LABORATORI NAZIONALI DI FRASCATI
SIS-Pubblicazioni

L NF-96/006(NT)
6 Febbraio 1996

UNIX at LNF: Users Guide

Version 2.0

Massimo Carboni
INFN-Laboratori Nazionali di Frascati,
PO.Box 13, 1-00044 Frascati (ROMA) Italia

Informations above this Document

UNIX at LNF — Users Guide
Computing Service Support
This document is written using a local version of cernman.sty under INTRX.

This document will be frequently updated. The latest copy can be found under
http://www.lnf.infn.it/"carboni/unixguide/unixguide.ps.gz

Requests for information should be addressed to:

Computing Service

Laboratori Nazionali di Frascati
Instituto Nazionale di Fisica Nucleare
Via Enrico Fermi, 40

Frascati ROMA Italy

Tel. +39 6 9403 2349

Fax. +39 6 9403 2372

DECnet: VAXLNF::CARBONI (node 39.5)
Internet: CARBONIQLNF.INFN.IT

Trademark notice: All trademarks appearing in this guide are acknowledged
as such.

Contact Person: Massimo Carboni/Computing Service

Table of Contents

1 Introduction

2 How To Get Started

2.1 How to Obtain an Account
2.2 Login ViaTelnet e
2.3 Passwords e e e e e e e e e e
2.4 Shell Environment e e e

3 System Environment

3.1 Home Directory Space and File Backup
3.2 Message Of The Day
3.3 VAXand UNIX news o o i i it ittt e e
3.4 Printing e
3.5 Scratch Disk Space
3.6 Backupyour Data

4 LNF Programming Environment

4.1 Fortran77 Compiler e
4.2 CCompiler e e e
4.3 CERNLIB e e
4.4 File Input/Output
4.5 Debugging Program Lo o

5 Batch Job Submission with NQS

51 NQS-An Overview. o i i it e it s e
5.2 NQS Commands
5.3 LNF UNIX Batch Queues
5.4 Working Spaceo e
5.5 Outputs e e e
5.6 Job Limits L.
5.7 Example: NQS Job Script o oo
6 NQS++ Job Submission
6.1 Setting the Preferred NQS Batch Server with gqset
6.2 Write NQS script.job machine dependent.

A Other Informations
A.1 Hardware Configuration,

B Selection of man pages

10
10
11
11
11
12

14
14
14
15
15
16
16
16

18
18
19

21
21

24

Chapter 1: Introduction

This User’s Guide describe the UNIX configuration available at LNF, introduced as a
central facilities since December 1992. The original configuration was based only on
HP 9000/7XX with HP-UX Operating Systems, now the new Digital with operating sys-
tem DEC-OSF/1 are also included.

Presently the LNF UNIX configuration is based on 11 Hewlett Packard Workstation with
Batch Server functionality, one HP 9000/755 with 128 MB of Memory dedicated for IN-
TERACTIVE use. Since June 1995 the Computing Service also support the DEC system
with the new Alpha Processor and DEC-OSF/1 Operating System, this systems can be
used for intensive I/O tasks, like data analysis.

This guide gives an overview of the LNF UNIX service and describes the procedure for job
submission using Network Queueing System, NQS. More detailed description of the local
commands are given in the online man pages. In addition, up to now only for HP-UX, a
complete set of manuals is available on line via Irom command, which accesses a CDROM
over the network.

In case of any trouble about the usage of the LNF UNIX system please contact:

carboni@Inf.infn.it

Chapter 2: How To Get Started

2.1 How to Obtain an Account

If you want to work with this LNF UNIX system, contact the system manager of this
system to get an account:

Massimo Carboni, Computing Center room 4

carboni@hpserver.Inf.infn.it

2.2 Login Via Telnet

If you want to access an HP workstation, e.g. hpserver.nf.infn.it enter the command
telnet. Some messages appear, followed by the login prompt, enter your account name,
and the password will be prompted.

| Login on the LNF Hewlett Packard ROOTServer |

% telnet hpserver.lnf.infn.it
Trying... Connected to hpserver.lnf.infn.it.
Escape character is ’~]’.

HP-UX hpserver A.09.05 A 9000/755 (ttysa)

login: carboni

password:
|

Be carefull when entering your account name and password, because UNIX is case sen-
sitive! Upper and Lower case letters have a different meaning.

After your login, the system asks for your terminal type. With the terminal type you de-
scribe the terminal hardware or the emulator program you are using. The most important
types of terminal used are:

vt100 Digital Terminal

vt220 Digital Terminal

xterm X-Window Terminal Emulator
hpterm HP Terminal Emulator

If you work in a UNIX environment with a wrong terminal type setting, you should keep
in mind that not all keys of your keyboard may be available in the way you expect. Then
you would correct your terminal type with the export command. For example, if you
want to correct your terminal type to v£100, you have to enter:

export TERM=vt220 Bourne/Korn-Shell users
setenv TERM vt220 C-shell/T-C-shell users

2

2.3 Passwords

Your account is registered in a NIS (Network Information System) environment. You can
change your password using the command passwd (a link to /usr/bin/yppasswd).
The procedure to change the NIS password is the following:

| Changing NIS user password. |
% passwd
Changing NIS password for carboni...
01d NIS password:
New password:

Retype new password:
| |

You will be prompted for your Old NIS password. Then you will be prompted to enter
and re-enter your new password. The re-entered password must match the first entry.

There is not password ageing on this system but users are recomendend to use non-trivial
passwords. A password must meet four criteria to be valid:

e It must contain at least six characters.
o At least two characters must be alphabetic.

e At least one character must be a number (0-9) or a special character (/,?,! or
other punctuation mark.)

o It must differ from your previous password by at least three characters.

If you forget your password, please contact your system administrator for a new one.

2.4 Shell Environment

The shell interprets the text you type, and the keys you press, in order to direct the
operating system to take the appropriate action. A shell can also be used as a program-
ming language. You may customize your session through the shell using hidden files. The
system executes these files at login time. The name of these files and the syntax depends
on the shell that you use:

.profile Used by sh,ksh at login time
.kshrc Used by sh,ksh

.login Used by csh,tcsh at login time
.cshrc Used by csh,tcsh

.tecshrc Used by tcsh

The default shell at LNF is the tcsh shell. At login time the system executes the following
user’s files if exist under their $HOME directory:

Here is an example of the standard LNF .login and .tcshrc! file:

! Please verify your configuration files, if differ modify it

_4 -

| UNIX LNF login file: .login

if ($?ENVIRONMENT) then

if ("$ENVIRONMENT" == "BATCH") exit
endif
#
Execute SYSTEM level commands if file exists and is readable
#

if (-r /usr/local/etc/system_login) source /usr/local/etc/system_login
#
Execute GROUP level commands if a group file exists

#

if (-r /ul/$group/group_login) source /ul/$group/group_login
#

Execute USER level commands

#

The default terminal is: TERM = (xterm), if you want a different default terminal like
vt220 you can modify your .login file as follow:

| Login file: .login with different DEFTERM |

setenv DEFTERM vt220
if (-r /usr/local/etc/system_login) source /usr/local/etc/system_login

| UNIX LNF Example of .teshre file |

if ($?ENVIRONMENT) then

if ("$ENVIRONMENT" == "BATCH") exit
endif
#
Execute SYSTEM level commands if file exists and is readable
#

if (-r /usr/local/etc/system_cshrc) source /usr/local/etc/system_cshrc
#

Execute GROUP level commands if a group file exists and is readable

#

if (-r /ul/$group/group_cshrc) source /ul/$group/group_cshrc

#

Execute USER level commands

#

set path = ($path /usr/local/bin/X11 .)

#

set savehist=50 # number to save across sessions.

set prompt="%m:%~%B%#%b " # new tcsh prompt

set ignoreeof # no logout with <Ctrl-D> set notify set filec
set autolist # completion function

#

Chapter 3: System Environment

3.1 Home Directory Space and File Backup

The user home directory is:
/ul/username

Disk quotas on home directories are enforced at user level. To display your current disk
quota use (in 1024 byte blocks) this command:

quota -v

To change your disk quota space, contact the UNIX system administrator.

Home directories are backed up on DAT tapes at a regular intervals. Full backups are
made weekly and daily incremental backup is under testing. Contact the UNIX System
Administrator if you need to recover a file.

3.2 Message Of The Day

News and system announcements on the LNF UNIX cluster are made using the message
of the day file /etc/motd which is displayed at each login. The basic /etc/motd file list a

series of items and further information on each item can be obtained by typing:
less /etc/motd.details

followed by ’/-X-’ where X is the letter attached to a specific item.

3.3 VAX and UNIX news

General UNIX and VAX infos can be read directly from UNIX system, using the local
news readers. The most popular news reader are pine from terminal and mxrn from
X-Window Terminal. Please read the local UNIX man pages to get more informations
about those commands.

The relative UNIX folder are:
| The LNF UNIX folders are:

Inf.hp: Information about HP at LNF at LNF
Inf.osf: Information about Digital Unix at LNF
Inf.unix: Information about Unix at LNF

You can read netnews within Emacs using the GNUS package. GNUS uses the NNTP
protocol to communicate with a news server, which is a repository of news articles:

emacs -f gnus

5

3.4 Printing

This system doesn’t have directly connected printers, but makes use of printers defined
on VMS system. To print a file, type the command:

I Print on HP-UX | Print on DEC-OSF/1

% lp -d printer filename % lpr -P printer filename
| I |

On our systems is also installed a general purpose command xprint. This is a Bourne-
shell script in /usr/local/bin and provides the access to the printers defined before,
where the printer can be passed as a command line parameter:

xprint [-q printer] [-s] [-n] [-2] [-1## -p##] [-v] [-h] [-H] files.

Options Description:

-q printer Postscript Printer Name

lps_post points to 3 different postscript printers inside the printer
room, near the computing room, A4 format, (One sheet
per page).
LPS - LPS2 - LPS17

lps_post2 points to 2 different postscript printers inside the printer
room, near the computing room, A4 format, (Two sheet
per page).
LPS - LPS2

lps post_a3 points to 2 different postscript printers inside the printer
room, near the computing room, A3 format, (One sheet
per page).
LPS - LPS2

lps17 post points to the 600 dpi resolution postscript printer inside the
printer room, near the computing room, A4 format, (One
sheet per page).

LPS17
1nf psc points to the postscript color printer inside the computing

room, A4 format, (One sheet per page).
PSC

-s Print One Side per Sheet

-n Don’t Print the Cover Page

-2 Two Pages per Side

-pH#tt Print in Portrait, ### Allowed is 80 or 132 Characters

-1### Print in Landscape, ### Allowed is 80 or 132 Characters

-h Print the Help Message

-v Print the Xprint Program Version Number

ST

-H Give the Updated Printer List
files Print any File Format Like: text, dvi, ps, etc.

The default printer is 1ps_post2 Alternatively, the environment variable XPRINTER can be
set to indicate your most commonly used printer. For example:

setenv XPRINTER lps17_post

This command line parameter overrides the XPRINTER value and it can be included in
.cshre.

For more information:
man zprint

or read the man pages at the end of this guide.

3.5 Scratch Disk Space

Temporary disk space has been re-organised. Now two scratch areas are available for
end-users:

scrtchl: 8.6 GBytes
/ y
scrtch2: 8.6 GBytes
/ y

Everybody is able to create his/her login temporary top-level directory in:
/scrtch[1]2]/ $group

where ’group’is the user’s corresponding group. This two areas don’t have quotas, users
are asked to delete unwanted files themselves. In addition garbage collection has been
enforced on the two areas.

3.6 Backup your Data

There are many different ways to save data on UNIX system. The most common com-
mands are:

dd, dump, cpio, tar, cp, ...

Using those commands it is possible to save and restore data from (to) any UNIX system
you use.

The Computing Service had installed also on their VMS system the tar command. In
this way everybody can exchange data from UNIX and VMS systems.

The Computing Service supports on each system available at LNF the tar command on
magnetic tape 90m with capacity 2.0GB, without any hardware/software compression
facilities.

-8 -

Here is the list of the tapes available and systems where the tapes are connected:

| UNIX: Tape device file | VMS: Tape device
hpkloe0O1: /dev/rmt/Om (rewind) VXLNFA: 1MUAT:

hpmacl: /dev/rmt/Om (rewind) 1MUAS:
| | 1MUAD:

AXLNF1: AXLNF1$MKC300:
[

The Tar command usage is very similar on UNIX and VAX. Infact you can create tar on
disk and on tape, in the follow there are some examples that show the general tar usage:

| UNIX: save scratch files || VMS: save scratch files
% cd /scrtchl/users/carboni $ SET DEF SCRTCH1:[USERS.CARBONI]
% tar cvf /dev/rmt/Om nutpla/ $ MOUNT/FORE/REC0=512/BLOCK=10240 1MUAO:
% mt -f /dev/rmt/Om offl $ TAR CVF 1MUAO: [.NTUPLA...]

| | $ UMOUNT 1MUAO:
|

In this example we are saving files from a scratch subdir named ntupla/ on tape and
dismount the tape.

In the next example we want to add another directory to the same archive:

| UNIX: save directory || VMS: save directory

SET DEF SCRTCH1: [USERS.CARBONTI]
MOUNT/FORE/REC0=512/BL0OCK=10240 1MUAO:
TAR RVF 1MUAO: [.RAWDATA...]

UMOUNT 1MUAO:

% cd /scrtchl/users/carboni
% tar rvf /dev/rmt/Om rawdata/
% mt -f /dev/rmt/Om offl

@ &P hH &P

To determine the table of contents, use:

| UNIX: show tape contents || VAX: show tape contents

% tar tvf /dev/rmt/Om $ MOUNT/FORE/REC0=512/BLOCK=10240 1MUAO:
l | $ TAR TVF 1MUAO:

To extract file from the archive:

| UNIX: Extract files || VMS: Extract files

SET DEF SCRTCH2: [USERS.CARBONI]
MOUNT/FORE/REC0=512/BL0OCK=10240 1MUAO:
TAR XVF 1MUAO:

% cd /scrtch2/users/carboni
% tar xvf /dev/rmt/Om

@ &hH P

Using this last command you create two subdirectory: ntupla/ and rawdata/ if don’t
exist.

You can specify subsets of the original archive:

UNIX: Extract *.dat || VMS: Extract *.dat
% cd /scrtch2/users/carboni $ SET DEF SCRTCH2: [USERS.CARBONI]
% tar xvf /dev/rmt/Om ’rawdata/*.dat’ $ MOUNT/FORE/REC0=512/BLOCK=10240 1MUAO:

| $ TAR XVF 1MUAO: [.RAWDATA...]*.DAT

Chapter 4: LNF Programming Environment

4.1 Fortran77 Compiler

The FORTRANT7 compiler on the HP and DEC machines looks very similar in terms of
functionality as compared to other UNIX system. However, an awarness of the default
compiler options is important. In some cases, a program will fail or produce wrong results
if you have compiled it with an excessive level of optimization. When developing a code, it
is recommended to use the default optmization level until the program is stable. Once this
stage has been completed, you may experiment different optimization levels to improve
the performance. Before starting any serious production ensure that the results obtained
during the tests are consistent whith those obtained using different optimization levels.

Using two different platforms you must use different options. On each system you have
different options, please refer to man pages to get more details:

man f77

Here is an example how to compile a simple program program on our UNIX systems, in
the two cases HP and DEC:

| Compile fortran on HP || Compile fortran on DEC

fort77 +ppu -K -c myprog.f £77 -static -c¢ myprog.f

HP Options Description:

-0 To increase optimization

-g Generate additional information needed by the symbolic debugger xdb. This
option is incompatible with optimization.

+ppu To add a trailing to external routines. This is needed if you wish to make calls
to the CERN program library; it must be used only on HP

-K To generate static code. Static is a code where local variable are saved after
routine invocation. Note that the VAX compilers automatically save local
variables; this is not the default case with HP-UX

DEC Options Description:

-0 To increase optimization

-g Generate additional information needed by the symbolic debugger xdb. This
option is incompatible with optimization

-static Causes all local variables to be statically allocated. Like -K on HP

10

- 11 -

4.2 C Compiler

cc is the standard UNIX C compiler. On HP compiler options are available to select
ANSI C compiling or alternatively Kernigan & Ritchie mode; on DEC system this is done
automatically. A full description of the C compiler and its options is available with the
command:

man cc

4.3 CERNLIB

As with any other UNIX machine, the references to libraries may be in an absolute way
(specifing the full file path) or in the POSIX way, using the options -1 and -L. HP-UX
did not adopt the POSIX standards in their implementation of {77, but instead they kept
their previous interface fort77. A linking statment is performed in one of these two ways:

| Linking with CERN Library: |

% £77 -o myprog myprog.o /cern/pro/lib/libpacklib.a
% fort77 -o myprog myprog.o -L/cern/pro/lib -lpacklib

This approach is fine for a few libraries but for more complicated situations, CERNLIB
variable simplifies command scripts. This variable is set locally with the cernlib command
in two equivalent ways (Note the use of back quotes of this example):

setenv CERNLIB ‘cernlib geant pawlib graflib/X11°

| HP: CERNLIB Compilation || DEC: CERNLIB Compilation
% fort77 +ppu -K -c myprog.f % £77 -static -c myprog.f
% fort77 -o myprog myprog.o $CERNLIB % £77 -o myprog myprog.o $CERNLIB

4.4 File Input/Output

The file attachment in UNIX is rarely made using logical units as on VMS. FORTRAN
programs should take care to issue the proper OPEN statement with the name of the file
coded in. Standard input and output (units 5 and 6) can be handled in the normal UNIX
way:

myprog < mydata.inp > myresults.out

- 12 -

One may also give data records after the invocation of the executable:

myprog << EoD
cardil
card?2

EoD

We have used *EoD’ to stand for ’End of Data’. Any other string may be used as long
as it is not part of the data records themselves.

When using other FORTRAN units numbers, the In (link) command must be used. This
is equivalent to ASSIGN in VMS. As an example:

In -s mydata.out fin10

Note that, unlike VAX, such file linking is permanent across sessions. It should be removed
right after execution completion with the rm command:

rm fini0

The original file will not be destroyed; only the link. An alternative approach is to use
the OPEN statement, for example:

OPEN(10, FILE="mydata.dat’, ...)

4.5 Debugging Program

If your program does not execute properly, you may wish to use a debugger to locate
and correct problems; xdb is the HP-UX symbolic debugger. Before invoking a symbolic
debugger you should recompile your program with -g option and without any optimization
-0 flags. This ensure that the necessary debugging information is incorporated into the
object code. The debugger has many commands for viewing and manipulating programs.
You can:

Control execution with single step execution or use the breakpoints.
Look at data values.
Look at the content of your source files.

Look at the execution stack.

A sample of simple commands for the HP xdb debugger are:

- 13 -

HP debug options.

DESCRIPTION

Run the program

Set breakpoint at line 82

Continue running until the next breakpoint

Single step trough the next source line

Step over a function or a subroutine

Print a trace at the current execution stack

View a window of lines

Search forward in the source for occurency of string
Search backward in the source for occurency of string

Print the value of the variable "abc"

Assign a value to '"abc

Quit the debugger

Chapter 5: Batch Job Submission with NQS

5.1 NQS - An Overview

The Network Queueing System (NQS) batch system has been installed on LNF UNIX
Environment and is used for batch job submission. A NQS job is a series of UNIX com-
mands combined in a Shell script. NQS works by using the job queues and the NQS on
LNF UNIX Cluster distinguishes beetwen two types of queue:

Batch queue Batch queues are defined on each system in NQS domain. Each queue
has different resources limits, in particular the CPU time.

Pipe queue Pipe queues are a mechanism to distribute jobs and balance the workload
evenly over the destination servers. Users submit to the pipe queue, and
the load balancing software in NQS finds an empty server in which has
to run the job. If all servers are full, then the job is put on wait state. If
more than one job are on wait state, than the next job to be started is
determined by an intelligent script which is aware of the current state of
running and queued jobs. The following subsection describes the batch
environment in more detail.

5.2 NQS Commands

NQS provides a total of nine user commands:

qcat Display output files of NQS running requests
qcmplx Display status of NQS queue complexe

qdel Delete or signal NQS request

qhold Hold NQS request

qjob Display status of NQS networked queues
qlimit Show supported limit and shell strategy
qrls Release NQS request

gstat Display status of NQS requests and queues
qsub Submit NQS batch request

To get more information about a command, type:
man command

or refer to the man pages at the end of this guide.

Moreover some extra NQS commands specific to our UNIX environment are:

qwhere Display location of running NQS job

qusage Gives the cumulative execution time in seconds for all running NQS
jobs. The execution time is evaluated twice per hour

gresources Gives the available resources for the different batch queues

14

- 15 -

5.3 LNF UNIX Batch Queues

Users submit their jobs to these different queues:

cpqS cpqM cpqL cpqH

Where:
cpqgS Jobs of less 3600 native CPU seconds
cpqM Jobs of less 86400 native CPU seconds
cpqL Jobs of less 400000 native CPU seconds
cpqH Jobs of less 500000 native CPU seconds

User that submits a NQS job must be connected on the NQS master (hpserver.lnf.infn.it).
The queues are divided in two different classes: SHORT and MEDIUM,LONG,HEAVY.
The S queue point only to six headless batch server. M,L. and H are member of a complex
queue. On each batch server can run only one of this tree queues with different submission
priority. The H queue can be pointed by memory consuming programs.

The queues act as pipes to the 10 destination batch servers, finding empty machines if
any, or queueing jobs if all servers are full. Jobs are submitted with the command:

qsub filename

where filename is the pathname to a job script. An example of job script is shown in
Section 5.7 appended to this guide. To see the status of the HP Batch Server, type:

qjob
To cancel the running request, you have to use (in conjunction with qusage):

qdel -k -h batch-server request-id
5.4 Working Space

When a NQS job starts up, an environmental variable called WORKDIR is set. This is the
pathname of a unique directory created for the running job. The directory is located on
the machine on which the job is running. It has at least 200 MBytes of free space. Users
should include in their job submission script a line as:

cd $WORKDIR

and should write their output on the local disk. When the main executable finishes, users
should copy (cp) produced files over NFS to their directories. When a user’s job script
ends, NQS will remove the (WORKDIR) directory.

If the copy procedure fails', it is possible to keep for a short period of time this working
directory in order to (re)issue the copy command. For this purpose, the file:

$WORKDIR/nostage

should exist.

!The disk server is down or the stage disk is full.

- 16 -

5.5 Outputs

The stdout and stderr output from NQS jobs is returned to the directory from which the
user has submitted the job. All other output created by a job must be copied with user
commands in the job script.

5.6 Job Limits

The TIMEL (Time Left) routine from the CERN Program Library keeps track of how
much CPU time is left for a job, starting from a default number of seconds (9999).

GEANT by default will properly close down a job when there is no time left. Therefore,
users whishing to run for a time longer than the GEANT default must set the start time
to a higher value:

CALL TIMEST(36000.)
This would allow a 10 CPU-hours job in native CPU units.

5.7 Example: NQS Job Script

The script could contain some NQS commands, this give to the users the capabilities to
define regular submition options like queue name, total cputime, running name, kind of
shell, etc.

All of the NQS flags that can be specified on the command line can also be specified
within the first comment block inside the batch request script file as embedded default
flags. Here is an example of the use of embedded flags within the script file.

For more options info read the nqs man pages:

man gsub

NQS script: an example

Batch request parameter
#0$-s /bin/csh # Script shell / Begin of QSUB job description
#@$-r MyProgram # Request name

#0$-eo0 # Merge error and standard output
#0$-me # Send mail upon termination

#o$ # End of QSUB job description

#

Change working directory and print it

#

cd $WORKDIR

pwd

#

17 -

In order to be EFFICIENT (avoiding NFS traffic and swapping!)
main files (binaries and data) HAVE to be copied to the local
area

H O H ® ®

cp $HOME/work/myprog $WORKDIR
cp $HOME/work/mydata.dat $WORKDIR
#
Execute main program
#
time $WORKDIR/myprog < mydata.dat > myresults.lis
#
Copy LARGE output file to the scratch area
#
cp myprog.out /scrtchl/grp/username
if ($status !'= 0) then
touch $WORKDIR/nostage
endif
#
End of job
exit

Chapter 6: NQS++ Job Submission

With the introduction of the new DEC system is available a second BATCH Server based
on DEC-OSF/1 Operating System. With NQS++ each user can submit and control the
jobs on both BATCH Servers.

6.1 Setting the Preferred NQS Batch Server with gset

The command gset has been added in order to define dynamically the default NQS server
node and if necessary the default UNIX/NQS username. Here is a typical sequence of
commands which may be invoked :

| Set HP BATCH server || Command Output

% gqset -h hpserver Default NQS server node : hpserver.
L |1

in case of the DEC BATCH Server.

| Set DEC BATCH server || Command Output

% gset -h axpals Default NQS server node : axpals.
L |1 |

| HP Job Status Enquiry: |

QUEUE NAME STATUS TOTAL RUNNING QUEUED HELD TRANSITION
cpqH AVATLBL 0 0/1 0 0 0
cpqM AVATLBL 0 0/1 0 0 0
cpql AVATLBL 0 0/1 0 0 0
cpqS AVATLBL 0 0/1 0 0 0

To submit a job :

| Job Submission || Command Output

% gqset -h axpals 1800 bytes transferred.
% qsub -o NQSscript.output NQSscript.job Request 12.axpals submitted to queue: cpqL

When NQS jobs end, an automatic procedure tries to make available NQS outputs files on
the target machines. In case of failure, end-users receive mail messages on their originate
host telling them where these files are and how to get them back on their local hosts.

18

- 19 -

6.2 Write NQS script.job machine dependent.

If your code is compiled for both systems (DEC & HP) you can submit your jobs inde-
pendently from the architecture. Following the usual scheme shown in the chapter5 you

can modify the script as follow:

- 920 -

NQS script architecture dependent: an example

Batch request parameter
#0$-s /bin/csh # Script shell / Begin of QSUB job description
#@$-r MyProgram # Request name

#0$-eo0 # Merge error and standard output
#0$-me # Send mail upon termination
#o$ # End of QSUB job description
#
Change working directory and print it
#
cd $WORKDIR; pwd
#
Select the architecture dependent code.
#
if ("‘uname‘" == "HP-UX") then
setenv MYPROG myprog_hpux.exe
else if ("‘uname‘" == "0SF1") then
setenv MYPROG myprog_osfl.exe
endif
#
In order to be EFFICIENT (avoiding NFS traffic and swapping!)
main files (binaries and data) HAVE to be copied to the local
area
#

cp /ul/username/work/$MYPROG $WORKDIR/myprog
cp /ul/username/work/mydata.dat $WORKDIR
#
Execute main program
#
time $WORKDIR/myprog < mydata.dat > myresults.lis
#
Copy LARGE output file to the scratch area
#
cp myprog.out /scrtchl/grp/username
if ($status !'= 0) then
touch $WORKDIR/nostage
endif
#
End of job

Appendix A: Other Informations

A.1 Hardware Configuration

The Hewlett Packard cluster available at LNF includes 12 HP 9000/7xx, with hardware
configuration shown in Tab.A.1l, and 2 DEC System DEC-4000/610 and DEC-2100 4/275,
with alpha processor, with the relative hardware characteristics shown in Tab.A.2.

Name IP Address Model Configuration Performance
RAM Disks Tape SPECint92 | SPECfp92
hpserver 192.84.127.75 | 755/99 | 128 MB | 5x1.3 GB | 1.3 GB 80 150
hpcalc 192.84.127.10 | 710/33 | 32 MB 420 MB 24 45
hpmacl 192.84.127.57 | 735/99 | 48 MB 420 MB | 4.0 GB 80 150
hpcal2 192.84.127.107 | 715/75 | 32 MB 1.05 GB 61 113
hpcal3 192.84.127.108 | 715/75 | 32 MB 1.05 GB 61 113
hpmac2 192.84.127.106 | 715/75 | 32 MB 1.05 GB 61 113
hpalpl 192.84.127.109 | 715/75 | 32 MB 1.05 GB 61 113
hpalp2 192.84.127.176 | 715/80 | 64 MB 1.05 GB 85 125
hpcad 192.84.127.111 | 735/99 | 80 MB | 2x1.05 GB | 2.0 GB 80 150
hpcadl 192.84.127.112 | 715/50 | 64 MB 1.05 GB 36 72
hpcad2 192.84.127.113 | 715/50 | 64 MB 1.05 GB 36 72
hpkloe01 | 192.84.127.206 | 735/125 | 80 MB | 2x1.05 GB | 4.0 GB 136 201
hpkloe01-f | 192.84.130.17
801 1407

Table A.1: Hewlett Packard Cluster - Hardware Configuration.

Name IP Address Model Configuration Performance
RAM Disks Tape SPECint92 | SPECfp92
axpals 192.84.127.55 4000/610 | 128 MB | 2x2.0 GB | 2.6 GB 131 161
axpals-f 192.84.130.7 6x9.1 GB
kloeO1 | 192.84.127.232 | 2100 4/275 | 128 MB | 2.1 GB 10 GB 200 291
kloe01-f | 192.84.130.22 1x9.1GB
331 452

Table A.2: Digital Cluster - Hardware Configuration.

The workstations HP9000/7XX are in the FEdificio Alte Energie, and are located in dif-
ferent places inside the building; for this reason the Network connection to the LAN
(Local Area Network) uses two different Thin Wire Ethernet that are connected to the
LNFEthernet Backbone by a DEC-Dempr; no bridge solution is adopted.

21

- 9292 -

Only two workstations have the monitor, the remaining five are installed inside the com-
puting center structure, making use of the centralized UPS and cooling system in order
to increase the system availability. Four of these workstations are head-less and the con-
sole for each system is obtained using the serial line connected with a Terminal Server
port. On each port of the Terminal Server a remote service is defined, that allows the
connection from a generic terminal to each workstation console using the Local Area
Trasport protocol (LAT).

In figure the hardware configuration including the remote console system is shown.

UNIX Configuration - LNF

4)
DEC 2100/4 275 DEC 4000/610 Workstations & X-Terminal
e 1CPU — 1CPU 9 XTerminal HP
— — 22 Xterminal NCD
= = EE' @ 5 HP 9000/7xx
=@ >a
= @) >&a
= =3 >3
HP CAD Cluster \ 4)
E! = =
| | [
.)
HP HEP Cl uster Di §(Servers DEC 4000/610

11 HP 9000/7xx

Network Juke Box -20 GB|

6x10 GB

HP 9000/755

=

console
LAT protocol

-
Ethernet

SCSI

FDDI
. y,

Massimo Carboni LNF/CS ago 95

gz

Appendix B: Selection of man pages

24

NAME
xprint — print files on VAX/VMS printers

SYNOPSIS
xprint [—q printer] [-s][—-n][=2][—I number] [-p number] [-man unix-manual][-H][-h][
-][files]

DESCRIPTION
Xprint prints the specified file on a printer. Only VAX/VMS printer are supported:

VAXIVMS
VAX/VMS postscript printer are accessible from UNIX systems. For such printers, the user’s file
is routed to the VAX/VMS which print the specified files. The transfer to VAX/VMS is made using
the TCP/IP <---> DECNET gateway software running on a VAX/VMS syst&print check the
printer selected and the hardware characteristics. Use the standard UNIX commdpddikes,
pstopsanddvips. Xprintrecognize standard postscript file, higz postscript file, text file, TeX files.
It's possible print at the same time TeX and PAW files just giving the complete file name.

Printing formats are selected with command options

OPTIONS
—q printer Select the printing devicelps_post Ips_post2 Ips_post_a3 Ipsl7_post aenlal_post
aen2al_post Inf_psc.
-s print one side per sheet only, the default value is two per page [rectoverso].
-n Don't print thecover page.Use this options only when you are near the printer and your
output is short.
-2 Print two pages per physical page (twinpage mode), side by side or up-down, depending

on the printing mode (landscape or portrait). By default print only one page per physical
page (single page mode).

—-p —I number Print files in portrait (landscape) mode (vertical or horizontal pages). In text mode you can
select beetwen 80 or 132 characters per page. The defatipi8Q.

—man manual Print in postscript the usual UNIX manuals.

-H Thehelpoption lists the names of known postscript printers and the place where the print-
ers are located.

-h Print usage information.

—- Read from standard input and print the output on the selected printer. This is a positional
option use it as last option.

PRINTERS

Ips_post point to 3 different postscript printer one sheet per page inside che printer room, near the
computing room, A4 format:PS - LPS2 - LPS17.

Ips_post2 point to 2 different postscript printer two sheet per page inside che printer room, near the
computing room, A4 format:PS - LPS2.

Ips_post_a3 point to 2 different postscript printer one sheet per page inside che printer room, near the
computing room, A3 format:PS - LPS2.

Ips17_post point to the 600 dpi resolution postscript printer one sheet per page inside che printer

room, near the computing room, A4 formaRS17.

aenlal_post point to the postscript printer inside the New Alte Energie Build 1 Floor A Side, A4 for-
mat:AEN1AL.

aen2al_post point to the postscript printer inside the New Alte Energie Build 2 Floor A Side, A4 for-
mat: AEN2AL.

LNF 1 December 1995 1

NEW FEATURES
Postscript print of Unix man pages, seean option for more details.

ENVIRONMENT VARIABLES
PRINTER Specifies the default printer whaarint is invoked without the-g option.

XPRINTER Same as PRINTER, but has higher priority.

SEE ALSO
Ip(1), a2ps(1), pstops(1), dvips(1)

DIAGNOSTICS
A print request is confirmed by returning the spool id of the print job.

HISTORY
Origin: Laboratori Nazionali di Frascati

Febrary 1993 — Massimo Carboni, LNF/CS
Original release.

November 1995
Last release.

LNF 1 December 1995

NAME
gcat — display error, input, or output text fileN#§S running requests.

SYNOPSIS
gcat[—€] [-i] [-0] [t number] Fh target-host] request-id ...

DESCRIPTION
Qcat displays the contents of error, input, or output text files of Network Queueing Sys@Snrgnning
requests.

Qcatfinds and if it exists, reads each file in sequence and displays it on the standard output.

An NQSrequest is always uniquely identified by iégjuest-id no matter where it is in the network of the
machines. Arequest-idis always of the formsegnoor seqno.hostnamehere hostnameidentifies the
machine from whence the request was originally submitted,sagdoidentifies the sequence number
assigned to the request on the originating host. Ihtsnameportion of arequest-idis omitted, then the
local host is always assumed.

The following flags are available:

-e Displays the error file if it exists.
-i Displays the input file (script file).
-0 Displays the output file if it exists.

-t number
Begins copying at distance number from the end of the file. number is counted in units of lines.

-h target-name
Specifies the target NQS host from which display information is to be obtained.

If no option is specified the input file tries to be displayed.

CAVEATS
NQSis not finished, and continues to undergo development.

SEE ALSO
gstat(1)
NPSN HISTORY
Origin: CERN

April 1992 - Christian Boissat, CERN
Original release.

NAME

gcmplx — display status ofQScomplex(es)
SYNOPSIS

gcmplx [-h host-name]4n] [-Q]

[complex-name] [complex-name@host-name]
DESCRIPTION

Qcmplxdisplays the Network Queueing SysteMQg) complexes.

In the absence of-& host-namespecifier, the local host is assumed.

Each entry displays the complexes on a given host. -@Qhaption displays the queues within the complex.
The-n option eliminates the gcmplx header display.

CAVEATS
NQSis not finished, and continues to undergo development. This command may or may not be supported
on all of your machines in the network.

SEE ALSO
gdel(1), gdev(1), glimit(1), qpr(1), gstat(1), gsub(1), gmgr(1M)

NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 - Brent Kingsbury, Sterling Software
Original release.

Feb. 1990 - Terrie Carver, Computer Science Corperation
Second release.

NAME
gdel — delete or sign&lQSrequest(s).

SYNOPSIS
gdel[-k][—s][—c][—h hostname] [—signo] [-u username] request-id ...

DESCRIPTION
Qdel deletes all queuedQSrequests whose respectiaguest-idis listed on the command line. Addition-
ally, if the flag-k is specified, then the default signalGINT (-2) is sent to any running request whose

request-idis listed on the command line. This will cause the receiving request to exit and be deleted. If the

flag -s is specified, then the default signal¥ESTOP is sent to any running request whasquest-idis
listed on the command line. This will cause the receiving request to be stopped. If Hod<flagecified,
then the default signal fIGCONT is sent to any running request whasquest-idis listed on the com-
mand line. This will cause the receiving request to continue after being stopped.

If the flag—h hostname is requested then the action will be taken on the given host. If thsiflag is
present, then the specified signal is sent instead &iGIRT signal to any running request whaseguest-
id is listed on the command line. In the absence ofkhend-signo flagsgdel will not delete arunning
NQSrequest.

To delete or signal aNQS request, the invoking usenust be the owner; namely the submitter of the
request. The only exception to this rule occurs when the invoking usersspbrisey or hasNQS opera-

tor privileges as defined in tiQS manager database. Under these conditions, the invoker may specify the
—u username flag which allows the invoker to delete or signal requests owned by the user whose account

name isusername When this form of the command is usell request-iddisted on the command line are
presumed to refer to requests owned by the specified user.

An NQSrequest is always uniquely identified by iégjuest-id no matter where it is in the network of the
machines. Arequest-idis always of the formsegnoor segno.hosthamehere hostnameidentifies the
machine from whence the request was originally submitted,sagdoidentifies the sequence number
assigned to the request on the originating host. Ihtsnameportion of arequest-idis omitted, then the
local host is always assumed.

The request-idof anyNQS request is displayed when the request is first submitted (unlessetfitenode
of operation for the giveNQS command was specified). The user can also obtainethesst-idof any
request through the use of tfgtat(1) command.

CAVEATS
When amNQSrequest is signalled by the methods discussed above, the proper signal isbgbteesses
comprising theNQS requestthat are in the samaocess group Whenever amNQS request is spawned, a

new process groups established for all processes in the request. However, should one or more processes

of the request successfully executgegpgri) system call, then such processes mill receive any signals

sent by thegdel(1) command. This can lead to "rogue" request processes which must be killed by other

means such as tikél (1) command. For theNIX implementations that support the ability to "lock" a pro-
cess, and all of its progeny intqpeocess-groupNQS will exploit this capability to prevent processes from
"escaping"” in this manner.

SEE ALSO
gcmplx(1), qdev(), glimit(1), gpr(1), gstat(1), gsub(1), gmgr(1M),
kill(2), setpgrp(2), signal(2)

NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 - Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

Feb. 1990 - Terrie Carver, Computer Sciences Corporation

Third release.

NAME
gdev — display status ofQSdevices

SYNOPSIS
gdev|[device-name] [device-name@host-name ...]

DESCRIPTION
Qdevdisplays the status of devices known to the Network Queueing Sys@#h (

If no devices are specified, then the current state of ¢@&tdevice on the local host is displayed. Other-
wise, the response is limited to the devices specified. Devices may be specified athdécexmameor
device-name@host-namén the absence ofteost-namespecifier, the local host is assumed.

A device headewith several headings is displayed for each of the selected devices. The first heading in a
device header appears avice, and is followed by the name of the device formatted as
device-name@host-nam&he second heading 8fillname: is followed by the full path name of the spe-

cial file associated with the device. The third headingeofer. is followed by the command line which

will be used tcexecve(2)he device server. The fourth heading-ofms: is followed by the forms config-

ured for the device.

The final heading o$tatus prefaces a display of the general device state. The general state of a device is
defined by two principal properties of the device.

The first property concerns whether or not the device is willing to continue accepting queued requests. If it
is, the device is said to BENABLED . If the device is unwilling to continue accepting queued requests,
and is idle, its state iIBISABLED . A third state ofENABLED/CLOSED is used to describe a device

that is unwilling to continue accepting queued requests, but is not yet idle.

The second principal property of a device concerns whether or not the device is busy. There are three
cases. If the device is busy, it is said toASTIVE . If the device is idle and not known to be out of ser-

vice, it is said to b&NACTIVE . Finally, if the device is idle and known to be out of service, it is said to be
FAILED . FAILED covers both hardware and software failures.

If a device is busy, information about the active request follows the device headereqikst-namge
request-id and the name of the user who submitted the request are all displayed.

SEE ALSO

gdel(1), glimit(1), gpr(1), gstat(1), gsub(1), gmgr(1M)
NPSN HISTORY

Origin: Sterling Software Incorporated

May 1986 — Robert Sandstrom, Sterling Software
Original release.

NAME

ghold - holdNQSrequest(s).

SYNOPSIS

ghold [—u username] request-id ...

DESCRIPTION

Qhold holds all queued or waitingQS requests whose respectieguest-idis listed on the command line.
Qhold will not hold arunning NQSrequest.

To hold anNQS request, the invoking usenustbe the owner; namely the submitter of the request. The
only exception to this rule occurs when the invoking user istiperusey or hasNQS operator privileges

as defined in th8QS manager database. Under these conditions, the invoker may specifydbername
flag which allows the invoker to hold requests owned by the user whose account nasreasne When

this form of the command is usea] request-idslisted on the command line are presumed to refer to
requests owned by the specified user.

An NQSrequest is always uniquely identified by iégjuest-id no matter where it is in the network of the
machines comprising the NPSN. réquest-idis always of the formsegnoor seqno.hostname&herehost-
nameidentifies the machine from whence the request was originally submittedegndidentifies the
sequence number assigned to the request on the originating hosthdsthameportion of arequest-idis
omitted, then the local host is always assumed.

The request-idof anyNQS request is displayed when the request is first submitted (unlessetfitenode
of operation for the giveNQS command was specified). The user can also obtainethesst-idof any
request through the use of tfgtat(1) command.

SEE ALSO

gdel(1), grls(1), gstat(1).
gmgr(1M) in theNPSN UNIXSystem Administrator Reference Manual

NPSN HISTORY

Origin: CERN

January 1992 - Christian Boissat, CERN
Original release.

NAME
gjob — display status &#QSrequests in a networked environment.

SYNOPSIS
qjob [-a]

DESCRIPTION
Qjob displays the status of requests known to the Network Queueing Sy$@nas remote ones. The
/etc/batchserverdile should contain host names for machinasently in connection with the local host
via pipe queues. Each entry consists of a line specifying the name of the machine. This file is normally cre-
ated and maintained by NQS queue managers.

The current state of ea®QS request on the remote hosts is displayed. Each entry displays information
about a given request. Ordinaritjjob shows only those requests belonging to the invoker. Nevertheless
the following flag is available:

-a Displays all requests.

REQUEST STATE
The state of a request may &miving, holding, waiting, queued staging routing, running, departing or
exiting. A request is said to teriving if it is being enqueued from a remote holdblding indicates that
the request is presently prevented from entering any other state (includingntiieg state), because a
hold has been placed on the request. A request is saidwaibiag if it was submitted with the constraint
that it not run before a certain date and time, and that date and time have not yet @uieedrequests
are eligible to proceed (bsputing or running). When a request reaches the head of a pipe queue and
receives service there, itisuting. A request islepartingfrom the time the pipe queue turns to other work
until the request has arrived intact at its destinat®tagingdenotes &atchrequest that has not yet begun
execution, but for which input files are being brought on to the execution machinmniag request has
reached its final destination queue, and is actually executing. Fimatlyg describes a batch request that
has completed execution, and will exit from the system after the required output files have been returned (to
possibly remote machines).

Imagine a batch request originating on a workstation, destined for the batch queue of a computation engine,
to be run immediately. That request would first go through the sjatased routing, anddepartingin a

local pipe queue. Then it would disappear from the pipe queue. From the point of view of a queue on the
computation engine, the request would firstalpeving, then queued staging (if required by the batch
request)running, and finallyexiting. Upon completion of thexiting phase of execution, the batch request
would disappear from the batch queue.

CAVEATS
NQSis not finished, and continues to undergo development. Some of the request states shewmagb
or may not be supported in your version of NQS.

SEE ALSO

gcmplx(1), gdel(1), gdev(1), glimit(1), gpr(1), gstat(1), gsub(1), gmgr(1M)
NPSN HISTORY

Origin: CERN

August 1991 - Christian Boissat, CERN
Original release.

April 1992
Second release.

NAME
glimit — show supported batch limits, and shell strategy for the local host.

SYNOPSIS
glimit

DESCRIPTION
Qlimit displays the set of batch request resource limit typesctrabe directly enforced, and also the
batch request shell strategiefined for the implied local host.

NQS supports many batch request resource limit types that can be applied@s&atch request. How-
ever, not alluNIX implementations are capable of supporting the rather extensive set of limit types that
NQS provides.

The set of limits applied to a batch request, is always restricted to the set of limits that can be directly sup-
ported by the underlyingNIX implementation. If a batch request specifies a limit that cannot be enforced
by the underlyingJNIX implementation, then the limit is simply ignored, and the batch request will operate
as though there were no limit (other than the obvious physical maximums), placed upon that resource type.

When an attempt is made to queue a batch requestlimétetalue specified by the request (that can also

be supported by the locaNIX implementation), is compared against the corresporiiitigvalue as con-

figured for the destination batch queue. If the corresponding batch byméttsalue for all batch request
limit-values is defined as unlimitedr is greater thanor equal to the corresponding batch request
limit-value, then the request can be successfully queued, provided that no other anomalous conditions
occur. For requeshfinity limit-values the corresponding quedienit-value must also be configured as
infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism, either by a
direct use of thgsub(1l) command, or by the indirect placement of a batch request into a batch queue via a
pipe queue. It is impossible for a batch request to be queued MQ&batch queue ifiny of these
resource limit checks fail.

Finally, if a request fails to specifylanit-value for a resource limit type that is supported on the execution
machine, then the correspondiligiit-value as configured for the destination queue, becomedirttite
valuefor the unspecified request limit.

Upon the successful queueing of a request in a batch queue, the set of limits under which the request will
execute is frozen, and will not be modified by subsegaef(1M) commands that alter the limits of the
containing batch queue.

As mentioned above, this command also displayslied strategyas configured for the implied local host,

or named hosts. In the absence ahall specificatiorfor a batch requesyQS must choose which shell

should be used to execute that batch requéls supports three different algorithms,strategiesto solve

this problem that can be configured for each system by a system administrator, depending on the needs of
the user’s involved, and upon system performance criterion.

The three possible shell strategies are called:

fixed,
free, and
login.

These shell strategies respectively cause the confidixed shell to be exec'd to interpret all batch
requests, cause the user’s login shell as defined in the password file to be exec’'d which in turn chooses and
spawns the appropriate shell for running the batch shell script, or cause only the user’s login shell to be
exec'd to interpret the script.

A shell strategy ofixed means that the same shell as chosen by the system administrator, will be used to
executeall batch requests.

A shell strategy ofree will run the batch request scripkactly as would an interactive invocation of the
script, and is the defalltQS shell strategy.

The strategies dixed, andlogin exist for host systems that are short on available free processes. In these
two strategies, a single shell is exec'd, and that same shell is the shell that executes all of the commands in
the batch request shell script.

When a shell strategy diked has been configured for a particuh®S system, then the "fixed" shell that
will be used to rurall batch requests at that host is displayed.

SEE ALSO

qdel(1), qdev(1), gpr(1), gstat(1), gsub(1), qmgr(1M)
NPSN HISTORY

Origin: Sterling Software Incorporated

May 1986 — Brent Kingsbury, Sterling Software
Original release.

NAME

gpr — submit a hardcopy print requesNQS

SYNOPSIS

gpr [-adate-time] £+f form-name] fmb] [-mé€]
[-mu user-name]4n number-of-copies Hp priority]
[-q queue-name Hr request-name Hz] [files]

DESCRIPTION

Qpr places the named files ilNBetwork Queueing SystefNQS) queue to be printed by a device such as a
line printer or laser printer. If no files are specifigdr will read from the standard input.

In the absence of thez flag, gpr will print a request-idon the standard output, upon successful queueing
of a request. Thisequest-idcan be compared with what is reportedduey1) andgstat(1) to find out
what happened to a request, and given as an argumgael(@) to delete a request. r&quest-idis always

of the form:seqgno.hostnamehereseqnorefers to the sequence number assigned to the requegiHy
and hostnamerefers to the name of originating local machine. This identifier is used througQsub
uniquely identify the request, no matter where it is in the network.

The following options t@pr may appear in any order and may be intermixed with file names.

—adate-time

Submit at the specified date and/or time. In the absence of thiggtagill submit the request
immediately.

If a date-timespecification is comprised of two or more tokens separated by whitespace charac-
ters, then thelate-timespecification must be placed within double quotes asan:uly, 4,

2026 12:31-EDT," or otherwise escaped such that the shell will interpret the efatiestime
specification as a single lexical token.

The syntax accepted for tlate-timeparameter is relatively flexible. Unspecified date and
time values default to an appropriate value (e.g. if no date is specified, then the current month,
day, and year are assumed).

A date can be specified as a month and day (current year assumed). The year can also be
explicitly specified. It is also possible to specify the date as a weekday name (e.g. "Tues"), or
as one of the strings "today" or "tomorrow". Weekday names and month names can be abbrevi-
ated by any three character (or longer) prefix of the actual name. An optional period can follow
an abbreviated month or day name.

Time of day specifications can be given using a twenty-four hour clock, or "am" and "pm" spec-
ifications may be used alternatively. In the absence of a meridian specification, a twenty-four
hour clock is assumed.

It should be noted that the time of day specification is interpreted using the precise meridian
definitions whereby "12am" refers to the twenty-four hour clock time of 0:00:00, "12m" refers
to noon, and "12-pm" refers to 24:00:00. Alternatively, the phrases "midnight" and "noon" are
accepted as time of day specifications, where "midnight" refers to the time of 24:00:00.

A timezone may also appear at any point indage-timespecification. Thus, it is legal to say:

"April 1, 1987 13:01-PDT". In the absence of a timezone specification, the local timezone is
assumed, with daylight savings time being inferred when appropriate, based on the date speci-
fied.

All alphabetic comparisons are performed in a case insensitive fashion such that both "WeD"
and "weD" refer to the day of Wednesday.

Some validdate-timeexamples are:
01-Jan-1986 12am, PDT

Tuesday, 23:00:00
11pm tues.

tomorrow 23-MST

—f form-name

-mb

-me

Limit the set of acceptable devices to those devices which are loaded with the forms:
form-name In the absence of this flagpr will submit the request only to a device that is
loaded with thedefaultforms. If there is nalefaultforms defined, the request will be submit-

ted to the appropriate output device without regard to the forms configured for the device.

In any case, only those devices associated with the chosen queue will be considered.

Send mail to the user on the originating machine when the request begins execution. If the
—mu flag is also present, then mail is sent to the user specified fomihéag instead of to the
invoking user.

Send mail to the invoker on the originating machine when the request has ended execution. If
the—mu flag is also present, then mail is sent to the user specified femihéag instead of to
the invoking user.

—mu user-name

Specify that any mail concerning the request should be delivered to thesaserame User-
namemay be formatted either aser (containing no ‘@’ characters), or aser@maching In

the absence of this flag, any mail concerning the request will be sent to the invoker on the origi-
nating machine.

—n number-of-copies

—p priority

Printnumber-of-copiegopies. The default is one.

Assign an intra-queue priority to this request. The specifieatity must be an integer, and
must be in the range [0..63], inclusive. A value of 63 defines the higliesjueuerequest
priority, while a value of O defines the lowest. This priority doesdetermine the execution
priority of the request. This priority is only used to determine the relative ordering of requests
within a queue.

When a request is added to a queue, it is placed at a specific position within the queue such that
it appears ahead of all existing requests whose priority is less than the priority of the new
request. Similarly, all requests with a higher priority will remain ahead of the new request
when the queueing process is complete. When the priority of the new request is equal to the
priority of an existing request, the existing request takes precedence over the new request.

If no intra-queuepriority is chosen by the user, the@Sassigns a default value.

-g queue-name

Specify the queue to which the device request is to be submitted —¢f goeue-namepecifi-

cation is given, then the user’s environment variable set is searched for the variable:
QPR_QUEUE. If this environment variable is found, then the character string value for
QPR_QUEUE is presumed to name the queue to which the request should be submitted. If the
QPR_QUEUE environment variable is not found, then the request will be submitted to the
default device request queué,defined by the local system administrator. Otherwise, the
request cannot be queued, and an appropriate error message is displayed to this effect.

—r request-name

Assign a name to this request. In the absence of an explrequest-namespecification, the
request-namealefaults to the name of the first print file (leading path name removed) specified
on the command line. If no print files were specified, then the deéauiest-nameassigned to

the request iISTDIN.

In all cases, if theequest-namas found to begin with a digit, then the character 'R’ is pre-
pended to preventraquest-namdrom beginning with a digit. Altequest-nameare truncated
to a maximum length of 15 characters.

Be sure not to confugequest-namevith request-id

-z Submit the request silently. If the request is submitted successfully, nothing will be written to
stdout or stderr.

QUEUE ACCESS
NQS supports queue access restrictions. For each queue of queue type otihetwloek access may be
eitherunrestrictedor restricted If access iqunrestricted any request may enter the queue. If access is
restricted a request can only enter the queue if the requester or the requester’s login group has been given
access to that queue (sgmgr(1M)). Requests submitted by root are an exception; they are always
gueued, even if root has not explicitly been given access.

Usegstat(1) to determine who has access to a particular queue.

SEE ALSO

mail(1), qdel(1), gqdev(1), glimit(1), gstat(1), gsub(1), gmgr(1Mm)
NPSN HISTORY

Origin: Sterling Software Incorporated

May 1986 — Robert Sandstrom, Sterling Software
Original release.

NAME

grls — releas&lQSrequest(s).

SYNOPSIS

grls [—u username] request-id ...

DESCRIPTION

Qrls releases all heldQSrequests whose respectiegjuest-idis listed on the command line.

To release aNQSrequest, the invoking userustbe the owner; namely the submitter of the request. The
only exception to this rule occurs when the invoking user istiperusey or hasNQS operator privileges

as defined in th®8QS manager database. Under these conditions, the invoker may specifydsername
flag which allows the invoker to release requests owned by the user whose account nsengaisie
When this form of the command is usadl,request-idslisted on the command line are presumed to refer
to requests owned by the specified user.

An NQSrequest is always uniquely identified by iégjuest-id no matter where it is in the network of the
machines comprising the NPSN. réquest-idis always of the formsegnoor seqno .hostname&herehost-
nameidentifies the machine from whence the request was originally submittedegndidentifies the
sequence number assigned to the request on the originating hosthdsthameportion of arequest-idis
omitted, then the local host is always assumed.

The request-idof anyNQS request is displayed when the request is first submitted (unlessetfitenode
of operation for the giveNQS command was specified). The user can also obtainethesst-idof any
request through the use of tfgtat(1) command.

SEE ALSO

gdel(1), ghold(1), gstat(1).
gmgr(1M) in theNPSN UNIXSystem Administrator Reference Manual

NPSN HISTORY

Origin: CERN

January 1992 - Christian Boissat, CERN
Original release.

NAME
gstat — display status 8fQSrequests and queues.

SYNOPSIS
gstat [-a] [-U] [-b] [-d] [-p] [-f] [-I] [-n] [—s state -rght-] th target-host] fu user-name]{A user-
target-name]
[queue-name ...] [queue-name@host-name ... |
[request-id ...] [request-id.hostname ...]

DESCRIPTION
Qstatdisplays the status of Network Queueing Syste@gj requests and queues.

If no objects are specified, then the current state of @@8request on the local host is displayed. Other-
wise, information is displayed for the specified object only. Each entry displays information about a given
request. Ordinarilygstatshows only those requests belonging to the invoker.

An NQSrequest is always uniquely identified by iégjuest-id no matter where it is in the network of the
machines. Arequest-idis always of the formsegnoor segno.hosthamehere hostnameidentifies the
machine from whence the request was originally submitted,sagdoidentifies the sequence number
assigned to the request on the originating host. Ihtsnameportion of arequest-idis omitted, then the
local host is always assumed.

If information about the queues is requested with-thed or -p options, but no queues are specified, then

the current state of eatlQS queue on the local host is displayed. Otherwise, information is displayed for
the specified queues only. Queues may be specified eithjeleas-namer queue-name@host-namén

the absence of lBost-namespecifier, the local host is assumed. You must have an account on the host spec-
fied in order for gstat to work. Alseot use of gstat is limited to the local machine.

For each selected quegstat displays information about the queue itself. The following flags are avail-

able:

-a Displays all requests. Thel (unrestricted) option is synonymous.

-b Displays batch queues.

-d Displays device queues.

-p Displays pipe queues.

-f Queues are shown in a full format. Thélong) option displays in the same format.

-n The queue header and trailer are not displayed.

-S Displays requests which are in a particular state: running, queued, held, or transiting (r, g, h, or t).

-h target-host
Specifies the target NQS host from which display information is to be obtained.

-u user-name
Shows only those requests belongingser-name The -A (account) option is synonymous.

When a queue is being examined, the queue name, host machine, priority, number of requests in a given
state, resource limits, and access are displayed.

QUEUE STATE
The general state of a queue is defined by two principal properties of the queue.

The first property determines whether or not requests can be submitted to the queue. If they can, then the
gueue is said to benabled Otherwise the queue is said todisabled

The second principal property of a queue determines if requests which are ready to run, but are not now
presently running, will be allowed to run upon the completion of any currently running requests, and
whether any requests are presently running in the queue.

If queued requests not already running are blocked from running, and no requests are presently executing in
the queue, then the queue is said tetbpped If the same situation exists with the difference that at least

one request is running, then the queue is said sdpping where the requests presently executing will be
allowed to complete execution, but no new requests will be spawned.

One of the wordAVAILABLE STOPPED DISABLED, UNAVAIL, or NQS DOWNwill appear in the
gueue status field to indicate the respective queue states of:

AVAILABLE= enabled and started,
STOPPED = enabled and stopped,
DISABLED= disabled and running or
UNAVAIL = disabled and stopped.

Requests can only be submitted to the queue if the queue is enabled, and M@Salzedmon is present.

If the NQS daemon for the local host upon which the queue resides is not running, the status Nig8ays
DOWN.

REQUEST STATE
The state of a request may &miving, holding, waiting, queued staging routing, running, departing or
exiting. A request is said to lerriving if it is being enqueued from a remote holdblding indicates that
the request is presently prevented from entering any other state (includingntiieg state), because a
hold has been placed on the request. A request is saidwaibiag if it was submitted with the constraint
that it not run before a certain date and time, and that date and time have not yet @uieedrequests
are eligible to proceed (bsuting or running). When a request reaches the head of a pipe queue and
receives service there, itisuting. A request islepartingfrom the time the pipe queue turns to other work
until the request has arrived intact at its destinat®tagingdenotes &atchrequest that has not yet begun
execution, but for which input files are being brought on to the execution machinmniag request has
reached its final destination queue, and is actually executing. Fimatlyg describes a batch request that
has completed execution, and will exit from the system after the required output files have been returned (to
possibly remote machines).

Imagine a batch request originating on a workstation, destined for the batch queue of a computation engine,
to be run immediately. That request would first go through the sjatased routing, anddepartingin a

local pipe queue. Then it would disappear from the pipe queue. From the point of view of a queue on the
computation engine, the request would firstalpeving, then queued staging (if required by the batch
request)running, and finallyexiting. Upon completion of thexiting phase of execution, the batch request
would disappear from the batch queue.

CAVEATS
NQSis not finished, and continues to undergo development. Some of the request states shewmagb
or may not be supported in your version of NQS.

SEE ALSO

gcmplx(1), qdel(1), gdev(1), glimit(1), gpr(1), gsub(1), gmgr(1M)
NPSN HISTORY

Origin: Sterling Software Incorporated

August 1985 - Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

Feb. 1990 - Terrie Carver, Computer Sciences Corporation
Third release.

NAME
gsub - submit aNQSbatch request.

SYNOPSIS
gsub| flags] [script-file]

DESCRIPTION
Qsubsubmits a batch request to the Network Queueing SyNeQ$) (

If no script-file is specified, then the set of commands to be executed as a batch request is taken directly
from the standard input filesidin). In all cases however, tiseript fileis spooled, so that later changes will
not affect previously queued batch requests.

All of the flags that can be specified on the command line can also be specified within the first comment
block inside the batch requestript file as embedded default flagsSuch flags appearing in the batch
requesiscript file set default characteristics for the batch request. If the same flag is specified on the com-
mand line, then the command line flag (and any associated value) takes precedenceenvszddedlag.

See the section entitledONG DESCRIPTION for more information oembedded default flags

What follows is a terse definition of the flags implemented byQigh command (see the sectidtONG
DESCRIPTION for the complete definition and syntax used for each of these flags).

—a - run request after stated time

—e — direct stderr output to stated destination

—eo- direct stderr output to the stdout destination
—ke — keep stderr output on the execution machine
—ko - keep stdout output on the execution machine
—lc — establish per-process corefile size limit

-ld - establish per-process data-segment size limits
—If — establish per-process permanent-file size limits
-IF - establish per-request permanent-file space limits
—-Im - establish per-process memory size limits

—-IM - establish per-request memory space limits

—In — establish per-process nice execution value limit
—Is - establish per-process stack-segment size limits
—It — establish per-process CPU time limits

—IT — establish per-request CPU time limits

—lv — establish per-process temporary-file size limits
-V - establish per-request temporary-file space limits
—lw - establish per-process working set limit

—mb - send mail when the request begins execution
—me - send mail when the request ends execution
—mu — send mail for the request to the stated user
—nr — declare that batch request is not restartable
—0 - direct stdout output to the stated destination

—p - specify intra-queue request priority

—q - queue request in the stated queue

—-r —assign stated request name to the request

—-re — remotely access the stderr output file

—-ro — remotely access the stdout output file

—s — specify shell to interpret the batch request script
—x — export all environment variables with request
-z - submit the request silently

LONG DESCRIPTION
As described above, it is possible to spedéfault flags within the batch requestript file that configure
the default behavior of the batch request. The algorithm used to scan foerabeldded default flags

within anNQSbatch request script file is as follows:

1. Read the first line of theeript file.

2. If the current line contains only whitespace characters, or the first non-whitespace character
of the line is ":", then goto step 7.

3. If the first non-whitespace character of the current line is not a "#" character, then goto step
8.

4, If the second non-whitespace character in the current linetithe "@" character, or the
character immediately following the second non-whitespace character in the current line is
not a II$II
OR
If the second non-whitespace character is not a "Q" followed immediately by the string
"SUB", then goto step 7.

5. If no "-" is present as the first non-whitespace characterediatelyfollowing the '@$'

sequence or the&)SUB' sequence, then goto step 8.

6. Process thembeddedlag, stopping the parsing process upon reaching the end of the line,

or upon reaching the first unquoted "#" character.
7. Read the nexdcript fileline. Goto step 2.
8. End. No morembeddedlags will be recognized.
Here is an example of the useesfibeddedlags within thescript file.

Batch request script example:

@$%-a "11:30pm EDT" -It "21:10, 20:00"
Run request after 11:30 EDT by default,
and set a maximum per-process CPU time
limit of 21 minutes and ten seconds.
Send a warning signal when any process
of the running batch request consumes
more than 20 minutes of CPU time.

QSUB -IT 1:45:00
Set a maximum per-request CPU time limit
of one hour, and 45 minutes. (The
implementation of CPU time limits is
completely dependent upon the UNIX
implementation at the execution
machine.)

QSUB-mb -me # Send mail at beginning and end of
request execution.

@$%-q batchl # Queue request to queue: batchl by

HHEHFHHFHHFEHFHHFHHEHFHHHHFR

default.

@% # No more embedded flags.
#

make all

The following paragraphs give the detailed descriptions dilagesupported by th®subcommand.

—adate-time Do not run the batch request before the specified date and/or timeatk-timespecifica-
tion is comprised of two or more tokens separated by whitespace characters, tihate-the
time specification must be placed within double quotes asariuly, 4, 2026 12:31EDT",
or otherwise escaped such tlguband the shell will interpret the entidate-timespecifi-
cation as a single character string. This restriction also applies when an embedded default
—a flag with accompanyinglate-timespecification appears within the batch requesipt
file.

The syntax accepted for tidate-timeparameter is relatively flexible. Unspecified date and
time values default to an appropriate value (e.g. if no date is specified, then the current
month, day, and year are assumed).

A date may be specified as a month and day (current year assumed), or the year can also be
explicitly specified. It is also possible to specify the date as a weekday name (e.g. "Tues"),
or as one of the strings: "today", or "tomorrow". Weekday names and month names can be
abbreviated by any three character (or longer) prefix of the actual name. An optional period
can follow an abbreviated month or day name.

Time of day specifications can be given using a twenty-four hour clock, or "am" and "pm"
specifications may be used alternatively. In the absence of a meridian specification, a
twenty-four hour clock is assumed.

It should be noted that the time of day specification is interpreted using the precise meridian
definitions whereby "12am" refers to the twenty-four hour clock time of 0:00:00, "12m"
refers to noon, and "12-pm" refers to 24:00:00. Alternatively, the phrases "midnight" and
"noon" are accepted as time of day specifications, where "midnight" refers to the time of
24:00:00.

A timezone may also appear at any point indage-timespecification. Thus, it is legal to

say: "April 1, 1987 13:0RDT". In the absence of a timezone specification, the local time-
zone is assumed, with daylight savings time being inferred when appropriate, based on the
date specified.

All alphabetic comparisons are performed in a case insensitive fashion such that both "WeD"
and "weD" refer to the day of Wednesday.

Some validdate-timeexamples are:

01-Jan-1986 12an®DT
Tuesday, 23:00:00
11pm tues.

tomorrow 23MST

—e[machine:][[/lpath/] stderr-filename
Direct output generated by the batch request which is sent stdée file to the named
[machine:][[/]path/] stderr-filename

The brackets "[" and "]" enclose optional portions of skaerr destinationmachine path,
andstderr-filename

If no explicit machinedestination is specified, then the destination machine defaults to the
machine that originated the batch request, or to the machine that will eventually run the
request, depending on the respective absence, or presence ki tlag.

If no machinedestination is specified, and the path/filename does not begin with a "/, then
the current working directory is prepended to create a fully qualified path name, provided
that the—ke (keep stderr) flag is also absent. In all other cases, any partial path/filename is
interpreted relative to the user’'s home directory orstterr destination machine.

This flag cannot be specified when tteoflag option is also present.

—€o0

—ke

—-ko

If the —eoand—e [machine:][[/]path/] stderr-filenameflag options are not present, then all
stderr output for the batch request is sent to the file whose name consists of the first seven
characters of theequest-naméollowed by the characters: ".e", followed by the request
sequence number portion of tregjuest-iddiscussed below. In the absence of tke flag,

this defaultstderr output file will be placed on the machine that originated the batch request
in the current working directory, as defined when the batch request was first submitted. Oth-
erwise, the file will be placed in the user’'s home directory on the execution machine.

Direct all output that would normally be sent to steerr file to thestdoutfile for the batch
request. This flag cannot be specified when-thgnachine:][[/]path/] stderr-filenameflag
option is also present.

In the absence of an explisitachinedestination for thestderr file produced by a batch
request, thenachinedestination chosen for trstderr output file is the machine that origi-

nated the batch request. In some cases however, this behavior may be undesirable, and so
the—ke flag can be specified which instrutt®Sto leave anytderr output file produced by

the request on the machine that actueXgcutedhe batch request.

This flag is meaningless if theeo flag is specified, and cannot be specified if an explicit
machinedestination is given for thetderr parameter of theeflag.

In the absence of an expligitachinedestination for thestdout file produced by a batch
request, thenachinedestination chosen for trstdoutoutput file is the machine that origi-

nated the batch request. In some cases however, this behavior may be undesirable, and so
the —ko flag can be specified which instruttQS to leave anystdoutoutput file produced

by the request on the machine that actuaiycutedhe batch request.

This flag cannot be specified if an explitiachinedestination is given for th&tdoutparam-
eter of the-o flag.

—lc per-process corefile size limit

Set aper-processmaximumcore file size limitfor all processes that constitute the running
batch request. If any process comprising the running request attempts to exit creating a core
file whose size would exceed the maximper-process core file size limior the request,

then the core file image of the aborting process will be reduced to the necessary size by an
algorithm dependent upon the underlyisigiX implementation.

Not all UNIX implementations suppoper-process corefile size limitdf a batch request
specifies this limit, and the machine upon which the batch request is eventually run does not
support the enforcement of this limit, then the limit is simply ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntaxpef-process corefile size limit

-Id per-process data-segment size limit [, warn-limit]

Set aper-processmaximum and an optional warnirtata-segment size limfor all pro-

cesses that constitute the running batch request. If any process comprising the running
request exceeds the maximym@r-process data-segment size-lifigt the request, then that
process is terminated by a signal chosen by the undethying implementation.

The ability to specify an optional warning limit exists for thod&#X operating systems that
supportper-process data-segment warning size limitghen a warning limit is exceeded, a
signal as determined by the underlylayIX implementation is delivered to the offending
process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@sab and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default-Id flag with its associated limit value(s) appears within the batch resergst file.

Not all UNIX implementations supporter-process data-segment size limit$ a batch
request specifies this limit, and the machine upon which the batch request is eventually run
does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntaxpef-process data-segment size
limit.

—If per-process permanent-file size limit [, warn-limit]
Set aper-processmaximum and an optional warniqggrmanent-file size limifor all pro-
cesses that constitute the running batch request. If any process comprising the running
request attempts to write to a permanent file such that the file size would increase beyond the
maximumper-process permanent-file size liffidr the request, then that process is termi-
nated by a signal chosen by the underlyimngXx implementation.

The ability to specify an optional warning limit exists for thod&#X operating systems that
supportper-process warning permanent-file size limi¥¥hen a warning limit is exceeded, a
signal as determined by the underlylayIX implementation is delivered to the offending
process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@sab and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default-If flag with its associated limit value(s) appears within the batch resgrgst file.

Not all UNIX implementations suppoger-process permanent-file size limitf a batch
request specifies this limit, and the machine upon which the batch request is eventually run
does not support the enforcement of this limit, then the limit is simply ignored.

At the time of this writing, the author was unaware of @NyX implementation that made a
distinction at thekernel level, betweerpermanent andtemporaryfiles. While it is cer-

tainly possible to constructpseudo-temporariile by first creating it, and then unlinking its
pathname, the disk space allocated for such a file will be allocated from the same pool of
disk space that all oth&mIX files are allocated from. Furthermore, such a file will be sub-
ject to the same quota enforcement mechanisms, if any are provided by the undg¥lying
implementation, that all othemIX files are created under.

For allUNIX implementations that do not support a distinction betypeemanentandtem-
porary files at thekernel level, this limit is interpreted aser-process file size limitvith
the wordpermanentremoved from the definition.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntaypef-process permanent-file size
limit.

-IF per-request permanent-file space limit [, warn-limit]
Set aper-requestmaximum and an optional warning cumulatpermanent-file space limit
for all processes that constitute the running batch request. If any process comprising the
running request attempts to write to a permanent file such that the file space consumed by all
permanent files opened for writing by all of the processes in the batch request, would
increase beyond the maximyper-request permanent-file space lirfot the request, then
all of the processes in the request will be terminated by a signal chosen by the underlying
UNIX implementation.

The ability to specify an optional warning limit exists for thod&#X operating systems that
supportper-request warning permanent-file space limi#&/hen such a warning limit is
exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlyingX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@satb and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default-IF flag with its associated limit value(s) appears within the batch resergst file.

Not all UNIX implementations suppoper-request permanent-file space limit a batch
request specifies this limit, and the machine upon which the batch request is eventually run
does not support the enforcement of this limit, then the limit is simply ignored.

At the time of this writing, the author was unaware of @NyX implementation that made a
distinction at thekernel level, betweerpermanent andtemporaryfiles. While it is cer-

tainly possible to constructpseudo-temporariile by first creating it, and then unlinking its
pathname, the disk space allocated for such a file will be allocated from the same pool of
disk space that all oth&mIX files are allocated from. Furthermore, such a file will be sub-
ject to the same quota enforcement mechanisms, if any are provided by the undg¥lying
implementation, that all othemIX files are created under.

For allUNIX implementations that do not support a distinction betypeemanentandtem-
porary files at thekernel level, this limit is interpreted aspeer-request file space limitvith
the wordpermanentremoved from the definition.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax p#raequest permanent-file
space limit

—Im per-process memory size limit [, warn-limit]
Set aper-procesgnaximum and an optional warnimgemory size limitor all processes that
constitute the running batch request. If any process comprising the running request exceeds
the maximunyper-process memory size linfdr the request, then that process is terminated
by a signal chosen by the underlyioyiX implementation.

The ability to specify an optional warning limit exists for thodéX operating systems that
supportper-process warning memory size limité/hen a warning limit is exceeded, a sig-
nal as determined by the underlyiayiX implementation is delivered to the offending pro-
cess.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@sab and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default—Im flag with its associated limit value(s) appears within the batch resgrést file.

Not all UNIX implementations suppoper-process memory size limit$f a batch request
specifies this limit, and the machine upon which the batch request is eventually run does not
support the enforcement of this limit, then the limit is simply ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntaxpef-process memory size limit

-IM per-request memory space limit [, warn-limit]
Set aper-requestmaximum and an optional warning cumulatmemory space limitor all
processes that constitute the running batch request. If the sum of all memory consumed by
all of the processes comprising the running request exceeds the mapanuequest mem-
ory space limitfor the request, then all of the processes in the request will be terminated by
a signal chosen by the underlyibylIX implementation.

The ability to specify an optional warning limit exists for thod&#X operating systems that
supportper-request warning memory size limitg/hen such a warning limit is exceeded, a
signal is delivered to one or more of the processes comprising the running request, depend-
ing upon the underlyingNIX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@sab and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default-IM flag with its associated limit value(s) appears within the batch resgrgst file.

Not all UNIX implementations suppoper-request memory space limitif a batch request
specifies this limit, and the machine upon which the batch request is eventually run does not
support the enforcement of this limit, then the limit is simply ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax pdraequest memory space
limit.

—In per-process nice value limit
Set aper-process nice valu@r all processes comprising the running batch request.

At present, alluNIX implementations support the use of an integer callediteevalue,
which determines thexecution-timepriority of a process relative to all other processes in
the system. By letting the user set a limit onriee value for all processes comprising the
running request, a user can cause a request to consume less (or mor&)Paf tbgource
presented by the execution machine.

This is particularly useful when a user wishes to execaelsintensive batch request on a
machine running interactive processes. By setting aelkeution-time prioritya user can

make a long running batch request give way to more interactive processes during the day-
time, while the coming of the nighttime hours with typically smaller process loads will allow
such a request to gain more and more ofthe resource. In this way, long running batch
requests can be polite to their more transient, interactive neighbor processes.

The only quirk associated with this flag results from the peculiar choicgcefvalues,
implemented by the standathIX implementations. In general, increasinglggativenice
values cause the relative execution priority of a procestease while increasinglyposi-
tive nice values causes the relative priorityderreasé Thus, anice valuelimit specifica-
tion of: "-In -10" is greedier thanrace valuelimit specification of: "-In 0.

Since varyingUNIX implementations often support a different finite rangaioé values
NQS allows the specification afice valuesthat can eventually turn out to be outside the
limits for the UNIX implementation running at thexecutionmachine. In such casesQsS
will simply bind the specifiedice valuelimit to within the necessary range as appropriate.

Lastly, anynice valuespecified by the use of this flag must be acceptable to the batch queue
in which the request is ultimately placed (see the section ertitw@dS for more informa-
tion).

—Is per-process stack-segment size limit [, warn-limit]
Set aper-processmaximum and an optional warnirgjack-segment size linfior all pro-
cesses that constitute the running batch request. If any process comprising the running
request exceeds the maximyner-process stack-segment size lifoitthe request, then that
process is terminated by a signal chosen by the undetying implementation.

The ability to specify an optional warning limit exists for thod&#X operating systems that
supportper-process warning stack-segment size limitéhen a warning limit is exceeded, a
signal as determined by the underlylayIX implementation is delivered to the offending
process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@sab and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default-Is flag with its associated limit value(s) appears within the batch resgrgst file.

Not all UNIX implementations suppoger-process stack-segment size limité a batch
request specifies this limit, and the machine upon which the batch request is eventually run
does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntaxpef-process stack-segment size
limit.

—It per-proces<PU time limit [, warn-limit]
Set aper-processmaximum and an optional warnir@PU time limit for all processes that
constitute the running batch request. If any process comprising the running request exceeds
the maximunper-procesCPU time limit for the request, then that process is terminated by
a signal chosen by the underlyibylIX implementation.

The ability to specify an optional warning limit exists for thod&X operating systems that
supportper-procesPU warning time limits When a warning limit is exceeded, a signal as
determined by the underlyingNIX implementation is delivered to the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@sab and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default-It flag with its associated limit value(s) appears within the batch resgrgst file.

Not all UNIX implementations suppoper-proces£PU time limits. If a batch request speci-
fies this limit, and the machine upon which the batch request is eventually run does not sup-
port the enforcement of this limit, then the limit is simply ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntaypef-procesPU time limit.

—IT per-requesCPUtime limit [, warn-limit]
Set aper-requesimaximum and an optional warning cumulatieu time limit for all of the
processes that constitute the running batch request. If the sum@®thénes consumed
by all of the processes in the batch request exceeds the mapienueguestCPU time limit
for the request, then all of the processes in the request will be terminated by a signal chosen
by the underlyindNIX implementation.

The ability to specify an optional warning limit exists for thod&#X operating systems that
supportper-requestPU warning time limits When such a warning limit is exceeded, a sig-

nal is delivered to one or more of the processes comprising the running request, depending
upon the underlyingyNIX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@sab and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default—IT flag with its associated limit value(s) appears within the batch resergst file.

Not all UNIX implementations suppoper-requesCPUtime limits If a batch request speci-
fies this limit, and the machine upon which the batch request is eventually run does not sup-
port the enforcement of this limit, then the limit is simply ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntaypef-sequesCPU time limit.

—Iv per-process temporary file size limit [, warn-limit]
Set aper-processmaximum and an optional warnittgmporary (volatile) file size limior
all processes that constitute the running batch request. If any process comprising the run-
ning request attempts to write tot@mporary file such that the file size would increase
beyond the maximurper-process temporary-file size linfiitr the request, then that process
is terminated by a signal chosen by the underlyiNg implementation.

The ability to specify an optional warning limit exists for thod&X operating systems that
supportper-process warning temporary-file size limit&/hen a warning limit is exceeded, a
signal as determined by the underlyldyIX implementation is delivered to the offending
process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@sab and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default-Iv flag with its associated limit value(s) appears within the batch rescrgst file.

At the time of this writing, n@WNIX operating system known to the author supported a dis-
tinction at thekernel level betweermpermanentand temporary files Certainly, apseudo-
temporaryfile can be constructed by creating it, and then unlinking its pathname. However,
the file space allocated for such a file will be allocated from the same pool of disk space that
all otherUNIX files are allocated from.

Until a mechanism is implemented in tkernel that knows aboupermanentand tempo-
rary files, this limit cannot be supported in the sense most useful for batch requests, namely
the strict enforcement of disk quotas f@ermanentersusemporaryfiles.

Until such a time, this limit will simply be ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntapef-process temporary-file size
limit.

-V per-request temporary file space limit [, warn-limit]
Set aper-requestmaximum and an optional warning cumulatiemporary (volatile) file
space limitfor all processes that constitute the running batch request. If any process com-
prising the running request attempts to write teraporaryfile such that the file space con-
sumed by altemporaryfiles opened for writing by all of the processes in the batch request
would increase beyond the maximyp@r-request temporary-file space linfitr the request,
then all of the processes in the request will be terminated by a signal chosen by the underly-
ing UNIX implementation.

The ability to specify an optional warning limit exists for thod&#X operating systems that
support per-request warning temporary-file space limit&/hen such a warning limit is
exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlyingX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped suchQ@sab and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default—IV flag with its associated limit value(s) appears within the batch resergst file.

At the time of this writing, n@WNIX operating system known to the author supported a dis-
tinction at thekernel level betweermpermanentand temporary files Certainly, apseudo-
temporaryfile can be constructed by creating it, and then unlinking its pathname. However,
the file space allocated for such a file will be allocated from the same pool of disk space that
all otherUNIX files are allocated from.

Until a mechanism is implemented in tkernel that knows aboupermanentand tempo-
rary files, this limit cannot be supported in the sense most useful for batch requests, namely
the strict enforcement of disk quotas p@rmanentersusemporaryfiles.

Until such a time, this limit will simply be ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntaxevhporary-file space limit

—lw per-process working set size limit

-mb

-me

Set aper-processnaximumworking set size limifor all processes that constitute the run-
ning batch request.

Not all UNIX implementations suppoper-process working set size limitend such a limit

only makes sense in the context of a paged virtual memory machine. If a batch request spec-
ifies this limit, and the machine upon which the batch request is eventually run does not sup-
port the enforcement of this limit, then the limit is simply ignored.

See the section entitledMITS for more information on the implementation of batch
request limits, and for a description of the precise syntaxpefrgprocess working set size

limit.

Send mail to the user on the originating machine when the request begins execution. If the
—-mu flag is also present, then mail is sent to the user specified femihdag instead of to

the invoking user.

Send mail to the user on the originating machine when the request has ended execution. If
the—mu flag is also present, then mail is sent to the user specified fenthdlag instead
of to the invoking user.

—mu user-name

-nr

Specify that any mail concerning the request should be delivered to theseserame
User-name may be formatted either asser (containing no ‘@’ characters), or as
user@machinge In the absence of this flag, any mail concerning the request will be sent to
the invoker on the originating machine.

Declare that the request is non-restartable. If this flag is specified, then the request will not
be restarted biQS upon system boot if the request was running at the time mQ&shut-
down or system crash.

By default,NQSassumes that all requests are restartable, with the caveat that it is the respon-
sibility of the user to ensure that the request will execute correctly if restarted, by the use of
appropriate programming techniques.

Requests that are not running are always preserved across host crash@s simatdowns
for later requeueing, with or without this flag.

WhenNQS s shutdown via an operator command toghegr(1M) NQS control program, a
SIGTERM signal is sent to all processes comprising all runhNQg requests on the local

host, and all queuedQsS requests are barred from beginning execution. After a finite num-
ber of seconds have elapsed (typically sixty, but this value can be overridden by the opera-
tor), all remaining processes comprising all remaining runNiQg requests are killed by

the signal SIGKILL .

For anNQSrequest to be properly restarted afteN&s shutdown, the-nr flag must not be
specified, and the spawned batch request shell must igi®@FERM signals (which is done

by default). The spawned batch request shell must also not exit before th&iGiKEIL

arrives. Since the batch request shell is simply spawning commands and programs, waiting
for their completion, this implies that the commands and programs being executed by the
batch request shell must also be immunSI®TERM signals, saving state as appropriate
before being killed by the fin@IGKILL signal.

See theCAVEATS section below for more discussion concerning the restartability of batch
requests.

-0 [machine:][[/]path/] stdout-filename

Direct output generated by the batch request which is sent &idbetfile to the named
[machine:][[/]path/] stdout-filename

The brackets "[" and "]" enclose optional portions of stdout destinationmachine path,
andstdout-filename

10

—p priority

If no explicit machinedestination is specified, then the destination machine defaults to the
machine that originated the batch request, or to the machine that will eventually run the
request, depending on the respective absence, or presence ki frag.

If no machinedestination is specified, and the path/filename does not begin with a "/, then
the current working directory is prepended to create a fully qualified path name, provided
that the—ko (keep stdout) flag is also absent. In all other cases, any partial path/filename is
interpreted relative to the user’s home directory orstleutdestination machine.

If no —o [machine:][[/]path/] stdout-filenameflag is specified, then adtdoutoutput for the

batch request is sent to the file whose name consists of the first seven characters of the
request-namédollowed by the characters: ".0", followed by the request sequence number
portion of therequest-iddiscussed below. In the absence of-tke flag, this defaulstdout

output file will be placed on the machine that originated the batch request in the current
working directory, as defined when the batch request was first submitted. Otherwise, the file
will be placed in the user’'s home directory on the execution machine.

Explicitly assign arintra-queuepriority to the request. The specifipdiority must be an
integer, and must be in the range [0..63], inclusive. A value of 63 defines the higtzest
gueuerequest priority, while a value of O defines the lowest. This priority doesleter-

mine the execution priority of the request. This priority is only used to determine the rela-
tive ordering of requests within a queue.

When a request is added to a queue, it is placed at a specific position within the queue such
that it appears ahead of all existing requests whose priority is less than the priority of the
new request. Similarly, all requests with a higher priority will remain ahead of the new
request when the queueing process is complete. When the priority of the new request is
equal to the priority of an existing request, the existing request takes precedence over the
new request.

If no intra-queuepriority is chosen by the user, thR@S assigns a default value.

-g queue-name

Specify the queue to which the batch request is to be submitted —¢f queue-namepeci-
fication is given, then the user’'s environment variable set is searched for the variable:
QSUB_QUEUE. If this environment variable is found, then the character string value for
QSUB_QUEUEIs presumed to hame the queue to which the request should be submitted. If
the QSUB_QUEUE environment variable is not found, then the request will be submitted to
the default batch request queifejefined by the local system administrator. Otherwise, the
request cannot be queued, and an appropriate error message is displayed to this effect.

—r request-name

-re

Assign the specifiedequest-namédo the request. In the absence of an explictequest-
name specification, theequest-namadefaults to the name of treeript file (leading path
name removed) given on the command line. Ifsooipt file was given, then the default
request-namassigned to the request33DIN.

In all cases, if theequest-namds found to begin with a digit, then the character 'R’ is
prepended to preventraquest-namdrom beginning with a digit. Allrequest-namesire
truncated to a maximum length of 15 characters.

By default, all output generated by a batch request sent tidbefile is temporarily into a

file residing in a protected directory on the machine that executes the request. When the
batch request completes execution, this file is then spooled to its final destination, possibly
on a remote machine.

This default spooling of thstderr output file is done to reduce the network traffic costs
incurred by the submitter (owner) of a batch request which is to retwgtués output to a
remote machine upon completion. In some cases, this behavior is not desired. If it is neces-
sary to override this behavior, then thee flag can be specified which says tisaderr

11

—-ro

output produced by the request is toitmenediatelywritten to the final destination file, as
output is generated, no matter what the networking cost.

Circumstances may not allow a giveiQS implementation to support this flag, in which
case it will be ignored, and tretderr output file will simply be spooled as it ordinarily
would without this flag.

By default, all output generated by a batch request sent tetdbet file is temporarily
spooled into a file residing in a protected directory on the machine that executes the request.
When the batch request completes execution, this file is then spooled to its final destination,
possibly on a remote machine.

This default spooling of thetdout output file is done to reduce the network traffic costs
incurred by the submitter (owner) of a batch request which is to retwstudstoutput to a
remote machine upon completion. In some cases, this behavior is not desired. If it is neces-
sary to override this behavior, then th® flag can be specified which says thatoutout-

put produced by the request is toilmenediatelywritten to the final destination file, as out-

put is generated, no matter what the networking cost.

Circumstances may not allow a giveiQS implementation to support this flag, in which
case it will be ignored, and tredoutoutput file will simply be spooled as it ordinarily
would without this flag.

—-sshell-name

X

Specify the absolute path name of the shell which will be used to interpret the batch request
script. This flag unconditionally overrides asfell strategyconfigured on the execution
machine for selecting which shell to spawn in order to interpret the batch request script.

In the absence of this flag, tN@S system at the execution machine will use one of three (3)
distinctshell choice strategiefor the execution of the batch request. Any one of the three
strategies can be configured by a system administrator foNezg&imachine.

The three shell strategies are called:

fixed,
free, and
login.

These shell strategies respectively cause the confiinestishell to be exec’'d to interpret

all batch requests, cause the user’s login shell as defined in the password file to be exec'd
which in turn chooses and spawns the appropriate shell for interpreting the batch request
script, or cause only the user’s login shell to be exec'd to interpret the script.

A shell strategy ofixed means that the same shell (as configured by the system administra-
tor), will be used to executdl batch requests.

A shell strategy offree will run the batch request scripiactly as would an interactive
invocation of the script, and is the defau@S shell strategy.

The strategies dixed andlogin exist for host systems that are short on available free pro-
cesses. In these two strategies, a single shell is exec'd, and that same shell is the shell that
executes all of the commands in the batch request script.

Theshell strategyconfigured for a particula¥QS system can be determined by thienit(1)
command.

Export all environment variables. When a batch request is submitted, the current values of
the environment variableBtOME , SHELL , PATH, LOGNAME (not all systems)JSER (hot

all systems)MAIL , andTZ are saved for later recreation when the batch request is spawned,
as the respective environment variabl€SUB_HOME, QSUB_SHELL, QSUB_PATH,
QSUB_LOGNAME, QSUB_USER QSUB_MAIL, andQSUB_TZ. Unless the-x flag is speci-

fied, no other environment variables will be exported from the originating host for the batch

12

request. If the-x flag option is specified, then all remaining environment variables whose
names do not conflict with the automatically exported variables, are also exported with the
request. These additional environment variables will be recreated under the same name
when the batch request is spawned.

Submit the batch request silently. If the request is submitted successfully, then no messages
are displayed indicating this fact. Error messages will, however, always be displayed.

If the batch request is successfully submitted and-thigag has not been specified, teguest-idof the
request is displayed to the user.refjuest-idis always of the formsegno .hostnamehereseqgnorefers to
the sequence number assigned to the requasQByandhostnamerefers to the name of originating local
machine. This identifier is used throughol@S to uniquely identify the request, no matter where it is in

the network.

The following events take place in the following order wheN@s batchrequest is spawned:

The process that will become the head ofgieeess grougor all processes comprising the
batch request is created KPS

Resource limits are enforced.

The real and effective group-id of the process is set to the group-id as defined in the local
password file for the request owner.

The real and effective user-id of the process is set to the real user-id of the batch request
owner.

The user file creation mask is set to the value that the user had on the originating machine
when the batch request was first submitted.

It the user explicitly specified a shell by use of Hisdlag (discussed above), then that user-
specified shell is chosen as the shell that will be used to execute the batch request script.
Otherwise, a shell is chosen based uponstiedl strategyas configured for the localQSs

system (see the earlier discussion of-thélag for a description of the possitdbell strate-
giesthat can be configured for &S system).

The environment variables 6fOME, SHELL, PATH, LOGNAME (not all systems)USER
(not all systems), anslAIL are set from the user’s password file entry, as though the user
had logged directly into the execution machine.

The environment stringENVIRONMENT=BATCH is added to the environment so that shell
scripts (and the user’profile (Bourne shell or .cshrcand.login (C-shell) scripts), can test

for batch request execution when appropriate, and not (for example) perform any setting of
terminal characteristics, since a batch request is not connected to an input terminal.

The environment variables @dSUB_WORKDIR, QSUB_HOST, QSUB_REQNAME, and
QSUB_REQID are added to the environment. These environment variables equate to the
obvious respective strings of the working directory at the time that the request was submit-
ted, the name of the originating host, the name of the request, and the requestid

All of the remaining environment variables saved for recreation when the batch request is
spawned are added at this point to the environment. When a batch request is initially sub-
mitted, the current values of the environment varialtd€svE , SHELL , PATH, LOGNAME

(not all systems)JSER (not all systemsMAIL , andTZ are saved for later recreation when

the batch request is spawned. When recreated however, these variables are added to the
environment under the respective nam@SUB_HOME, QSUB_SHELL, QSUB_PATH,
QSUB_LOGNAME, QSUB_USER QSUB_MAIL, andQSUB_TZ, to avoid the obvious con-

flict with the local version of these environment variables. Additionally, all environment
variables exported from the originating host by tixeoption are added to the environment

at this time.

The current working directory is then set to the user’s home directory on the execution
machine, and the chosen shell is exec'd to execute the batch request script with the

13

environment as constructed in the steps outlined above.

In all cases, the chosen shell is exec’d as though it weredireshell. If theBourne shell is chosen to
execute the script, then thgrofile file is read. If theC-shellis chosen, then theshrc and.login scripts
are read.

If the user did not specify a specific shell for the batch requestNii8rchooses which shell should be
used to execute the shell script, based orsliedl strategyas configured by the system administrator (see
the earlier discussion of thes flag).

In such a case,feee shell strategy instructsQSto execute the login shell for the user (as configured in the
password file). The login shell is in turn instructed to examine the shell script file, and fork anothafr shell
the appropriate typéo interpret the shell script, behaviegactlyas an interactive invocation of the script.

Otherwise no additional shell is spawned, and the cHosegor login shell sequentially executes the com-
mands contained in the shell script file until completion of the batch request.

QUEUE TYPES
NQS supports four different queue types that serve to provide four very different functions. These four
gueue types are known latch, device pipe, andnetwork

The queue type dfatchcan only be used to execiM@Sbatch requests Only NQSbatch requestsreated
by thegsul(1) command can be placed ibatch queue

The queue type afevicecan only be used to execlN@S device requestsOnly NQS device requestsre-
ated by theypr(1) command can be placed id@vice queue

Queues of typpipe are used to sendQSrequests to othgripe queues, or to request destination queues of
type batch or device as appropriate for the request type. In gen@ipk queuesin combination withnet-
work queuesact as the mechanism the@S uses to transport botbatch and devicerequests to distant
gueues on other remote machines. It is also perfectly legalipeaqueudo transport requests to queues
on thesamemachine.

When apipe queues defined, it is given destination setvhich defines the set of possible destination
gueues for requests entered in hipe queue In this manner, it is possible forbetch or devicerequest to

pass through many pipe queues on its way to its ultimate destination, which must eventually be a queue of
typebatch or device(matching the request type).

Eachpipe queuehas an associategrver. For each request handled bpipe queuethe associated server
is spawned which must select a queue destination for the request being handled, based on the characteristics
of the request, and upon the characteristics of each queuediestireation setlefined for the pipe queue.

Since a different server can be configured for each pipe queudjateitdand device queues can be
endowed with th@ipeonlyattribute that will only admit requests queued via angpie queueit is pos-

sible for respectivéiQSinstallations to uspipe queuess arequest classnechanism, placing requests that

ask for different resource allocations in different queues, each of which can have different associated limits
and priorities.

It is also completely possible forpgpe queue servemwhen handling a request, to discover thatiastina-

tion queuewill accept the request, for various reasons which can include insufficient resource limits to
execute the request, or a lack of a corresponding account or privilege for queueing at a remote queue. In
such circumstances, the request will be deleted, and the user will be notified by nrmadi{EB@.

The queue type dfietwork as alluded to earlier, is implicitly used Ipjpe queues to passQS requests
between machines, and is also used to handle queued file transfer operations.

QUEUE ACCESS
NQS supports queue access restrictions. For each queue of queue type otihetwloek access may be
eitherunrestrictedor restricted If access iqunrestricted any request may enter the queue. If access is
restricted a request can only enter the queue if the requester or the requester’s login group has been given
access to that queue (sgmgr(1M)). Requests submitted by root are an exception; they are always
gueued, even if root has not explicitly been given access.

14

LIMITS

Usegstat(1) to determine who has access to a particular queue.

NQS supports many batch request resource limit types that can be applied@sdmatch request. The
existence of configurable resource limits allowN&$s user to set resource limits within which his or her
request must execute. In many instances, smaller limit values can result in a more favorable scheduling
policy for a batch request.

The syntax used to specifylimit-value for one of thdimit-flags (~llimit-letter-typé), is quite flexible, and
describes values for two general limit categories. These two general categories respectively deal with time
related limits, and those limits are not time related.

For finite CPUtime limits, thelimit-value is expressed in the reasonably obvious format:
[[hours :] minutes :] seconds [.milliseconds]

Whitespace can appear anywhere between the principal tokens, with the exception that no whitespace can
appear around the decimal point.

Example timdimit-values are:

1234 : 58 : 21.29 - 1234 hrs 58 mins 21.290 secs

12345 — 12345 seconds
121.1 —121.100 seconds
59:01 - 59 minutes and 1 second

For all otherfinite limits (with the exclusion of theice limit-value—In), the acceptable syntax is:
fraction [units]

or
integer [.fraction] [units]

where theinteger andfraction tokens represent strings of up to eight decimal digits, denoting the obvious
values. In both cases, thaits of allocation may also be specified as one of the case insensitive strings:

b - bytes

w - words

kb - kilobytes (2710 bytes)
kw — kilowords (2710 words)
mb — megabytes (2720 bytes)
mw — megawords (2720 words)
gb - gigabytes (2730 bytes)
gw - gigawords (2730 words)

In the absence of amnits specification, the units dfytesare assumed.

For all limit types with the exception of timéce limit-value(—In), it is possible to state that no limit should

be applied. This is done by specifyindjrait-value of "unlimited", or any initial substring thereof. When-

ever aninfinite limit-valueis specified for a particular resource type, then the batch request operates as
though no explicit limits have been placed upon the corresponding resource, other than by the limitations of
the physical hardware involved.

The complications caused bgtch requestesource limits first show up when queueinigaéch requestn
abatch queue This operation is described in the following paragraphs.

If a batch request specifies a limit that cannot be enforced by the undemyixgmplementation, then the
limit is simply ignored, and the batch request will operate as though there were no limit (other than the

15

obvious physical maximums), placed upon that resource type. (Sekntit€¢l) command to find out what
limits are supported by a given machine.)

For each remainingjnite limit that can be supported by the underlyligiX implementation that isot a
CPU time-limit or UNIX execution-time nice-value-limithe limit-value is internally converted to the units
of bytesor words, whichever is more appropriate for the underlying machine architecture.

As an example, per-process memory size limit valoE321 megabytes would be interpreted as 321 x 2°20
bytes, provided that the underlying machine architecture was capable of directly addressing single bytes.
Thus the original limitoefficientof 321 would become 321 x 2°20. On a machine that was only capable of
addressing words, the appropriate conversion of 321 x ByR&s/ #of-bytes-per-wordwould be per-
formed.

If the result of such a conversion would cause overflow when the coefficient was represergaghed-a

long integeron the supporting hardware, then the coefficient is replaced with the coefficient dft-bf 2°
whereN is equal to the number of bits of precision in a signed long integer. For typical 32-bit machines,
this default extreme limitvould therefore be 31-1 bytes. For word addressable machines in the super-
computer class supporting 64-bit long integersdiffault extreme limitvould be 263-1 words.

Lastly, some implementations ONIX reserve coefficients of the form:N1 as synonymous with infinity,
meaning no limit is to be applied. For suohNIX implementationsNQS further decrements theefault
extreme limitso as not to imply infinity.

The identical internal conversion process as described in the preceding paragraphs is also performed for
eachfinite limit-valueconfigured for a particular batch queue usingaimgr(1M) program.

After all of the applicabldimit-valueshave been converted as described above, each such rebuiiing
valueis then compared against the correspontimg-value as configured for the destination batch queue.

If, for every type of limit, the batch quelienit-value is greater thanor equal tothe corresponding batch
requestimit-value, then the request can be successfully queued, provided that no other anomalous condi-
tions occur. For requestfinity limit-values the corresponding quelienit-value must also be configured

as infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism, either by a
direct use of thgsub(1)command, or by the indirect placement of a batch request into a batch queue via a
pipe queue. It is impossible for a batch request to be queued MQ&batch queue ifny of these
resource limit checks fail.

Finally, if a request fails to specifylanit-value for a resource limit type that is supported on the execution
machine, then the correspondiimit-value configured for the destination queue becomedithie-value
for the unspecified request limit.

Upon the successful queueing of a request in a batch queue, the set of limits under which the request will
execute is frozen, and will not be modified by subsegaef(1M) commands that alter the limits of the
containing batch queue.

CAVEATS
When anNQS batch request is spawned, a newcess-grougds established such that all processes of the
request exist in the sanpeocess-group If the qdel(1) command is used to send a signal toN@s batch
request, the signal is sent to all processes of the request in the preatss$-group However, should one
or more processes of the request choose to successfully exemifgig(2) system call, then such pro-
cesses wilhot receive any signals sent by theéel(1) command. This can lead to "rogue" requests whose
constituent processes must be killed by other means such k#l {he command. HoweveNQS takes
advantage of anyNIX implementations that provide a mechanism of "locking" a process, and all of its
subsequent children in a particufaocess-group For suchUNIX implementations, this problem does not
occur.

It is extremely wise for all processes of QS request to catch an§IGTERM signals. By default, the
receipt of aSSIGTERM signal causes the receiving process to ti@S sends &IGTERM signal to all pro-
cesses in the establishpobcess-grougdor a batch request as a notification that the request should be pre-
pared to be killed, either because ofadnort queuecommand issued by an operator usingghegr(1M)

16

program, or because it is necessary to shutdé@®and all running requests as part of a general shutdown
procedure of the local host.

It must be understood that the spawshkdll ignoresSIGTERM signals. If the current immediate child of

the shell does not ignore or catIGTERM signals, then it will be killed by the receipt of such, and the
shell will go on to execute the next command from the script (if there is one). In any case, the shell will not
be killed by theSIGTERM signal, though the executing command will have been killed.

After receiving aSIGTERM signal delivered fronNQS, a process of a batch request typically has sixty sec-
onds to get its "house in order" before receivir®iGKILL signal (though the sixty second duration can be
changed by the operator).

All batch requests terminated because of an opexgieshutdown requeshat did not specify thenr flag

are considered restartable KQS, and are requeued (provided that the batch request shell process is still
present at the time of tHRGKILL signal broadcast as discussed above), so that WQeris rebooted,

such batch requests will be respawned to continue execution. It is however, up to the user to make the
request restartable by the appropriate programming techniq@ssimply spawns the request again as
though it were being spawned for the first time.

Upon completion of a batch request, a mail message can be sent to the submitter (see the discussion of the
—-me flag above). In many instances, the completion code of the sp@mede or C-Shellwill be dis-
played. This is merely the value returned by the shell througéxit{&) system call.

Lastly, there is no good way to echo commands executed by unmodified versionBotithe and C

shells. While theC-shellcan be spawned in such a fashion as to echo the commands it executes, it is often
very difficult to tell an echoed command from genuine output produced by the batch request, because no
"magic" character such as a '$’ is displayed in front of the echoed commandBotih&e shell does not
support any echo option whatsoever.

Thus, one of the better ways to write the shell script for a batch request is to place appropriate lines in the
shell script of the form:

echo "explanatory-message”

where the echoed message should be a meaningful message chosen by the user.

LIMITATIONS AND IMPLEMENTATION NOTES
Network queues have not yet been implemented.

In the present implementation, it m®t possible to see thstderr or stdoutfiles produced by the batch
request while the requestrisnning, unless there and-ro flags have been respectively specified.

Lastly, the strange@$' syntax used to introduoembedded argumerfitags was chosen because it rarely
conflicts with anything else present in a shell script fN@S users with better minds will (rightly) suggest
improved alternatives to this convention.

SEE ALSO
gdel(1), gdev(1), glimit(1), gpr(1), gstat(1), gmgr(1M), plus mail(1), kill(2), setpgrp(2), signal(2)

NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 - Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

17

