{; = —D; = = (4)
l; l;

The explicit terms in (3) are often called “internal
bremsstrahlung”. It is straightforward to show that
there are no terms of O(k) at lowest order in the chiral
expansion. Thus, for radiative four-meson processes
the leading chiral amplitude of O(p?) is completely
determined by the non-radiative amplitude A(s, v) as
expressed by Eq. (3).

3. At O(p*), there are as usual both one-loop and
tree-level contributions with a single vertex from the

strong Lagrangian £4 [2,3] or the nonleptonic weak

Lagrangian £35=1 [10,11]. Let us first consider the
tree-level amplitude. The different terms in either L4

or £;° that can contribute to the processes under
consideration can be grouped in four classes:

A. Terms of O(m) without derivatives: fully cov-
ered by internal bremsstrahlung (3).

B. Terms of O(m;) with two (covariant) deriva-
tives: again included in (3).

C. Four-derivative terms: in general not fully cov-
ered by (3).

D. Terms with two derivatives and one field strength
tensor containing the electromagnetic field: con-
tribute only to the radiative transition and thus
are never Included in (3).

Obviously, groups A,B correspond to internal
bremsstrahlung while the contributions of type D be-
long to direct emission. Class C falls in between if
we adopt Eq. (3) as the definition of bremsstrahlung.

On the other hand, 1t would have both conceptual
and practical advantages to include all terms under
the heading “bremsstrahlung” that contribute to both
radiative and non-radiative transitions. One practical
advantage arises for K — 37y decays where the
low-energy constants of the four-derivative terms are
only partly known [12,11]. If those terms could be
included 1n bremsstrahlung, we may use experimen-
tal data for K — 3w decays directly without having
to worry about the values of the aforementioned
coupling constants [13].

In order to incorporate class C in what we shall
call generalized bremsstrahlung, we must add explicit
terms of O(k) to Low’s formula (3). The clue for
the solution is the observation that both £4 and Eﬁ‘szl
give rise to at most three independent four-derivative

couplings at the mesonic level:

D, p.D*opDyo. D" @y,
D, oD o:DyopD” @4 ,
D, @, D @y4Dy,op D" ¢,
Dypa=(9u+iqaeAu) ¢a - (5)

At the same time, we have three independent
second derivatives of the non-radiative amplitude
A(s,v). Therefore, the following extension of (3)
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solves the problem (GB stands for “generalized
bremsstrahlung™):

E* = EF, + O(k)

EE = A(s,v)SH + 2‘9’4(;’ 24V
PO (A - A% :252Aa(s‘§’”)(rl+zz)z\¢2
¥ ;‘92’4;;’ D1t — 1) (A — A%) — 1434)
" 232‘33(;;”) (A% — 1AL (6)

It is important to realize that E;p in (6) does not
contain all terms of at most O(k). In fact, 1t 1s impos-
sible in general to relate all terms of O(k) to deriva-
tives of A(s,v). On the other hand, the definition of
generalized bremsstrahlung in (6) guarantees that all
local (counter)terms that contribute to both radiative
and non-radiative processes (classes A,B,C) are in-
cluded in Efg. The difference E* — Egy is at least
O(k) and will be referred to as the direct emission
amplitude (of the electric type).

4. We now turn to the loop amplitude. Most of
the renormalization procedure can trivially be carried
over from the non-radiative to the radiative amplitude
because all diagrams (tadpoles) relevant for mass,
charge and wave function renormalization contribute
only to internal bremsstrahlung. Thus, this part is com-
pletely taken care of by the non-radiative amplitude.
Moreover, for a real photon there are no diagrams of
the form factor type where the photon emerges from
a mesonic bubble.

Restricting attention to transitions of at most first
order in the Fermi coupling constant, the only non-
trivial diagram is of the type shown in Fig. 1 where
the photon can hook on to any charged meson line and
to any vertex with at least two charged fields. The two
vertices are either both from the lowest-order chiral
Lagrangian £, [2,3] (strong transition) or one from

L, and one from Egszl (cf., e.g., Ref. [9]) for a non-
leptonic weak transition. Despite the comparative sim-
plicity, diagrams of the type displayed in Fig. 1 with
a photon in all possible places generate a consider-
able number of terms due to the derivative structure of
vertices. Moreover, there are usually several permuta-

Pa

Po Pd

y

Fig. 1. One-loop diagram for the four-meson transition. For the
radiative amplitude, the photon must be appended to every charged
meson line and to every vertex with at least two charged fields.
The vertices Vi, V, are defined in Eq. (7).

tions (1234) — (abcd) that have to be added for a
given process.

We have theretore found it useful, both for our own
work and for possible future applications, to present
the loop amplitude 1n a compact form suitable for any
strong or nonleptonic weak transition. For this pur-
pose, we first calculate the loop contribution to the
non-radiative amplitude A(s, v).

We characterize the vertices Vi, V5 1n momentum
space by real constants a;, b;:

Vi =ap+ a1pa - po + axpa - X + a3 (x* — M?%)
+as(y” — M3) +as(ps — M%) + as(py — M}) ,
Vo = by + b1pc - pa + bape - x + by(x* — M?)

+ ba(y* — M3) + bs(ps — M2) + bs(ps — M7) .
(7)

In calculating the loop amplitude for the non-radiative
process, we do not associate the various scalar prod-
ucts with the Dalitz variables s, v that will depend on
the specific assignment (abcd) — (1234). Instead,
we write the loop amplitude as a function of the four-
momentum

P =pc+pa. (3)

The non-photonic loop amplitude of Fig. 1 can be
represented in the following form that will turn out to
be useful (all external lines are on-shell):
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F(P)=A(M;)la1bap,s - pp + asb1p. - pa

+ asbs(P* + M% — M3) + aobs + asbo)

+ A(My) [a\b3p, - pp + a2bsp, - P + asbyp. - py
+ asbap. - P + azb3(P* — M% + M?)
+ agbs + azbg]

+ B(P*, M, M,) [aphy + agb; p. - p
+ a1bopa - pp + a1b1pa - prpe - pal

+ B (P?, My, My) [aobop. - P + azbop, - P
+ a1bypa - pppc - P + aaby\pe - papa - P

+ axby[ pa - peBao(P*, My, M)
+ Ppa - Ppc - PBy(P*, M, M,)] . (9)

The various functions in (9) are as defined conven-
tionally (in d dimensions):

] d%x ]
AM) = - ,
(M) [ ] (2m)4d x2 — M?
(B,B,P :g,chQO + PvaBZZ)

1 d%x (1, x4, X,%,)
i) Qmd (a2 - MY [(x—P)2—- M)’

(10)

Several comments are in order at this point.

1. In order to limit the number of terms generated,
it 1s preferable to express the functions B;, By
and Bj; via the usual recursion relations in terms
of A, B only at the very end.

1i. The analytically non-trivial part of (9), in-
volving the various B functions, contains only
the on-shell couplings agy, a;, az, by, by, by. The
off-shell couplings as, a4, b3, by appear only
together with the divergent constants A(M).
Since these terms are polynomials in the mo-
menta of at most degree two, they will enter
in the radiative amplitude only through inter-
nal bremsstrahlung. All the divergences in (9)
will be absorbed by counterterms belonging
to classes A,B,C of the previous classifica-
tion. As emphasized before, the generalized
bremsstrahlung (6) contains all these diver-
gences plus the corresponding counterterms.

1. For a reason soon to become evident, we have
chosen to express F(P) in terms of the scalar
products

Pa*Pb» Pc-Pdn P%, p.-P  p.-P

Pa * Pc - (11)

In other words, we have not used kinematical
relations to write F(P) in terms of only two

independent scalar variables [like s, v defined
in Eq. (2)].

S. We now have all the ingredients for calculating
the radiative loop amplitude Ej = corresponding to
the diagrams of Fig. 1 with a photon in all possible
places. For the general vertices V}, V; given in (7), this
loop amplitude contains several hundred terms even
before reducing the various B functions via recursion
relations. A compact representation will therefore be
of great use for avoiding tedious repetitions of the
same procedure.

We find it useful to decompose the radiative loop
amplitude into two parts:

E, . = G* + H" (12)

loop

The more tedious part of the calculation is contained
in the amplitude G* that can be expressed through
various derivatives of the non-radiative loop amplitude
F 1n (9) with respect to the scalar products (11). In
some of the following terms, the momentum P has
to be replaced by P + k, leaving all scalar products
unchanged that do not contain P explicitly:

F(P+k) ~F(P) .,

Gt = F(P)3H*
( )2 k‘P Cd
OF
+ (P)A% 4 (P)AY
3(Pa'Pb) b 3(Pa'P) d
A (P+k)AL, 4 (P+ k)AL
" 3(pe - pa) “d " 3(p - P) P
i oF
+ [galc (P)
1 a(Pa'pc)
OF ]
— q.l, (P + k)| D~
T a(pa'pc) )d
| | 0*F
A c atc P D‘u
p e T At G Pya(pe - Py P
9% F ]
(P+k)Dlp| . (13)
I(pa-P)(p: - P) P

We have used the definitions (4). When P appears
as an index (e.g., in A%, or D), the corresponding
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momentum and charge in (4) are P and g, + 4u,
respectively. For better understanding of the notation
in (13), we give two explicit examples:

oF
5(pc ) P)
+ (agby + a1bapa - pp) BI((P + k)", M, M)

+ azbypa - (P + k)Bn((P + k)2, M M,),

(P + k) =a3b,A(M,)

0*F
d(py-P)(p.- P)

(P) = aybyBn(P*, M, M,) .
(14)

The second part H* of the loop amplitude (12) can-
not be expressed in terms of F or derivatives thereof.

Since the dominant contributions to Ej . are usually

due to pion loops (if they contribute at all), we give
the explicit expression for H* only for the case of
equal loop masses (M, = M, =: M). In this special
case, H* takes on the following compact form:

H* = ay(tppk — top}))
x {(qx — qy)(2bo + 2b1p; - pa + b2pc - P)

x Cao(P?, —k - P)

+ by(gx + @) [—2pc - PC31(P?,—k - P)
2t.C32(P?, —k-P) — pc- PCyo(P?, —k - P) 1}
+ by (tapt — tep)

X {(gx — qy)[2a0+2a1pa - pp + a2(pa - P+ 14) ]
x Cao((P + k)2, k- P)
+ ar(qx + qy) [ —=2(pa - P + t4)
% C31 ((P+Kk)2, k-P) —2t,C3o((P+k)? k- P)
— (Pa- P +1)Co0((P+k)*, k- P)]}. (15)

The functions a; are defined as

=~ Cij(u,v) — C;j(u,0)

ij(uﬂv) = (16)

U

in terms of the three-propagator one-loop functions
C,‘j(pz, k - p) for k2 = 0:

| dx

iy

i | (2m)¢

. {XpuXp, Xy Xy Xp}
(x2 = M) [(x+p)?2 - M?][(x+ k)2 — M?]

={Coo(p*,k P)guy + - - .,
C31(p* k- p) (Pugvp + Pv8up + Pp&uv)

+ C(pt k- p)(kugup + ky8up + ko) + ...}
(17)

Asinthecase of F(P) 1n (9), it is advisable not to use
the standard recursion relations for the functions Cyyg,
(31 and Cs7 in (15) until the actual numerical analysis.
At the expense of introducing the functions B, By,
B;, defined 1n (10), one may express the functions
a-;-((P + k)2, k - P) in terms of the a}(Pz, —k-P)
or vice versa.

The following comments (valid also in the case
of different loop masses) explain the motivation for
splitting the loop amplitude Ej in (12) into two
parts.

1. The amplitudes G* in (13) and H* 1n (15) are

separately gauge invariant.

1. The amplitude H# 1s finite and at least of O(k)
as 1s evident from Eqgs. (15), (16) and (17).
Moreover, it only contains the on-shell cou-
plings ag, ay,as, b, b1, by defined 1n (7) and
the charges ¢y, g, of the particles in the loop.
Of course, we have

Qx + 4y = —qQa — gpb =qc + 4a - (18)

iii. The amplitude G* contains the generalized
bremsstrahlung (6) for the non-radiative loop
amplitude (9). If we denote by Egg (loop) the
result obtained by inserting for A(s, ») the on-
shell loop amplitude (9) in Eq. (6), then the
difference

A* = G* — E*, (loop) (19)

is at least of O(k). Moreover, by construction
of Egg the divergences in A* are renormalized
by counterterms of class D only, 1.e. by coun-
terterms with an explicit field strength tensor.
In the strong sector, the relevant couplings of
O(p*) are Ly for chiral SU(3) [ for SU(2)1]
and N4, Nis, Nys, N7 for the octet part of the
nonleptonic weak Lagrangian [11]. Finally, 1t
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can be shown that if a;b, = 0 then A, 15 finite
and at least of O(k?) for s =33 M?/3, v =0
and arbitrary ¢;.

iv. The apparent asymmetry of G* and H# under
interchanges a < b or ¢ < d is due to the asym-
metric definition of vertices (7). For the same
reason, G* and H# are 1in general not invariant
under interchanges of the loop particles x and y.

For the realistic case with experimental information

on the non-radiative amplitude A(s, v), the complete
electric amplitude to O(p*) accuracy can be written
as

E* = Elfig(exp) + Ebguuer + Y (A* + H*),  (20)

loops

where several loop diagrams may have to be added
for a given physical transition. Only counterterms with
an explicit field strength tensor must be mcluded in
EL ... Consequently, only the renormalized coupling
constants L (£;) and/or Ni,, ..., N7, appear in (20).
Of course, the amplitude is finite and scale indepen-
dent by construction. All other counterterms of O(p*)
are hidden in Egg (exp). An alternative approach is to
use instead of the experimental amplitude Egy (exp) in
(20) the theoretical prediction Ef g (theory) in terms
of the amplitude A (s, ) calculated in CHPT to O(p*)
accuracy. Both approaches are equivalent to O(p*).
The difference between them gives an indication of
the size of effects of O( p6) and higher.

6. As afinal application, we consider the limit g, —
0, p, — O to connect with known results for K —
27y decays. In this case, the vertex V| is necessarily
of the weak nonleptonic type and the coupling con-
stants a, ap, as disappear. A straightforward calcula-
tion shows that G* becomes in this limit

GY=F(P + k)x*, (21)

where F(P + k) = F(—pp) is now the on-shell loop
amplitude for the decay b — ¢ + d. Eq. (21) is noth-
ing but the familiar bremsstrahlung amplitude for a
radiative three-meson transition and as a consequence

A% =0 (22)

Likewise, the amplitude H# in (15) reduces in the
three-meson limit to the single term [6-8]

H* = 2a0b2(gx—qy) Coo( M2, —k-py) (tap” —t.p") .
(23)

Thus, the loop contribution to direct emission is finite
and proportional to ag, the on-shell tree-level ampli-
tude for the nonleptonic weak transition b — ¢ + d.

7. To summarize, we have presented a general dis-
cussion of radiative four-meson processes to O(p*) in
CHPT. We have proposed a definition of generalized
bremsstrahlung in Eq. (6) that has the advantage of
including all counterterms of O(p*) that contribute to
both radiative and non-radiative amplitudes. For gen-
eral vertices of O( pz) that encompass all strong and
nonleptonic weak transitions of interest, we have cal-
culated the non-trivial loop amplitudes in terms of two
gauge invariant parts. The amplitude G* givenin (13)
is expressed in terms of the non-radiative loop ampli-
tude F in (9). The divergences are all contained in
G*#. The remainder H# given in Eq. (15) 1s finite and
at least of O(k).

Applications of these general results to K — 37y
decays and other radiative four-meson processes will
be presented elsewhere [13].
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