
LABORATORI NAZIONALI DI FRASCATI
SIS-Pubblicazioni

LNF-96/006(NT)
6 Febbraio 1996

UNIX at LNF: Users Guide
Version 2.0

Massimo Carboni

INFN-Laboratori Nazionali di Frascati,

P.O.Box 13, I-00044 Frascati (ROMA) Italia

Informations above this Document

UNIX at LNF { Users Guide

Computing Service Support

This document is written using a local version of cernman.sty under LaTEX.

This document will be frequently updated. The latest copy can be found under
http://www.lnf.infn.it/~carboni/unixguide/unixguide.ps.gz

Requests for information should be addressed to:

Computing Service

Laboratori Nazionali di Frascati

Instituto Nazionale di Fisica Nucleare

Via Enrico Fermi, 40

Frascati ROMA Italy

Tel. +39 6 9403 2349

Fax. +39 6 9403 2372

DECnet: VAXLNF::CARBONI (node 39.5)

Internet: CARBONI@LNF.INFN.IT

Trademark notice: All trademarks appearing in this guide are acknowledged
as such.

Contact Person: Massimo Carboni/Computing Service

Table of Contents

1 Introduction 1

2 How To Get Started 2

2.1 How to Obtain an Account : 2

2.2 Login Via Telnet : 2

2.3 Passwords : 3

2.4 Shell Environment : 3

3 System Environment 5

3.1 Home Directory Space and File Backup : 5

3.2 Message Of The Day : 5

3.3 VAX and UNIX news : 5

3.4 Printing : 6

3.5 Scratch Disk Space : 7

3.6 Backup your Data : 7

4 LNF Programming Environment 10

4.1 Fortran77 Compiler : 10

4.2 C Compiler : 11

4.3 CERNLIB : 11

4.4 File Input/Output : 11

4.5 Debugging Program : 12

5 Batch Job Submission with NQS 14

5.1 NQS - An Overview : 14

5.2 NQS Commands : 14

5.3 LNF UNIX Batch Queues : 15

5.4 Working Space : 15

5.5 Outputs : 16

5.6 Job Limits : 16

5.7 Example: NQS Job Script : 16

6 NQS++ Job Submission 18

6.1 Setting the Preferred NQS Batch Server with qset : : : : : : : : : : : : : : 18

6.2 Write NQS script.job machine dependent. : : : : : : : : : : : : : : : : : : 19

A Other Informations 21

A.1 Hardware Con�guration : 21

B Selection of man pages 24

Chapter 1: Introduction

This User's Guide describe the UNIX con�guration available at LNF, introduced as a
central facilities since December 1992. The original con�guration was based only on
HP 9000/7XX with HP-UX Operating Systems, now the new Digital with operating sys-
tem DEC-OSF/1 are also included.

Presently the LNF UNIX con�guration is based on 11 Hewlett Packard Workstation with
Batch Server functionality, one HP 9000/755 with 128 MB of Memory dedicated for IN-
TERACTIVE use. Since June 1995 the Computing Service also support the DEC system
with the new Alpha Processor and DEC-OSF/1 Operating System, this systems can be
used for intensive I/O tasks, like data analysis.

This guide gives an overview of the LNF UNIX service and describes the procedure for job
submission using Network Queueing System, NQS. More detailed description of the local
commands are given in the online man pages. In addition, up to now only for HP-UX, a
complete set of manuals is available on line via lrom command, which accesses a CDROM
over the network.

In case of any trouble about the usage of the LNF UNIX system please contact:

carboni@lnf.infn.it

1

Chapter 2: How To Get Started

2.1 How to Obtain an Account

If you want to work with this LNF UNIX system, contact the system manager of this
system to get an account:

Massimo Carboni, Computing Center room 4

carboni@hpserver.lnf.infn.it

2.2 Login Via Telnet

If you want to access an HP workstation, e.g. hpserver.lnf.infn.it enter the command
telnet. Some messages appear, followed by the login prompt, enter your account name,
and the password will be prompted.

Login on the LNF Hewlett Packard ROOTServer

% telnet hpserver.lnf.infn.it

Trying... Connected to hpserver.lnf.infn.it.

Escape character is '^]'.

HP-UX hpserver A.09.05 A 9000/755 (ttysa)

login: carboni

password:

Be carefull when entering your account name and password, because UNIX is case sen-
sitive! Upper and Lower case letters have a di�erent meaning.

After your login, the system asks for your terminal type. With the terminal type you de-
scribe the terminal hardware or the emulator program you are using. The most important
types of terminal used are:

vt100 Digital Terminal
vt220 Digital Terminal
xterm X-Window Terminal Emulator
hpterm HP Terminal Emulator

If you work in a UNIX environment with a wrong terminal type setting, you should keep
in mind that not all keys of your keyboard may be available in the way you expect. Then
you would correct your terminal type with the export command. For example, if you
want to correct your terminal type to vt100, you have to enter:

export TERM=vt220 Bourne/Korn-Shell users
setenv TERM vt220 C-shell/T-C-shell users

2

- 3 -

2.3 Passwords

Your account is registered in a NIS (Network Information System) environment. You can
change your password using the command passwd (a link to /usr/bin/yppasswd).
The procedure to change the NIS password is the following:

Changing NIS user password.

% passwd

Changing NIS password for carboni...

Old NIS password:

New password:

Retype new password:

You will be prompted for your Old NIS password. Then you will be prompted to enter
and re-enter your new password. The re-entered password must match the �rst entry.

There is not password ageing on this system but users are recomendend to use non-trivial
passwords. A password must meet four criteria to be valid:

� It must contain at least six characters.

� At least two characters must be alphabetic.

� At least one character must be a number (0-9) or a special character (/,?,! or
other punctuation mark.)

� It must di�er from your previous password by at least three characters.

If you forget your password, please contact your system administrator for a new one.

2.4 Shell Environment

The shell interprets the text you type, and the keys you press, in order to direct the
operating system to take the appropriate action. A shell can also be used as a program-
ming language. You may customize your session through the shell using hidden �les. The
system executes these �les at login time. The name of these �les and the syntax depends
on the shell that you use:

.profile Used by sh,ksh at login time

.kshrc Used by sh,ksh

.login Used by csh,tcsh at login time

.cshrc Used by csh,tcsh

.tcshrc Used by tcsh

The default shell at LNF is the tcsh shell. At login time the system executes the following
user's �les if exist under their $HOME directory:

Here is an example of the standard LNF .login and .tcshrc1 �le:

1Please verify your con�guration �les, if di�er modify it

- 4 -

UNIX LNF login �le: .login

if ($?ENVIRONMENT) then

if ("$ENVIRONMENT" == "BATCH") exit

endif

#

Execute SYSTEM level commands if file exists and is readable

#

if (-r /usr/local/etc/system_login) source /usr/local/etc/system_login

#

Execute GROUP level commands if a group file exists

#

if (-r /u1/$group/group_login) source /u1/$group/group_login

#

Execute USER level commands

#

The default terminal is: TERM = (xterm), if you want a di�erent default terminal like
vt220 you can modify your .login �le as follow:

Login �le: .login with di�erent DEFTERM

.

.

setenv DEFTERM vt220

if (-r /usr/local/etc/system_login) source /usr/local/etc/system_login

.

UNIX LNF Example of .tcshrc �le

if ($?ENVIRONMENT) then

if ("$ENVIRONMENT" == "BATCH") exit

endif

#

Execute SYSTEM level commands if file exists and is readable

#

if (-r /usr/local/etc/system_cshrc) source /usr/local/etc/system_cshrc

#

Execute GROUP level commands if a group file exists and is readable

#

if (-r /u1/$group/group_cshrc) source /u1/$group/group_cshrc

#

Execute USER level commands

#

set path = ($path /usr/local/bin/X11 .)

#

set savehist=50 # number to save across sessions.

set prompt="%m:%~%B%#%b " # new tcsh prompt

set ignoreeof # no logout with <Ctrl-D> set notify set filec

set autolist # completion function

#

Chapter 3: System Environment

3.1 Home Directory Space and File Backup

The user home directory is:

/u1/username

Disk quotas on home directories are enforced at user level. To display your current disk
quota use (in 1024 byte blocks) this command:

quota -v

To change your disk quota space, contact the UNIX system administrator.

Home directories are backed up on DAT tapes at a regular intervals. Full backups are
made weekly and daily incremental backup is under testing. Contact the UNIX System
Administrator if you need to recover a �le.

3.2 Message Of The Day

News and system announcements on the LNF UNIX cluster are made using the message
of the day �le /etc/motd which is displayed at each login. The basic /etc/motd �le list a
series of items and further information on each item can be obtained by typing:

less /etc/motd.details

followed by '/-X-' where X is the letter attached to a speci�c item.

3.3 VAX and UNIX news

General UNIX and VAX infos can be read directly from UNIX system, using the local
news readers. The most popular news reader are pine from terminal and mxrn from
X-Window Terminal. Please read the local UNIX man pages to get more informations
about those commands.

The relative UNIX folder are:

The LNF UNIX folders are:

lnf.hp: Information about HP at LNF at LNF

lnf.osf: Information about Digital Unix at LNF

lnf.unix: Information about Unix at LNF

You can read netnews within Emacs using the GNUS package. GNUS uses the NNTP
protocol to communicate with a news server, which is a repository of news articles:

emacs -f gnus

5

- 6 -

3.4 Printing

This system doesn't have directly connected printers, but makes use of printers de�ned
on VMS system. To print a �le, type the command:

Print on HP-UX

% lp -d printer filename

Print on DEC-OSF/1

% lpr -P printer filename

On our systems is also installed a general purpose command xprint. This is a Bourne-
shell script in /usr/local/bin and provides the access to the printers de�ned before,
where the printer can be passed as a command line parameter:

xprint [-q printer] [-s] [-n] [-2] [-l## -p##] [-v] [-h] [-H] files.

Options Description:

-q printer Postscript Printer Name

lps post points to 3 di�erent postscript printers inside the printer
room, near the computing room, A4 format, (One sheet
per page).
LPS - LPS2 - LPS17

lps post2 points to 2 di�erent postscript printers inside the printer
room, near the computing room, A4 format, (Two sheet
per page).
LPS - LPS2

lps post a3 points to 2 di�erent postscript printers inside the printer
room, near the computing room, A3 format, (One sheet
per page).
LPS - LPS2

lps17 post points to the 600 dpi resolution postscript printer inside the
printer room, near the computing room, A4 format, (One
sheet per page).
LPS17

lnf psc points to the postscript color printer inside the computing
room, A4 format, (One sheet per page).
PSC

-s Print One Side per Sheet

-n Don't Print the Cover Page

-2 Two Pages per Side

-p### Print in Portrait, ### Allowed is 80 or 132 Characters

-l### Print in Landscape, ### Allowed is 80 or 132 Characters

-h Print the Help Message

-v Print the Xprint Program Version Number

- 7 -

-H Give the Updated Printer List

files Print any File Format Like: text, dvi, ps, etc.

The default printer is lps post2 Alternatively, the environment variable XPRINTER can be
set to indicate your most commonly used printer. For example:

setenv XPRINTER lps17 post

This command line parameter overrides the XPRINTER value and it can be included in
.cshrc.

For more information:

man xprint

or read the man pages at the end of this guide.

3.5 Scratch Disk Space

Temporary disk space has been re-organised. Now two scratch areas are available for
end-users:

/scrtch1: 8.6 GBytes
/scrtch2: 8.6 GBytes

Everybody is able to create his/her login temporary top-level directory in:

/scrtch[1j2]/$group

where 'group' is the user's corresponding group. This two areas don't have quotas, users
are asked to delete unwanted �les themselves. In addition garbage collection has been
enforced on the two areas.

3.6 Backup your Data

There are many di�erent ways to save data on UNIX system. The most common com-
mands are:

dd, dump, cpio, tar, cp, ...

Using those commands it is possible to save and restore data from (to) any UNIX system
you use.

The Computing Service had installed also on their VMS system the tar command. In
this way everybody can exchange data from UNIX and VMS systems.

The Computing Service supports on each system available at LNF the tar command on
magnetic tape 90m with capacity 2.0GB, without any hardware/software compression
facilities.

- 8 -

Here is the list of the tapes available and systems where the tapes are connected:

UNIX: Tape device �le

hpkloe01: /dev/rmt/0m (rewind)

hpmac1: /dev/rmt/0m (rewind)

VMS: Tape device

VXLNFA: 1MUA7:

1MUA8:

1MUA9:

AXLNF1: AXLNF1$MKC300:

The Tar command usage is very similar on UNIX and VAX. Infact you can create tar on
disk and on tape, in the follow there are some examples that show the general tar usage:

UNIX: save scratch �les

% cd /scrtch1/users/carboni

% tar cvf /dev/rmt/0m nutpla/

% mt -f /dev/rmt/0m offl

VMS: save scratch �les

$ SET DEF SCRTCH1:[USERS.CARBONI]

$ MOUNT/FORE/RECO=512/BLOCK=10240 1MUA0:

$ TAR CVF 1MUA0: [.NTUPLA...]

$ UMOUNT 1MUA0:

In this example we are saving �les from a scratch subdir named ntupla/ on tape and
dismount the tape.

In the next example we want to add another directory to the same archive:

UNIX: save directory

% cd /scrtch1/users/carboni

% tar rvf /dev/rmt/0m rawdata/

% mt -f /dev/rmt/0m offl

VMS: save directory

$ SET DEF SCRTCH1:[USERS.CARBONI]

$ MOUNT/FORE/RECO=512/BLOCK=10240 1MUA0:

$ TAR RVF 1MUA0: [.RAWDATA...]

$ UMOUNT 1MUA0:

To determine the table of contents, use:

UNIX: show tape contents

% tar tvf /dev/rmt/0m

VAX: show tape contents

$ MOUNT/FORE/RECO=512/BLOCK=10240 1MUA0:

$ TAR TVF 1MUA0:

To extract �le from the archive:

UNIX: Extract �les

% cd /scrtch2/users/carboni

% tar xvf /dev/rmt/0m

VMS: Extract �les

$ SET DEF SCRTCH2:[USERS.CARBONI]

$ MOUNT/FORE/RECO=512/BLOCK=10240 1MUA0:

$ TAR XVF 1MUA0:

Using this last command you create two subdirectory: ntupla/ and rawdata/ if don't
exist.

You can specify subsets of the original archive:

- 9 -

UNIX: Extract �.dat

% cd /scrtch2/users/carboni

% tar xvf /dev/rmt/0m 'rawdata/*.dat'

VMS: Extract �.dat

$ SET DEF SCRTCH2:[USERS.CARBONI]

$ MOUNT/FORE/RECO=512/BLOCK=10240 1MUA0:

$ TAR XVF 1MUA0: [.RAWDATA...]*.DAT

Chapter 4: LNF Programming Environment

4.1 Fortran77 Compiler

The FORTRAN77 compiler on the HP and DEC machines looks very similar in terms of
functionality as compared to other UNIX system. However, an awarness of the default
compiler options is important. In some cases, a program will fail or produce wrong results
if you have compiled it with an excessive level of optimization. When developing a code, it
is recommended to use the default optmization level until the program is stable. Once this
stage has been completed, you may experiment di�erent optimization levels to improve
the performance. Before starting any serious production ensure that the results obtained
during the tests are consistent whith those obtained using di�erent optimization levels.

Using two di�erent platforms you must use di�erent options. On each system you have
di�erent options, please refer to man pages to get more details:

man f77

Here is an example how to compile a simple program program on our UNIX systems, in
the two cases HP and DEC:

Compile fortran on HP

fort77 +ppu -K -c myprog.f

Compile fortran on DEC

f77 -static -c myprog.f

HP Options Description:

-O To increase optimization

-g Generate additional information needed by the symbolic debugger xdb. This
option is incompatible with optimization.

+ppu To add a trailing to external routines. This is needed if you wish to make calls
to the CERN program library; it must be used only on HP

-K To generate static code. Static is a code where local variable are saved after
routine invocation. Note that the VAX compilers automatically save local
variables; this is not the default case with HP-UX

DEC Options Description:

-O To increase optimization

-g Generate additional information needed by the symbolic debugger xdb. This
option is incompatible with optimization

-static Causes all local variables to be statically allocated. Like -K on HP

10

- 11 -

4.2 C Compiler

cc is the standard UNIX C compiler. On HP compiler options are available to select
ANSI C compiling or alternatively Kernigan & Ritchie mode; on DEC system this is done
automatically. A full description of the C compiler and its options is available with the
command:

man cc

4.3 CERNLIB

As with any other UNIX machine, the references to libraries may be in an absolute way
(speci�ng the full �le path) or in the POSIX way, using the options -l and -L. HP-UX
did not adopt the POSIX standards in their implementation of f77, but instead they kept
their previous interface fort77. A linking statment is performed in one of these two ways:

Linking with CERN Library:

% f77 -o myprog myprog.o /cern/pro/lib/libpacklib.a

% fort77 -o myprog myprog.o -L/cern/pro/lib -lpacklib

This approach is �ne for a few libraries but for more complicated situations, CERNLIB

variable simpli�es command scripts. This variable is set locally with the cernlib command
in two equivalent ways (Note the use of back quotes of this example):

setenv CERNLIB `cernlib geant pawlib gra
ib/X11`

HP: CERNLIB Compilation

% fort77 +ppu -K -c myprog.f

% fort77 -o myprog myprog.o $CERNLIB

DEC: CERNLIB Compilation

% f77 -static -c myprog.f

% f77 -o myprog myprog.o $CERNLIB

4.4 File Input/Output

The �le attachment in UNIX is rarely made using logical units as on VMS. FORTRAN
programs should take care to issue the proper OPEN statement with the name of the �le
coded in. Standard input and output (units 5 and 6) can be handled in the normal UNIX
way:

myprog < mydata.inp > myresults.out

- 12 -

One may also give data records after the invocation of the executable:

myprog << EoD

card1

card2

...

...

EoD

We have used 'EoD' to stand for 'End of Data'. Any other string may be used as long
as it is not part of the data records themselves.

When using other FORTRAN units numbers, the ln (link) command must be used. This
is equivalent to ASSIGN in VMS. As an example:

ln -s mydata.out ftn10

Note that, unlike VAX, such �le linking is permanent across sessions. It should be removed
right after execution completion with the rm command:

rm ftn10

The original �le will not be destroyed; only the link. An alternative approach is to use
the OPEN statement, for example:

OPEN(10, FILE='mydata.dat', ...)

4.5 Debugging Program

If your program does not execute properly, you may wish to use a debugger to locate
and correct problems; xdb is the HP-UX symbolic debugger. Before invoking a symbolic
debugger you should recompile your program with -g option and without any optimization
-O
ags. This ensure that the necessary debugging information is incorporated into the
object code. The debugger has many commands for viewing and manipulating programs.
You can:

Control execution with single step execution or use the breakpoints.

Look at data values.

Look at the content of your source �les.

Look at the execution stack.

A sample of simple commands for the HP xdb debugger are:

- 13 -

HP debug options.

COMMAND DESCRIPTION

------- -----------

r Run the program

b 82 Set breakpoint at line 82

c Continue running until the next breakpoint

s Single step trough the next source line

S Step over a function or a subroutine

t Print a trace at the current execution stack

v View a window of lines

/string Search forward in the source for occurency of string

?string Search backward in the source for occurency of string

p abc Print the value of the variable "abc"

p abc = 2.2 Assign a value to "abc"

q Quit the debugger

Chapter 5: Batch Job Submission with NQS

5.1 NQS - An Overview

The Network Queueing System (NQS) batch system has been installed on LNF UNIX

Environment and is used for batch job submission. A NQS job is a series of UNIX com-
mands combined in a Shell script. NQS works by using the job queues and the NQS on
LNF UNIX Cluster distinguishes beetwen two types of queue:

Batch queue Batch queues are de�ned on each system in NQS domain. Each queue
has di�erent resources limits, in particular the CPU time.

Pipe queue Pipe queues are a mechanism to distribute jobs and balance the workload
evenly over the destination servers. Users submit to the pipe queue, and
the load balancing software in NQS �nds an empty server in which has
to run the job. If all servers are full, then the job is put on wait state. If
more than one job are on wait state, than the next job to be started is
determined by an intelligent script which is aware of the current state of
running and queued jobs. The following subsection describes the batch
environment in more detail.

5.2 NQS Commands

NQS provides a total of nine user commands:

qcat Display output �les of NQS running requests
qcmplx Display status of NQS queue complexe
qdel Delete or signal NQS request
qhold Hold NQS request
qjob Display status of NQS networked queues
qlimit Show supported limit and shell strategy
qrls Release NQS request
qstat Display status of NQS requests and queues
qsub Submit NQS batch request

To get more information about a command, type:

man command

or refer to the man pages at the end of this guide.

Moreover some extra NQS commands speci�c to our UNIX environment are:

qwhere Display location of running NQS job
qusage Gives the cumulative execution time in seconds for all running NQS

jobs. The execution time is evaluated twice per hour
qresources Gives the available resources for the di�erent batch queues

14

- 15 -

5.3 LNF UNIX Batch Queues

Users submit their jobs to these di�erent queues:

cpqS cpqM cpqL cpqH

Where:

cpqS Jobs of less 3600 native CPU seconds
cpqM Jobs of less 86400 native CPU seconds
cpqL Jobs of less 400000 native CPU seconds
cpqH Jobs of less 500000 native CPU seconds

User that submits a NQS job must be connected on the NQS master (hpserver.lnf.infn.it).
The queues are divided in two di�erent classes: SHORT and MEDIUM,LONG,HEAVY.

The S queue point only to six headless batch server. M,L and H are member of a complex
queue. On each batch server can run only one of this tree queues with di�erent submission
priority. The H queue can be pointed by memory consuming programs.

The queues act as pipes to the 10 destination batch servers, �nding empty machines if
any, or queueing jobs if all servers are full. Jobs are submitted with the command:

qsub �lename

where �lename is the pathname to a job script. An example of job script is shown in
Section 5.7 appended to this guide. To see the status of the HP Batch Server, type:

qjob

To cancel the running request, you have to use (in conjunction with qusage):

qdel -k -h batch-server request-id

5.4 Working Space

When a NQS job starts up, an environmental variable called WORKDIR is set. This is the
pathname of a unique directory created for the running job. The directory is located on
the machine on which the job is running. It has at least 200 MBytes of free space. Users
should include in their job submission script a line as:

cd $WORKDIR

and should write their output on the local disk. When the main executable �nishes, users
should copy (cp) produced �les over NFS to their directories. When a user's job script
ends, NQS will remove the (WORKDIR) directory.

If the copy procedure fails1, it is possible to keep for a short period of time this working
directory in order to (re)issue the copy command. For this purpose, the �le:

$WORKDIR/nostage

should exist.
1The disk server is down or the stage disk is full.

- 16 -

5.5 Outputs

The stdout and stderr output from NQS jobs is returned to the directory from which the
user has submitted the job. All other output created by a job must be copied with user
commands in the job script.

5.6 Job Limits

The TIMEL (Time Left) routine from the CERN Program Library keeps track of how
much CPU time is left for a job, starting from a default number of seconds (9999).

GEANT by default will properly close down a job when there is no time left. Therefore,
users whishing to run for a time longer than the GEANT default must set the start time
to a higher value:

CALL TIMEST(36000.)

This would allow a 10 CPU-hours job in native CPU units.

5.7 Example: NQS Job Script

The script could contain some NQS commands, this give to the users the capabilities to
de�ne regular submition options like queue name, total cputime, running name, kind of
shell, etc.

All of the NQS
ags that can be speci�ed on the command line can also be speci�ed
within the �rst comment block inside the batch request script �le as embedded default

ags. Here is an example of the use of embedded
ags within the script �le.

For more options info read the nqs man pages:

man qsub

NQS script: an example

Batch request parameter

#@$-s /bin/csh # Script shell / Begin of QSUB job description

#@$-r MyProgram # Request name

#@$-eo # Merge error and standard output

#@$-me # Send mail upon termination

#@$ # End of QSUB job description

#

Change working directory and print it

#

cd $WORKDIR

pwd

#

- 17 -

In order to be EFFICIENT (avoiding NFS traffic and swapping!)

main files (binaries and data) HAVE to be copied to the local

area

#

cp $HOME/work/myprog $WORKDIR

cp $HOME/work/mydata.dat $WORKDIR

#

Execute main program

#

time $WORKDIR/myprog < mydata.dat > myresults.lis

#

Copy LARGE output file to the scratch area

#

cp myprog.out /scrtch1/grp/username

if ($status != 0) then

touch $WORKDIR/nostage

endif

#

End of job

exit

Chapter 6: NQS++ Job Submission

With the introduction of the new DEC system is available a second BATCH Server based
on DEC-OSF/1 Operating System. With NQS++ each user can submit and control the
jobs on both BATCH Servers.

6.1 Setting the Preferred NQS Batch Server with qset

The command qset has been added in order to de�ne dynamically the default NQS server
node and if necessary the default UNIX/NQS username. Here is a typical sequence of
commands which may be invoked :

Set HP BATCH server

% qset -h hpserver

Command Output

Default NQS server node : hpserver.

in case of the DEC BATCH Server.

Set DEC BATCH server

% qset -h axpals

Command Output

Default NQS server node : axpals.

HP Job Status Enquiry:

% qstat -p

==

NQS Version: 2.5 PIPE QUEUES on hpserver

==

QUEUE NAME STATUS TOTAL RUNNING QUEUED HELD TRANSITION

cpqH AVAILBL 0 0/1 0 0 0

cpqM AVAILBL 0 0/1 0 0 0

cpqL AVAILBL 0 0/1 0 0 0

cpqS AVAILBL 0 0/1 0 0 0

To submit a job :

Job Submission

% qset -h axpals

% qsub -o NQSscript.output NQSscript.job

Command Output

1800 bytes transferred.

Request 12.axpals submitted to queue: cpqL

When NQS jobs end, an automatic procedure tries to make available NQS outputs �les on
the target machines. In case of failure, end-users receive mail messages on their originate
host telling them where these �les are and how to get them back on their local hosts.

18

- 19 -

6.2 Write NQS script.job machine dependent.

If your code is compiled for both systems (DEC & HP) you can submit your jobs inde-
pendently from the architecture. Following the usual scheme shown in the chapter5 you
can modify the script as follow:

- 20 -

NQS script architecture dependent: an example

Batch request parameter

#@$-s /bin/csh # Script shell / Begin of QSUB job description

#@$-r MyProgram # Request name

#@$-eo # Merge error and standard output

#@$-me # Send mail upon termination

#@$ # End of QSUB job description

#

Change working directory and print it

#

cd $WORKDIR; pwd

#

Select the architecture dependent code.

#

if ("`uname`" == "HP-UX") then

setenv MYPROG myprog_hpux.exe

else if ("`uname`" == "OSF1") then

setenv MYPROG myprog_osf1.exe

endif

#

In order to be EFFICIENT (avoiding NFS traffic and swapping!)

main files (binaries and data) HAVE to be copied to the local

area

#

cp /u1/username/work/$MYPROG $WORKDIR/myprog

cp /u1/username/work/mydata.dat $WORKDIR

#

Execute main program

#

time $WORKDIR/myprog < mydata.dat > myresults.lis

#

Copy LARGE output file to the scratch area

#

cp myprog.out /scrtch1/grp/username

if ($status != 0) then

touch $WORKDIR/nostage

endif

#

End of job

Appendix A: Other Informations

A.1 Hardware Con�guration

The Hewlett Packard cluster available at LNF includes 12 HP 9000/7xx, with hardware
con�guration shown in Tab.A.1, and 2 DEC System DEC-4000/610 and DEC-2100 4/275,
with alpha processor, with the relative hardware characteristics shown in Tab.A.2.

Name IP Address Model Con�guration Performance

RAM Disks Tape SPECint92 SPECfp92

hpserver 192.84.127.75 755/99 128 MB 5x1.3 GB 1.3 GB 80 150

hpcalc 192.84.127.10 710/33 32 MB 420 MB 24 45

hpmac1 192.84.127.57 735/99 48 MB 420 MB 4.0 GB 80 150

hpcal2 192.84.127.107 715/75 32 MB 1.05 GB 61 113

hpcal3 192.84.127.108 715/75 32 MB 1.05 GB 61 113

hpmac2 192.84.127.106 715/75 32 MB 1.05 GB 61 113

hpalp1 192.84.127.109 715/75 32 MB 1.05 GB 61 113

hpalp2 192.84.127.176 715/80 64 MB 1.05 GB 85 125

hpcad 192.84.127.111 735/99 80 MB 2x1.05 GB 2.0 GB 80 150

hpcad1 192.84.127.112 715/50 64 MB 1.05 GB 36 72

hpcad2 192.84.127.113 715/50 64 MB 1.05 GB 36 72

hpkloe01 192.84.127.206 735/125 80 MB 2x1.05 GB 4.0 GB 136 201

hpkloe01-f 192.84.130.17

801 1407

Table A.1: Hewlett Packard Cluster - Hardware Con�guration.

Name IP Address Model Con�guration Performance

RAM Disks Tape SPECint92 SPECfp92

axpals 192.84.127.55 4000/610 128 MB 2x2.0 GB 2.6 GB 131 161

axpals-f 192.84.130.7 6x9.1 GB

kloe01 192.84.127.232 2100 4/275 128 MB 2.1 GB 10 GB 200 291

kloe01-f 192.84.130.22 1x9.1GB

331 452

Table A.2: Digital Cluster - Hardware Con�guration.

The workstations HP9000/7XX are in the Edi�cio Alte Energie, and are located in dif-
ferent places inside the building; for this reason the Network connection to the LAN

(Local Area Network) uses two di�erent Thin Wire Ethernet that are connected to the
LNFEthernet Backbone by a DEC-Dempr; no bridge solution is adopted.

21

- 22 -

Only two workstations have the monitor, the remaining �ve are installed inside the com-
puting center structure, making use of the centralized UPS and cooling system in order
to increase the system availability. Four of these workstations are head-less and the con-
sole for each system is obtained using the serial line connected with a Terminal Server
port. On each port of the Terminal Server a remote service is de�ned, that allows the
connection from a generic terminal to each workstation console using the Local Area
Trasport protocol (LAT).

In �gure the hardware con�guration including the remote console system is shown.

-
23

-

Massimo Carboni LNF/CS ago 95

 UNIX Configuration - LNF

HP HEP Cluster

console
LAT protocol

11 HP 9000/7xx
 HP 9000/755

HP CAD Cluster

Digital UNIX Cluster
DEC 2100/4 275

1 CPU
DEC 4000/610

1 CPU

Workstations & X-Terminal
9 XTerminal HP

22 Xterminal NCD
5 HP 9000/7xx

HUB 900

Ethernet

SCSI

FDDI

Disk Servers DEC 4000/610
6x10 GB Network Juke Box -20 GB

Appendix B: Selection of man pages

24

() ()

NAME
xprint − print files on VAX/VMS printers

SYNOPSIS
xprint [−q printer] [−s] [−n] [−2] [−l number] [−p number] [−man unix-manual] [−H] [−h] [
--] [files]

DESCRIPTION
Xprint prints the specified file on a printer. Only VAX/VMS printer are supported:

VAX/VMS
VAX/VMS postscript printer are accessible from UNIX systems. For such printers, the user’s file
is routed to the VAX/VMS which print the specified files. The transfer to VAX/VMS is made using
the TCP/IP <---> DECNET gateway software running on a VAX/VMS system.Xprint check the
printer selected and the hardware characteristics. Use the standard UNIX command like:lp, a2ps,
pstopsanddvips. Xprintrecognize standard postscript file, higz postscript file, text file, TeX files.
It’s possible print at the same time TeX and PAW files just giving the complete file name.

Printing formats are selected with command options

OPTIONS
−q printer Select the printing device:lps_post lps_post2 lps_post_a3 lps17_post aen1a1_post

aen2a1_post lnf_psc.

−s print one side per sheet only, the default value is two per page [rectoverso].

−n Don’t print thecover page.Use this options only when you are near the printer and your
output is short.

−2 Print two pages per physical page (twinpage mode), side by side or up-down, depending
on the printing mode (landscape or portrait). By default print only one page per physical
page (single page mode).

−p −l number Print files in portrait (landscape) mode (vertical or horizontal pages). In text mode you can
select beetwen 80 or 132 characters per page. The default is :−p 80.

−man manual Print in postscript the usual UNIX manuals.

−H Thehelpoption lists the names of known postscript printers and the place where the print-
ers are located.

−h Print usage information.

−- Read from standard input and print the output on the selected printer. This is a positional
option use it as last option.

PRINTERS
lps_post point to 3 different postscript printer one sheet per page inside che printer room, near the

computing room, A4 format:LPS - LPS2 - LPS17.

lps_post2 point to 2 different postscript printer two sheet per page inside che printer room, near the
computing room, A4 format:LPS - LPS2.

lps_post_a3 point to 2 different postscript printer one sheet per page inside che printer room, near the
computing room, A3 format:LPS - LPS2.

lps17_post point to the 600 dpi resolution postscript printer one sheet per page inside che printer
room, near the computing room, A4 format:LPS17.

aen1a1_post point to the postscript printer inside the New Alte Energie Build 1 Floor A Side, A4 for-
mat:AEN1A1.

aen2a1_post point to the postscript printer inside the New Alte Energie Build 2 Floor A Side, A4 for-
mat:AEN2A1.

LNF 1 December 1995 1

() ()

NEW FEATURES
Postscript print of Unix man pages, see−man option for more details.

ENVIRONMENT VARIABLES
PRINTER Specifies the default printer whenxprint is invoked without the−q option.

XPRINTER Same as PRINTER, but has higher priority.

SEE ALSO
lp(1), a2ps(1), pstops(1), dvips(1)

DIAGNOSTICS
A print request is confirmed by returning the spool id of the print job.

HISTORY
Origin: Laboratori Nazionali di Frascati

Febrary 1993 − Massimo Carboni, LNF/CS
Original release.

November 1995
Last release.

LNF 1 December 1995 2

Q () Q ()

NAME
qcat − display error, input, or output text files ofNQSrunning requests.

SYNOPSIS
qcat [−e] [−i] [−o] [−t number] [−h target-host] request-id ...

DESCRIPTION
Qcat displays the contents of error, input, or output text files of Network Queueing System (NQS) running
requests.

Qcat finds and if it exists, reads each file in sequence and displays it on the standard output.

An NQS request is always uniquely identified by itsrequest-id, no matter where it is in the network of the
machines. Arequest-id is always of the form:seqnoor seqno .hostnamewherehostnameidentifies the
machine from whence the request was originally submitted, andseqno identifies the sequence number
assigned to the request on the originating host. If thehostnameportion of arequest-idis omitted, then the
local host is always assumed.

The following flags are available:

-e Displays the error file if it exists.

-i Displays the input file (script file).

-o Displays the output file if it exists.

-t number
Begins copying at distance number from the end of the file. number is counted in units of lines.

-h target-name
Specifies the target NQS host from which display information is to be obtained.

If no option is specified the input file tries to be displayed.

CAVEATS
NQSis not finished, and continues to undergo development.

SEE ALSO
qstat(1)

NPSN HISTORY
Origin: CERN

April 1992 − Christian Boissat, CERN
Original release.

1

Q () Q ()

NAME
qcmplx − display status ofNQScomplex(es)

SYNOPSIS
qcmplx [−h host-name] [−n] [−Q]
[complex-name] [complex-name@host-name]

DESCRIPTION
Qcmplxdisplays the Network Queueing System (NQS) complexes.

In the absence of a-h host-namespecifier, the local host is assumed.

Each entry displays the complexes on a giv en host. The-Q option displays the queues within the complex.
The-n option eliminates the qcmplx header display.

CAVEATS
NQS is not finished, and continues to undergo development. This command may or may not be supported
on all of your machines in the network.

SEE ALSO
qdel(1), qdev(1), qlimit(1), qpr(1), qstat(1), qsub(1), qmgr(1M)

NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 - Brent Kingsbury, Sterling Software
Original release.

Feb. 1990 − Terrie Carver, Computer Science Corperation
Second release.

1

Q () Q ()

NAME
qdel − delete or signalNQSrequest(s).

SYNOPSIS
qdel [−k] [−s] [−c] [−h hostname] [−signo] [−u username] request-id ...

DESCRIPTION
Qdel deletes all queuedNQSrequests whose respectiverequest-idis listed on the command line. Addition-
ally, if the flag-k is specified, then the default signal ofSIGINT (-2) is sent to any running request whose
request-idis listed on the command line. This will cause the receiving request to exit and be deleted. If the
flag -s is specified, then the default signal ofSIGSTOP is sent to any running request whoserequest-idis
listed on the command line. This will cause the receiving request to be stopped. If the flag-c is specified,
then the default signal ofSIGCONT is sent to any running request whoserequest-idis listed on the com-
mand line. This will cause the receiving request to continue after being stopped.
If the flag−h hostname is requested then the action will be taken on the given host. If the flag−signo is
present, then the specified signal is sent instead of theSIGINT signal to any running request whoserequest-
id is listed on the command line. In the absence of the-k and−signo flags,qdel will not delete arunning
NQSrequest.

To delete or signal anNQS request, the invoking usermust be the owner; namely the submitter of the
request. The only exception to this rule occurs when the invoking user is thesuperuser, or hasNQSopera-
tor privileges as defined in theNQSmanager database. Under these conditions, the invoker may specify the
−u username flag which allows the invoker to delete or signal requests owned by the user whose account
name isusername. When this form of the command is used,all request-idslisted on the command line are
presumed to refer to requests owned by the specified user.

An NQS request is always uniquely identified by itsrequest-id, no matter where it is in the network of the
machines. Arequest-id is always of the form:seqnoor seqno .hostnamewherehostnameidentifies the
machine from whence the request was originally submitted, andseqno identifies the sequence number
assigned to the request on the originating host. If thehostnameportion of arequest-idis omitted, then the
local host is always assumed.

The request-idof anyNQS request is displayed when the request is first submitted (unless thesilent mode
of operation for the givenNQS command was specified). The user can also obtain therequest-idof any
request through the use of theqstat(1) command.

CAVEATS
When anNQSrequest is signalled by the methods discussed above, the proper signal is sent toall processes
comprising theNQS requestthat are in the sameprocess group. Whenever anNQS request is spawned, a
new process groupis established for all processes in the request. However, should one or more processes
of the request successfully execute asetpgrp() system call, then such processes willnot receive any signals
sent by theqdel(1) command. This can lead to "rogue" request processes which must be killed by other
means such as thekill (1) command. For theUNIX implementations that support the ability to "lock" a pro-
cess, and all of its progeny into aprocess-group, NQSwill exploit this capability to prevent processes from
"escaping" in this manner.

SEE ALSO
qcmplx(1), qdev(1), qlimit(1), qpr(1), qstat(1), qsub(1), qmgr(1M),
kill(2), setpgrp(2), signal(2)

NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 − Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

Feb. 1990 − Terrie Carver, Computer Sciences Corporation

1

Q () Q ()

Third release.

2

Q () Q ()

NAME
qdev − display status ofNQSdevices

SYNOPSIS
qdev [device-name] [device-name@host-name ...]

DESCRIPTION
Qdevdisplays the status of devices known to the Network Queueing System (NQS).

If no devices are specified, then the current state of eachNQS device on the local host is displayed. Other-
wise, the response is limited to the devices specified. Devices may be specified either asdevice-nameor
device-name@host-name. In the absence of ahost-namespecifier, the local host is assumed.

A device headerwith several headings is displayed for each of the selected devices. The first heading in a
device header appears asDevice:, and is followed by the name of the device formatted as
device-name@host-name. The second heading ofFullname: is followed by the full path name of the spe-
cial file associated with the device. The third heading ofServer: is followed by the command line which
will be used toexecve(2)the device server. The fourth heading ofForms: is followed by the forms config-
ured for the device.

The final heading ofStatus: prefaces a display of the general device state. The general state of a device is
defined by two principal properties of the device.

The first property concerns whether or not the device is willing to continue accepting queued requests. If it
is, the device is said to beENABLED . If the device is unwilling to continue accepting queued requests,
and is idle, its state isDISABLED . A third state ofENABLED/CLOSED is used to describe a device
that is unwilling to continue accepting queued requests, but is not yet idle.

The second principal property of a device concerns whether or not the device is busy. There are three
cases. If the device is busy, it is said to beACTIVE . If the device is idle and not known to be out of ser-
vice, it is said to beINACTIVE . Finally, if the device is idle and known to be out of service, it is said to be
FAILED . FAILED covers both hardware and software failures.

If a device is busy, information about the active request follows the device header. Therequest-name,
request-id, and the name of the user who submitted the request are all displayed.

SEE ALSO
qdel(1), qlimit(1), qpr(1), qstat(1), qsub(1), qmgr(1M)

NPSN HISTORY
Origin: Sterling Software Incorporated

May 1986 − Robert Sandstrom, Sterling Software
Original release.

1

Q () Q ()

NAME
qhold − holdNQSrequest(s).

SYNOPSIS
qhold [−u username] request-id ...

DESCRIPTION
Qhold holds all queued or waitingNQSrequests whose respectiverequest-idis listed on the command line.
Qhold will not hold arunning NQSrequest.

To hold anNQS request, the invoking usermust be the owner; namely the submitter of the request. The
only exception to this rule occurs when the invoking user is thesuperuser, or hasNQS operator privileges
as defined in theNQSmanager database. Under these conditions, the invoker may specify the−u username
flag which allows the invoker to hold requests owned by the user whose account name isusername. When
this form of the command is used,all request-idslisted on the command line are presumed to refer to
requests owned by the specified user.

An NQS request is always uniquely identified by itsrequest-id, no matter where it is in the network of the
machines comprising the NPSN. Arequest-idis always of the form:seqnoor seqno .hostnamewherehost-
name identifies the machine from whence the request was originally submitted, andseqnoidentifies the
sequence number assigned to the request on the originating host. If thehostnameportion of arequest-idis
omitted, then the local host is always assumed.

The request-idof anyNQS request is displayed when the request is first submitted (unless thesilent mode
of operation for the givenNQS command was specified). The user can also obtain therequest-idof any
request through the use of theqstat(1) command.

SEE ALSO
qdel(1), qrls(1), qstat(1).
qmgr(1M) in theNPSN UNIXSystem Administrator Reference Manual.

NPSN HISTORY
Origin: CERN

January 1992 − Christian Boissat, CERN
Original release.

1

Q () Q ()

NAME
qjob − display status ofNQSrequests in a networked environment.

SYNOPSIS
qjob [−a]

DESCRIPTION
Qjob displays the status of requests known to the Network Queueing System (NQS) as remote ones. The
/etc/batchserversfile should contain host names for machinescurrently in connection with the local host
via pipe queues. Each entry consists of a line specifying the name of the machine. This file is normally cre-
ated and maintained by NQS queue managers.

The current state of eachNQS request on the remote hosts is displayed. Each entry displays information
about a given request. Ordinarily,qjob shows only those requests belonging to the invoker. Nev ertheless
the following flag is available:

-a Displays all requests.

REQUEST STATE
The state of a request may bearriving, holding, waiting, queued, staging, routing, running, departing, or
exiting. A request is said to bearriving if it is being enqueued from a remote host.Holding indicates that
the request is presently prevented from entering any other state (including therunning state), because a
hold has been placed on the request. A request is said to bewaiting if it was submitted with the constraint
that it not run before a certain date and time, and that date and time have not yet arrived.Queuedrequests
are eligible to proceed (byrouting or running). When a request reaches the head of a pipe queue and
receives service there, it isrouting. A request isdepartingfrom the time the pipe queue turns to other work
until the request has arrived intact at its destination.Stagingdenotes abatch request that has not yet begun
execution, but for which input files are being brought on to the execution machine. Arunning request has
reached its final destination queue, and is actually executing. Finally,exiting describes a batch request that
has completed execution, and will exit from the system after the required output files have been returned (to
possibly remote machines).

Imagine a batch request originating on a workstation, destined for the batch queue of a computation engine,
to be run immediately. That request would first go through the statesqueued, routing, anddeparting in a
local pipe queue. Then it would disappear from the pipe queue. From the point of view of a queue on the
computation engine, the request would first bearriving, then queued, staging (if required by the batch
request),running, and finallyexiting. Upon completion of theexiting phase of execution, the batch request
would disappear from the batch queue.

CAVEATS
NQS is not finished, and continues to undergo development. Some of the request states shown above may
or may not be supported in your version of NQS.

SEE ALSO
qcmplx(1), qdel(1), qdev(1), qlimit(1), qpr(1), qstat(1), qsub(1), qmgr(1M)

NPSN HISTORY
Origin: CERN

August 1991 − Christian Boissat, CERN
Original release.

April 1992
Second release.

1

Q () Q ()

NAME
qlimit − show supported batch limits, and shell strategy for the local host.

SYNOPSIS
qlimit

DESCRIPTION
Qlimit displays the set of batch request resource limit types thatcan be directly enforced, and also the
batch request shell strategydefined for the implied local host.

NQS supports many batch request resource limit types that can be applied to anNQS batch request. How-
ev er, not allUNIX implementations are capable of supporting the rather extensive set of limit types that
NQSprovides.

The set of limits applied to a batch request, is always restricted to the set of limits that can be directly sup-
ported by the underlyingUNIX implementation. If a batch request specifies a limit that cannot be enforced
by the underlyingUNIX implementation, then the limit is simply ignored, and the batch request will operate
as though there were no limit (other than the obvious physical maximums), placed upon that resource type.

When an attempt is made to queue a batch request, eachlimit-value specified by the request (that can also
be supported by the localUNIX implementation), is compared against the correspondinglimit-value as con-
figured for the destination batch queue. If the corresponding batch queuelimit-value for all batch request
limit-values is defined as unlimited, or is greater than or equal to the corresponding batch request
limit-value, then the request can be successfully queued, provided that no other anomalous conditions
occur. For requestinfinity limit-values, the corresponding queuelimit-value must also be configured as
infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism, either by a
direct use of theqsub(1) command, or by the indirect placement of a batch request into a batch queue via a
pipe queue. It is impossible for a batch request to be queued in anNQS batch queue ifany of these
resource limit checks fail.

Finally, if a request fails to specify alimit-value for a resource limit type that is supported on the execution
machine, then the correspondinglimit-value as configured for the destination queue, becomes thelimit-
value for the unspecified request limit.

Upon the successful queueing of a request in a batch queue, the set of limits under which the request will
execute is frozen, and will not be modified by subsequentqmgr(1M) commands that alter the limits of the
containing batch queue.

As mentioned above, this command also displays theshell strategyas configured for the implied local host,
or named hosts. In the absence of ashell specificationfor a batch request,NQS must choose which shell
should be used to execute that batch request.NQSsupports three different algorithms, orstrategiesto solve
this problem that can be configured for each system by a system administrator, depending on the needs of
the user’s inv olved, and upon system performance criterion.

The three possible shell strategies are called:

fixed,
free, and
login.

These shell strategies respectively cause the configuredfixed shell to be exec’d to interpret all batch
requests, cause the user’s login shell as defined in the password file to be exec’d which in turn chooses and
spawns the appropriate shell for running the batch shell script, or cause only the user’s login shell to be
exec’d to interpret the script.

A shell strategy offixed means that the same shell as chosen by the system administrator, will be used to
executeall batch requests.

A shell strategy offree will run the batch request scriptexactly as would an interactive inv ocation of the
script, and is the defaultNQSshell strategy.

1

Q () Q ()

The strategies offixed, andlogin exist for host systems that are short on available free processes. In these
two strategies, a single shell is exec’d, and that same shell is the shell that executes all of the commands in
the batch request shell script.

When a shell strategy offixed has been configured for a particularNQS system, then the "fixed" shell that
will be used to runall batch requests at that host is displayed.

SEE ALSO
qdel(1), qdev(1), qpr(1), qstat(1), qsub(1), qmgr(1M)

NPSN HISTORY
Origin: Sterling Software Incorporated

May 1986 − Brent Kingsbury, Sterling Software
Original release.

2

Q () Q ()

NAME
qpr − submit a hardcopy print request toNQS

SYNOPSIS
qpr [−a date-time] [−f form-name] [−mb] [−me]
[−mu user-name] [−n number-of-copies] [−p priority]
[−q queue-name] [−r request-name] [−z] [files]

DESCRIPTION
Qpr places the named files in aNetwork Queueing System(NQS) queue to be printed by a device such as a
line printer or laser printer. If no files are specified,qpr will read from the standard input.

In the absence of the−z flag, qpr will print a request-idon the standard output, upon successful queueing
of a request. Thisrequest-idcan be compared with what is reported byqdev(1) andqstat(1) to find out
what happened to a request, and given as an argument toqdel(1) to delete a request. Arequest-idis always
of the form:seqno .hostnamewhereseqnorefers to the sequence number assigned to the request byNQS,
andhostnamerefers to the name of originating local machine. This identifier is used throughoutNQS to
uniquely identify the request, no matter where it is in the network.

The following options toqpr may appear in any order and may be intermixed with file names.

−a date-time
Submit at the specified date and/or time. In the absence of this flag,qpr will submit the request
immediately.

If a date-timespecification is comprised of two or more tokens separated by whitespace charac-
ters, then thedate-timespecification must be placed within double quotes as in:−a "July, 4,
2026 12:31-EDT", or otherwise escaped such that the shell will interpret the entiredate-time
specification as a single lexical token.

The syntax accepted for thedate-timeparameter is relatively flexible. Unspecified date and
time values default to an appropriate value (e.g. if no date is specified, then the current month,
day, and year are assumed).

A date can be specified as a month and day (current year assumed). The year can also be
explicitly specified. It is also possible to specify the date as a weekday name (e.g. "Tues"), or
as one of the strings "today" or "tomorrow". Weekday names and month names can be abbrevi-
ated by any three character (or longer) prefix of the actual name. An optional period can follow
an abbreviated month or day name.

Time of day specifications can be given using a twenty-four hour clock, or "am" and "pm" spec-
ifications may be used alternatively. In the absence of a meridian specification, a twenty-four
hour clock is assumed.

It should be noted that the time of day specification is interpreted using the precise meridian
definitions whereby "12am" refers to the twenty-four hour clock time of 0:00:00, "12m" refers
to noon, and "12-pm" refers to 24:00:00. Alternatively, the phrases "midnight" and "noon" are
accepted as time of day specifications, where "midnight" refers to the time of 24:00:00.

A timezone may also appear at any point in thedate-timespecification. Thus, it is legal to say:
"April 1, 1987 13:01-PDT". In the absence of a timezone specification, the local timezone is
assumed, with daylight savings time being inferred when appropriate, based on the date speci-
fied.

All alphabetic comparisons are performed in a case insensitive fashion such that both "WeD"
and "weD" refer to the day of Wednesday.

Some validdate-timeexamples are:

01-Jan-1986 12am, PDT
Tuesday, 23:00:00
11pm tues.

1

Q () Q ()

tomorrow 23-MST

−f form-name
Limit the set of acceptable devices to those devices which are loaded with the forms:
form-name. In the absence of this flag,qpr will submit the request only to a device that is
loaded with thedefault forms. If there is nodefault forms defined, the request will be submit-
ted to the appropriate output device without regard to the forms configured for the device.

In any case, only those devices associated with the chosen queue will be considered.

−mb Send mail to the user on the originating machine when the request begins execution. If the
−mu flag is also present, then mail is sent to the user specified for the−mu flag instead of to the
invoking user.

−me Send mail to the invoker on the originating machine when the request has ended execution. If
the−mu flag is also present, then mail is sent to the user specified for the−mu flag instead of to
the invoking user.

−mu user-name
Specify that any mail concerning the request should be delivered to the useruser-name. User-
namemay be formatted either asuser (containing no ‘@’ characters), or asuser@machine. In
the absence of this flag, any mail concerning the request will be sent to the invoker on the origi-
nating machine.

−n number-of-copies
Printnumber-of-copiescopies. The default is one.

−p priority
Assign an intra-queue priority to this request. The specifiedpriority must be an integer, and
must be in the range [0..63], inclusive. A value of 63 defines the highestintra-queuerequest
priority, while a value of 0 defines the lowest. This priority doesnot determine the execution
priority of the request. This priority is only used to determine the relative ordering of requests
within a queue.

When a request is added to a queue, it is placed at a specific position within the queue such that
it appears ahead of all existing requests whose priority is less than the priority of the new
request. Similarly, all requests with a higher priority will remain ahead of the new request
when the queueing process is complete. When the priority of the new request is equal to the
priority of an existing request, the existing request takes precedence over the new request.

If no intra-queuepriority is chosen by the user, thenNQSassigns a default value.

−q queue-name
Specify the queue to which the device request is to be submitted. If no−q queue-namespecifi-
cation is given, then the user’s environment variable set is searched for the variable:
QPR_QUEUE. If this environment variable is found, then the character string value for
QPR_QUEUE is presumed to name the queue to which the request should be submitted. If the
QPR_QUEUE environment variable is not found, then the request will be submitted to the
default device request queue,if defined by the local system administrator. Otherwise, the
request cannot be queued, and an appropriate error message is displayed to this effect.

−r request-name
Assign a name to this request. In the absence of an explict−r request-namespecification, the
request-namedefaults to the name of the first print file (leading path name removed) specified
on the command line. If no print files were specified, then the defaultrequest-nameassigned to
the request isSTDIN.

In all cases, if therequest-nameis found to begin with a digit, then the character ’R’ is pre-
pended to prevent arequest-namefrom beginning with a digit. Allrequest-namesare truncated
to a maximum length of 15 characters.

2

Q () Q ()

Be sure not to confuserequest-namewith request-id.

−z Submit the request silently. If the request is submitted successfully, nothing will be written to
stdout or stderr.

QUEUE ACCESS
NQS supports queue access restrictions. For each queue of queue type other thannetwork, access may be
eitherunrestrictedor restricted. If access isunrestricted, any request may enter the queue. If access is
restricted, a request can only enter the queue if the requester or the requester’s login group has been given
access to that queue (seeqmgr(1M)). Requests submitted by root are an exception; they are always
queued, even if root has not explicitly been given access.

Useqstat(1) to determine who has access to a particular queue.

SEE ALSO
mail(1), qdel(1), qdev(1), qlimit(1), qstat(1), qsub(1), qmgr(1M)

NPSN HISTORY
Origin: Sterling Software Incorporated

May 1986 − Robert Sandstrom, Sterling Software
Original release.

3

Q () Q ()

NAME
qrls − releaseNQSrequest(s).

SYNOPSIS
qrls [−u username] request-id ...

DESCRIPTION
Qrls releases all heldNQSrequests whose respectiverequest-idis listed on the command line.

To release anNQS request, the invoking usermustbe the owner; namely the submitter of the request. The
only exception to this rule occurs when the invoking user is thesuperuser, or hasNQS operator privileges
as defined in theNQSmanager database. Under these conditions, the invoker may specify the−u username
flag which allows the invoker to release requests owned by the user whose account name isusername.
When this form of the command is used,all request-idslisted on the command line are presumed to refer
to requests owned by the specified user.

An NQS request is always uniquely identified by itsrequest-id, no matter where it is in the network of the
machines comprising the NPSN. Arequest-idis always of the form:seqnoor seqno .hostnamewherehost-
name identifies the machine from whence the request was originally submitted, andseqnoidentifies the
sequence number assigned to the request on the originating host. If thehostnameportion of arequest-idis
omitted, then the local host is always assumed.

The request-idof anyNQS request is displayed when the request is first submitted (unless thesilent mode
of operation for the givenNQS command was specified). The user can also obtain therequest-idof any
request through the use of theqstat(1) command.

SEE ALSO
qdel(1), qhold(1), qstat(1).
qmgr(1M) in theNPSN UNIXSystem Administrator Reference Manual.

NPSN HISTORY
Origin: CERN

January 1992 − Christian Boissat, CERN
Original release.

1

Q () Q ()

NAME
qstat − display status ofNQSrequests and queues.

SYNOPSIS
qstat [−a] [−U] [−b] [−d] [−p] [−f] [−l] [−n] [−s state -rqht-] [−h target-host] [−u user-name] [−A user-
target-name]
[queue-name ...] [queue-name@host-name ...]
[request-id ...] [request-id.hostname ...]

DESCRIPTION
Qstatdisplays the status of Network Queueing System (NQS) requests and queues.

If no objects are specified, then the current state of eachNQSrequest on the local host is displayed. Other-
wise, information is displayed for the specified object only. Each entry displays information about a given
request. Ordinarily,qstatshows only those requests belonging to the invoker.

An NQS request is always uniquely identified by itsrequest-id, no matter where it is in the network of the
machines. Arequest-id is always of the form:seqnoor seqno .hostnamewherehostnameidentifies the
machine from whence the request was originally submitted, andseqno identifies the sequence number
assigned to the request on the originating host. If thehostnameportion of arequest-idis omitted, then the
local host is always assumed.

If information about the queues is requested with the-b, -d or -p options, but no queues are specified, then
the current state of eachNQS queue on the local host is displayed. Otherwise, information is displayed for
the specified queues only. Queues may be specified either asqueue-nameor queue-name@host-name. In
the absence of ahost-namespecifier, the local host is assumed. You must have an account on the host spec-
fied in order for qstat to work. Also,root use of qstat is limited to the local machine.

For each selected queue,qstat displays information about the queue itself. The following flags are avail-
able:

-a Displays all requests. The-U (unrestricted) option is synonymous.

-b Displays batch queues.

-d Displays device queues.

-p Displays pipe queues.

-f Queues are shown in a full format. The-l (long) option displays in the same format.

-n The queue header and trailer are not displayed.

-s Displays requests which are in a particular state: running, queued, held, or transiting (r, q, h, or t).

-h target-host
Specifies the target NQS host from which display information is to be obtained.

-u user-name
Shows only those requests belonging touser-name. The -A (account) option is synonymous.

When a queue is being examined, the queue name, host machine, priority, number of requests in a given
state, resource limits, and access are displayed.

QUEUE STATE
The general state of a queue is defined by two principal properties of the queue.

The first property determines whether or not requests can be submitted to the queue. If they can, then the
queue is said to beenabled. Otherwise the queue is said to bedisabled.

The second principal property of a queue determines if requests which are ready to run, but are not now
presently running, will be allowed to run upon the completion of any currently running requests, and
whether any requests are presently running in the queue.

If queued requests not already running are blocked from running, and no requests are presently executing in
the queue, then the queue is said to bestopped. If the same situation exists with the difference that at least

1

Q () Q ()

one request is running, then the queue is said to bestopping, where the requests presently executing will be
allowed to complete execution, but no new requests will be spawned.

One of the wordsAV AILABLE, STOPPED, DISABLED, UNAV AIL, or NQS DOWNwill appear in the
queue status field to indicate the respective queue states of:

AV AILABLE= enabled and started,
STOPPED= enabled and stopped,
DISABLED= disabled and running or
UNAV AIL = disabled and stopped.

Requests can only be submitted to the queue if the queue is enabled, and the localNQSdaemon is present.

If the NQS daemon for the local host upon which the queue resides is not running, the status displaysNQS
DOWN.

REQUEST STATE
The state of a request may bearriving, holding, waiting, queued, staging, routing, running, departing, or
exiting. A request is said to bearriving if it is being enqueued from a remote host.Holding indicates that
the request is presently prevented from entering any other state (including therunning state), because a
hold has been placed on the request. A request is said to bewaiting if it was submitted with the constraint
that it not run before a certain date and time, and that date and time have not yet arrived.Queuedrequests
are eligible to proceed (byrouting or running). When a request reaches the head of a pipe queue and
receives service there, it isrouting. A request isdepartingfrom the time the pipe queue turns to other work
until the request has arrived intact at its destination.Stagingdenotes abatch request that has not yet begun
execution, but for which input files are being brought on to the execution machine. Arunning request has
reached its final destination queue, and is actually executing. Finally,exiting describes a batch request that
has completed execution, and will exit from the system after the required output files have been returned (to
possibly remote machines).

Imagine a batch request originating on a workstation, destined for the batch queue of a computation engine,
to be run immediately. That request would first go through the statesqueued, routing, anddeparting in a
local pipe queue. Then it would disappear from the pipe queue. From the point of view of a queue on the
computation engine, the request would first bearriving, then queued, staging (if required by the batch
request),running, and finallyexiting. Upon completion of theexiting phase of execution, the batch request
would disappear from the batch queue.

CAVEATS
NQS is not finished, and continues to undergo development. Some of the request states shown above may
or may not be supported in your version of NQS.

SEE ALSO
qcmplx(1), qdel(1), qdev(1), qlimit(1), qpr(1), qsub(1), qmgr(1M)

NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 − Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

Feb. 1990 − Terrie Carver, Computer Sciences Corporation
Third release.

2

Q () Q ()

NAME
qsub − submit anNQSbatch request.

SYNOPSIS
qsub [flags] [script-file]

DESCRIPTION
Qsubsubmits a batch request to the Network Queueing System (NQS).

If no script-file is specified, then the set of commands to be executed as a batch request is taken directly
from the standard input file (stdin). In all cases however, thescript file is spooled, so that later changes will
not affect previously queued batch requests.

All of the flags that can be specified on the command line can also be specified within the first comment
block inside the batch requestscript file as embedded default flags. Such flags appearing in the batch
requestscript file set default characteristics for the batch request. If the same flag is specified on the com-
mand line, then the command line flag (and any associated value) takes precedence over theembeddedflag.
See the section entitled:LONG DESCRIPTION for more information onembedded default flags.

What follows is a terse definition of the flags implemented by theQsubcommand (see the section:LONG
DESCRIPTION for the complete definition and syntax used for each of these flags).

−a − run request after stated time
−e − direct stderr output to stated destination
−eo− direct stderr output to the stdout destination
−ke − keep stderr output on the execution machine
−ko − keep stdout output on the execution machine
−lc − establish per-process corefile size limit
−ld − establish per-process data-segment size limits
−lf − establish per-process permanent-file size limits
−lF − establish per-request permanent-file space limits
−lm − establish per-process memory size limits
−lM − establish per-request memory space limits
−ln − establish per-process nice execution value limit
−ls − establish per-process stack-segment size limits
−lt − establish per-process CPU time limits
−lT − establish per-request CPU time limits
−lv − establish per-process temporary-file size limits
−lV − establish per-request temporary-file space limits
−lw − establish per-process working set limit
−mb − send mail when the request begins execution
−me− send mail when the request ends execution
−mu − send mail for the request to the stated user
−nr − declare that batch request is not restartable
−o − direct stdout output to the stated destination
−p − specify intra-queue request priority
−q − queue request in the stated queue
−r − assign stated request name to the request
−re − remotely access the stderr output file
−ro − remotely access the stdout output file
−s − specify shell to interpret the batch request script
−x − export all environment variables with request
−z − submit the request silently

LONG DESCRIPTION
As described above, it is possible to specifydefault flags within the batch requestscript file that configure
the default behavior of the batch request. The algorithm used to scan for suchembedded default flags

1

Q () Q ()

within anNQSbatch request script file is as follows:

1. Read the first line of thescript file.

2. If the current line contains only whitespace characters, or the first non-whitespace character
of the line is ":", then goto step 7.

3. If the first non-whitespace character of the current line is not a "#" character, then goto step
8.

4. If the second non-whitespace character in the current line isnot the "@" character, or the
character immediately following the second non-whitespace character in the current line is
not a "$"

OR

If the second non-whitespace character is not a "Q" followed immediately by the string
"SUB", then goto step 7.

5. If no "-" is present as the first non-whitespace characterimmediatelyfollowing the "@$"
sequence or the "QSUB" sequence, then goto step 8.

6. Process theembeddedflag, stopping the parsing process upon reaching the end of the line,
or upon reaching the first unquoted "#" character.

7. Read the nextscript file line. Goto step 2.

8. End. No moreembeddedflags will be recognized.

Here is an example of the use ofembeddedflags within thescript file.

#
Batch request script example:
#
@$-a "11:30pm EDT" -lt "21:10, 20:00"
Run request after 11:30 EDT by default,
and set a maximum per-process CPU time
limit of 21 minutes and ten seconds.
Send a warning signal when any process
of the running batch request consumes
more than 20 minutes of CPU time.
QSUB -lT 1:45:00
Set a maximum per-request CPU time limit
of one hour, and 45 minutes. (The
implementation of CPU time limits is
completely dependent upon the UNIX
implementation at the execution
machine.)
QSUB-mb -me # Send mail at beginning and end of
request execution.
@$-q batch1 # Queue request to queue: batch1 by
default.
@$ # No more embedded flags.
#
make all

The following paragraphs give the detailed descriptions of theflagssupported by theQsubcommand.

2

Q () Q ()

−a date-time Do not run the batch request before the specified date and/or time. If adate-timespecifica-
tion is comprised of two or more tokens separated by whitespace characters, then thedate-
time specification must be placed within double quotes as in:−a "July, 4, 2026 12:31-EDT",
or otherwise escaped such thatQsuband the shell will interpret the entiredate-timespecifi-
cation as a single character string. This restriction also applies when an embedded default
−a flag with accompanyingdate-timespecification appears within the batch requestscript
file.

The syntax accepted for thedate-timeparameter is relatively flexible. Unspecified date and
time values default to an appropriate value (e.g. if no date is specified, then the current
month, day, and year are assumed).

A date may be specified as a month and day (current year assumed), or the year can also be
explicitly specified. It is also possible to specify the date as a weekday name (e.g. "Tues"),
or as one of the strings: "today", or "tomorrow". Weekday names and month names can be
abbreviated by any three character (or longer) prefix of the actual name. An optional period
can follow an abbreviated month or day name.

Time of day specifications can be given using a twenty-four hour clock, or "am" and "pm"
specifications may be used alternatively. In the absence of a meridian specification, a
twenty-four hour clock is assumed.

It should be noted that the time of day specification is interpreted using the precise meridian
definitions whereby "12am" refers to the twenty-four hour clock time of 0:00:00, "12m"
refers to noon, and "12-pm" refers to 24:00:00. Alternatively, the phrases "midnight" and
"noon" are accepted as time of day specifications, where "midnight" refers to the time of
24:00:00.

A timezone may also appear at any point in thedate-timespecification. Thus, it is legal to
say: "April 1, 1987 13:01-PDT". In the absence of a timezone specification, the local time-
zone is assumed, with daylight savings time being inferred when appropriate, based on the
date specified.

All alphabetic comparisons are performed in a case insensitive fashion such that both "WeD"
and "weD" refer to the day of Wednesday.

Some validdate-timeexamples are:

01-Jan-1986 12am,PDT
Tuesday, 23:00:00
11pm tues.
tomorrow 23-MST

−e [machine:][[/]path/] stderr-filename
Direct output generated by the batch request which is sent to thestderr file to the named
[machine:][[/]path/] stderr-filename.

The brackets "[" and "]" enclose optional portions of thestderr destinationmachine, path,
andstderr-filename.

If no explicit machinedestination is specified, then the destination machine defaults to the
machine that originated the batch request, or to the machine that will eventually run the
request, depending on the respective absence, or presence of the−ke flag.

If no machinedestination is specified, and the path/filename does not begin with a "/", then
the current working directory is prepended to create a fully qualified path name, provided
that the−ke (keep stderr) flag is also absent. In all other cases, any partial path/filename is
interpreted relative to the user’s home directory on thestderr destination machine.

This flag cannot be specified when the−eoflag option is also present.

3

Q () Q ()

If the −eoand−e [machine:][[/]path/] stderr-filenameflag options are not present, then all
stderr output for the batch request is sent to the file whose name consists of the first seven
characters of therequest-namefollowed by the characters: ".e", followed by the request
sequence number portion of therequest-iddiscussed below. In the absence of the−ke flag,
this defaultstderr output file will be placed on the machine that originated the batch request
in the current working directory, as defined when the batch request was first submitted. Oth-
erwise, the file will be placed in the user’s home directory on the execution machine.

−eo Direct all output that would normally be sent to thestderr file to thestdoutfile for the batch
request. This flag cannot be specified when the−e [machine:][[/]path/] stderr-filenameflag
option is also present.

−ke In the absence of an explicitmachinedestination for thestderr file produced by a batch
request, themachinedestination chosen for thestderr output file is the machine that origi-
nated the batch request. In some cases however, this behavior may be undesirable, and so
the−ke flag can be specified which instructsNQSto leave anystderr output file produced by
the request on the machine that actuallyexecutedthe batch request.

This flag is meaningless if the−eo flag is specified, and cannot be specified if an explicit
machinedestination is given for thestderr parameter of the−eflag.

−ko In the absence of an explicitmachinedestination for thestdout file produced by a batch
request, themachinedestination chosen for thestdoutoutput file is the machine that origi-
nated the batch request. In some cases however, this behavior may be undesirable, and so
the −ko flag can be specified which instructsNQS to leave anystdoutoutput file produced
by the request on the machine that actuallyexecutedthe batch request.

This flag cannot be specified if an explicitmachinedestination is given for thestdoutparam-
eter of the−o flag.

−lc per-process corefile size limit
Set aper-processmaximumcore file size limitfor all processes that constitute the running
batch request. If any process comprising the running request attempts to exit creating a core
file whose size would exceed the maximumper-process core file size limitfor the request,
then the core file image of the aborting process will be reduced to the necessary size by an
algorithm dependent upon the underlyingUNIX implementation.

Not all UNIX implementations supportper-process corefile size limits. If a batch request
specifies this limit, and the machine upon which the batch request is eventually run does not
support the enforcement of this limit, then the limit is simply ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-process corefile size limit.

−ld per-process data-segment size limit [, warn-limit]
Set aper-processmaximum and an optional warningdata-segment size limitfor all pro-
cesses that constitute the running batch request. If any process comprising the running
request exceeds the maximumper-process data-segment size-limitfor the request, then that
process is terminated by a signal chosen by the underlyingUNIX implementation.

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-process data-segment warning size limits. When a warning limit is exceeded, a
signal as determined by the underlyingUNIX implementation is delivered to the offending
process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−ld flag with its associated limit value(s) appears within the batch requestscript file.

4

Q () Q ()

Not all UNIX implementations supportper-process data-segment size limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually run
does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-process data-segment size
limit .

−lf per-process permanent-file size limit [, warn-limit]
Set aper-processmaximum and an optional warningpermanent-file size limitfor all pro-
cesses that constitute the running batch request. If any process comprising the running
request attempts to write to a permanent file such that the file size would increase beyond the
maximumper-process permanent-file size limitfor the request, then that process is termi-
nated by a signal chosen by the underlyingUNIX implementation.

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-process warning permanent-file size limits. When a warning limit is exceeded, a
signal as determined by the underlyingUNIX implementation is delivered to the offending
process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−lf flag with its associated limit value(s) appears within the batch requestscript file.

Not all UNIX implementations supportper-process permanent-file size limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually run
does not support the enforcement of this limit, then the limit is simply ignored.

At the time of this writing, the author was unaware of anyUNIX implementation that made a
distinction at thekernel level, betweenpermanent, and temporary files. While it is cer-
tainly possible to construct apseudo-temporaryfile by first creating it, and then unlinking its
pathname, the disk space allocated for such a file will be allocated from the same pool of
disk space that all otherUNIX files are allocated from. Furthermore, such a file will be sub-
ject to the same quota enforcement mechanisms, if any are provided by the underlyingUNIX
implementation, that all otherUNIX files are created under.

For all UNIX implementations that do not support a distinction betweenpermanent, andtem-
porary files at thekernel level, this limit is interpreted as aper-process file size limit, with
the wordpermanentremoved from the definition.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-process permanent-file size
limit .

−lF per-request permanent-file space limit [, warn-limit]
Set aper-requestmaximum and an optional warning cumulativepermanent-file space limit
for all processes that constitute the running batch request. If any process comprising the
running request attempts to write to a permanent file such that the file space consumed by all
permanent files opened for writing by all of the processes in the batch request, would
increase beyond the maximumper-request permanent-file space limitfor the request, then
all of the processes in the request will be terminated by a signal chosen by the underlying
UNIX implementation.

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-request warning permanent-file space limits. When such a warning limit is
exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlyingUNIX implementation.

5

Q () Q ()

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−lF flag with its associated limit value(s) appears within the batch requestscript file.

Not all UNIX implementations supportper-request permanent-file space limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually run
does not support the enforcement of this limit, then the limit is simply ignored.

At the time of this writing, the author was unaware of anyUNIX implementation that made a
distinction at thekernel level, betweenpermanent, and temporary files. While it is cer-
tainly possible to construct apseudo-temporaryfile by first creating it, and then unlinking its
pathname, the disk space allocated for such a file will be allocated from the same pool of
disk space that all otherUNIX files are allocated from. Furthermore, such a file will be sub-
ject to the same quota enforcement mechanisms, if any are provided by the underlyingUNIX
implementation, that all otherUNIX files are created under.

For all UNIX implementations that do not support a distinction betweenpermanent, andtem-
porary files at thekernel level, this limit is interpreted as aper-request file space limit, with
the wordpermanentremoved from the definition.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-request permanent-file
space limit.

−lm per-process memory size limit [, warn-limit]
Set aper-processmaximum and an optional warningmemory size limitfor all processes that
constitute the running batch request. If any process comprising the running request exceeds
the maximumper-process memory size limitfor the request, then that process is terminated
by a signal chosen by the underlyingUNIX implementation.

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-process warning memory size limits. When a warning limit is exceeded, a sig-
nal as determined by the underlyingUNIX implementation is delivered to the offending pro-
cess.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−lm flag with its associated limit value(s) appears within the batch requestscript file.

Not all UNIX implementations supportper-process memory size limits. If a batch request
specifies this limit, and the machine upon which the batch request is eventually run does not
support the enforcement of this limit, then the limit is simply ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-process memory size limit.

−lM per-request memory space limit [, warn-limit]
Set aper-requestmaximum and an optional warning cumulativememory space limitfor all
processes that constitute the running batch request. If the sum of all memory consumed by
all of the processes comprising the running request exceeds the maximumper-request mem-
ory space limitfor the request, then all of the processes in the request will be terminated by
a signal chosen by the underlyingUNIX implementation.

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-request warning memory size limits. When such a warning limit is exceeded, a
signal is delivered to one or more of the processes comprising the running request, depend-
ing upon the underlyingUNIX implementation.

6

Q () Q ()

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−lM flag with its associated limit value(s) appears within the batch requestscript file.

Not all UNIX implementations supportper-request memory space limits. If a batch request
specifies this limit, and the machine upon which the batch request is eventually run does not
support the enforcement of this limit, then the limit is simply ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-request memory space
limit .

−ln per-process nice value limit
Set aper-process nice valuefor all processes comprising the running batch request.

At present, allUNIX implementations support the use of an integer called thenice value,
which determines theexecution-timepriority of a process relative to all other processes in
the system. By letting the user set a limit on thenice value for all processes comprising the
running request, a user can cause a request to consume less (or more) of theCPU resource
presented by the execution machine.

This is particularly useful when a user wishes to execute aCPU intensive batch request on a
machine running interactive processes. By setting a lowexecution-time priority, a user can
make a long running batch request give way to more interactive processes during the day-
time, while the coming of the nighttime hours with typically smaller process loads will allow
such a request to gain more and more of theCPU resource. In this way, long running batch
requests can be polite to their more transient, interactive neighbor processes.

The only quirk associated with this flag results from the peculiar choice ofnice values,
implemented by the standardUNIX implementations. In general, increasinglynegativenice
values cause the relative execution priority of a process toincrease, while increasinglyposi-
tive nice values causes the relative priority todecrease! Thus, anice valuelimit specifica-
tion of: "-ln -10" is greedier than anice valuelimit specification of: "-ln 0".

Since varyingUNIX implementations often support a different finite range ofnice values,
NQS allows the specification ofnice valuesthat can eventually turn out to be outside the
limits for theUNIX implementation running at theexecutionmachine. In such cases,NQS
will simply bind the specifiednice valuelimit to within the necessary range as appropriate.

Lastly, anynice valuespecified by the use of this flag must be acceptable to the batch queue
in which the request is ultimately placed (see the section entitledLIMITS for more informa-
tion).

−ls per-process stack-segment size limit [, warn-limit]
Set aper-processmaximum and an optional warningstack-segment size limitfor all pro-
cesses that constitute the running batch request. If any process comprising the running
request exceeds the maximumper-process stack-segment size limitfor the request, then that
process is terminated by a signal chosen by the underlyingUNIX implementation.

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-process warning stack-segment size limits. When a warning limit is exceeded, a
signal as determined by the underlyingUNIX implementation is delivered to the offending
process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−ls flag with its associated limit value(s) appears within the batch requestscript file.

7

Q () Q ()

Not all UNIX implementations supportper-process stack-segment size limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually run
does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-process stack-segment size
limit .

−lt per-processCPU time limit [, warn-limit]
Set aper-processmaximum and an optional warningCPU time limit for all processes that
constitute the running batch request. If any process comprising the running request exceeds
the maximumper-processCPU time limit for the request, then that process is terminated by
a signal chosen by the underlyingUNIX implementation.

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-processCPU warning time limits. When a warning limit is exceeded, a signal as
determined by the underlyingUNIX implementation is delivered to the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−lt flag with its associated limit value(s) appears within the batch requestscript file.

Not all UNIX implementations supportper-processCPU time limits. If a batch request speci-
fies this limit, and the machine upon which the batch request is eventually run does not sup-
port the enforcement of this limit, then the limit is simply ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-processCPU time limit.

−lT per-requestCPU time limit [, warn-limit]
Set aper-requestmaximum and an optional warning cumulativeCPU time limit for all of the
processes that constitute the running batch request. If the sum of theCPU times consumed
by all of the processes in the batch request exceeds the maximumper-requestCPU time limit
for the request, then all of the processes in the request will be terminated by a signal chosen
by the underlyingUNIX implementation.

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-requestCPU warning time limits. When such a warning limit is exceeded, a sig-
nal is delivered to one or more of the processes comprising the running request, depending
upon the underlyingUNIX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−lT flag with its associated limit value(s) appears within the batch requestscript file.

Not all UNIX implementations supportper-requestCPU time limits. If a batch request speci-
fies this limit, and the machine upon which the batch request is eventually run does not sup-
port the enforcement of this limit, then the limit is simply ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-requestCPU time limit.

−lv per-process temporary file size limit [, warn-limit]
Set aper-processmaximum and an optional warningtemporary (volatile) file size limitfor
all processes that constitute the running batch request. If any process comprising the run-
ning request attempts to write to atemporary file such that the file size would increase
beyond the maximumper-process temporary-file size limitfor the request, then that process
is terminated by a signal chosen by the underlyingUNIX implementation.

8

Q () Q ()

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-process warning temporary-file size limits. When a warning limit is exceeded, a
signal as determined by the underlyingUNIX implementation is delivered to the offending
process.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−lv flag with its associated limit value(s) appears within the batch requestscript file.

At the time of this writing, noUNIX operating system known to the author supported a dis-
tinction at thekernel level betweenpermanentand temporary files. Certainly, apseudo-
temporaryfile can be constructed by creating it, and then unlinking its pathname. However,
the file space allocated for such a file will be allocated from the same pool of disk space that
all otherUNIX files are allocated from.

Until a mechanism is implemented in thekernel that knows aboutpermanentand tempo-
rary files, this limit cannot be supported in the sense most useful for batch requests, namely
the strict enforcement of disk quotas forpermanentversustemporaryfiles.

Until such a time, this limit will simply be ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-process temporary-file size
limit .

−lV per-request temporary file space limit [, warn-limit]
Set aper-requestmaximum and an optional warning cumulativetemporary (volatile) file
space limitfor all processes that constitute the running batch request. If any process com-
prising the running request attempts to write to atemporaryfile such that the file space con-
sumed by alltemporaryfiles opened for writing by all of the processes in the batch request
would increase beyond the maximumper-request temporary-file space limitfor the request,
then all of the processes in the request will be terminated by a signal chosen by the underly-
ing UNIX implementation.

The ability to specify an optional warning limit exists for thoseUNIX operating systems that
supportper-request warning temporary-file space limits. When such a warning limit is
exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlyingUNIX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or more
tokens separated by whitespace characters, then the specification must be enclosed within
double quotes, or otherwise escaped such thatQsub and the shell will interpret the entire
specification as a single character string token. This caveat also applies when an embedded
default−lV flag with its associated limit value(s) appears within the batch requestscript file.

At the time of this writing, noUNIX operating system known to the author supported a dis-
tinction at thekernel level betweenpermanentand temporary files. Certainly, apseudo-
temporaryfile can be constructed by creating it, and then unlinking its pathname. However,
the file space allocated for such a file will be allocated from the same pool of disk space that
all otherUNIX files are allocated from.

Until a mechanism is implemented in thekernel that knows aboutpermanentand tempo-
rary files, this limit cannot be supported in the sense most useful for batch requests, namely
the strict enforcement of disk quotas forpermanentversustemporaryfiles.

Until such a time, this limit will simply be ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of atemporary-file space limit.

9

Q () Q ()

−lw per-process working set size limit
Set aper-processmaximumworking set size limitfor all processes that constitute the run-
ning batch request.

Not all UNIX implementations supportper-process working set size limits, and such a limit
only makes sense in the context of a paged virtual memory machine. If a batch request spec-
ifies this limit, and the machine upon which the batch request is eventually run does not sup-
port the enforcement of this limit, then the limit is simply ignored.

See the section entitledLIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of aper-process working set size
limit .

−mb Send mail to the user on the originating machine when the request begins execution. If the
−mu flag is also present, then mail is sent to the user specified for the−mu flag instead of to
the invoking user.

−me Send mail to the user on the originating machine when the request has ended execution. If
the−mu flag is also present, then mail is sent to the user specified for the−mu flag instead
of to the invoking user.

−mu user-name
Specify that any mail concerning the request should be delivered to the useruser-name.
User-name may be formatted either asuser (containing no ‘@’ characters), or as
user@machine. In the absence of this flag, any mail concerning the request will be sent to
the invoker on the originating machine.

−nr Declare that the request is non-restartable. If this flag is specified, then the request will not
be restarted byNQSupon system boot if the request was running at the time of anNQSshut-
down or system crash.

By default,NQSassumes that all requests are restartable, with the caveat that it is the respon-
sibility of the user to ensure that the request will execute correctly if restarted, by the use of
appropriate programming techniques.

Requests that are not running are always preserved across host crashes andNQS shutdowns
for later requeueing, with or without this flag.

WhenNQS is shutdown via an operator command to theqmgr(1M) NQS control program, a
SIGTERM signal is sent to all processes comprising all runningNQS requests on the local
host, and all queuedNQS requests are barred from beginning execution. After a finite num-
ber of seconds have elapsed (typically sixty, but this value can be overridden by the opera-
tor), all remaining processes comprising all remaining runningNQS requests are killed by
the signal:SIGKILL .

For anNQSrequest to be properly restarted after anNQSshutdown, the−nr flag must not be
specified, and the spawned batch request shell must ignoreSIGTERM signals (which is done
by default). The spawned batch request shell must also not exit before the finalSIGKILL
arrives. Since the batch request shell is simply spawning commands and programs, waiting
for their completion, this implies that the commands and programs being executed by the
batch request shell must also be immune toSIGTERM signals, saving state as appropriate
before being killed by the finalSIGKILL signal.

See theCAVEATS section below for more discussion concerning the restartability of batch
requests.

−o [machine:][[/]path/] stdout-filename
Direct output generated by the batch request which is sent to thestdout file to the named
[machine:][[/]path/] stdout-filename.

The brackets "[" and "]" enclose optional portions of thestdoutdestinationmachine, path,
andstdout-filename.

10

Q () Q ()

If no explicit machinedestination is specified, then the destination machine defaults to the
machine that originated the batch request, or to the machine that will eventually run the
request, depending on the respective absence, or presence of the−ko flag.

If no machinedestination is specified, and the path/filename does not begin with a "/", then
the current working directory is prepended to create a fully qualified path name, provided
that the−ko (keep stdout) flag is also absent. In all other cases, any partial path/filename is
interpreted relative to the user’s home directory on thestdoutdestination machine.

If no −o [machine:][[/]path/] stdout-filenameflag is specified, then allstdoutoutput for the
batch request is sent to the file whose name consists of the first seven characters of the
request-namefollowed by the characters: ".o", followed by the request sequence number
portion of therequest-iddiscussed below. In the absence of the−ko flag, this defaultstdout
output file will be placed on the machine that originated the batch request in the current
working directory, as defined when the batch request was first submitted. Otherwise, the file
will be placed in the user’s home directory on the execution machine.

−p priority Explicitly assign anintra-queuepriority to the request. The specifiedpriority must be an
integer, and must be in the range [0..63], inclusive. A value of 63 defines the highestintra-
queuerequest priority, while a value of 0 defines the lowest. This priority doesnot deter-
mine the execution priority of the request. This priority is only used to determine the rela-
tive ordering of requests within a queue.

When a request is added to a queue, it is placed at a specific position within the queue such
that it appears ahead of all existing requests whose priority is less than the priority of the
new request. Similarly, all requests with a higher priority will remain ahead of the new
request when the queueing process is complete. When the priority of the new request is
equal to the priority of an existing request, the existing request takes precedence over the
new request.

If no intra-queuepriority is chosen by the user, thenNQSassigns a default value.

−q queue-name
Specify the queue to which the batch request is to be submitted. If no−q queue-namespeci-
fication is given, then the user’s environment variable set is searched for the variable:
QSUB_QUEUE. If this environment variable is found, then the character string value for
QSUB_QUEUE is presumed to name the queue to which the request should be submitted. If
the QSUB_QUEUE environment variable is not found, then the request will be submitted to
the default batch request queue,if defined by the local system administrator. Otherwise, the
request cannot be queued, and an appropriate error message is displayed to this effect.

−r request-name
Assign the specifiedrequest-nameto the request. In the absence of an explict−r request-
namespecification, therequest-namedefaults to the name of thescript file (leading path
name removed) given on the command line. If noscript file was giv en, then the default
request-nameassigned to the request isSTDIN.

In all cases, if therequest-nameis found to begin with a digit, then the character ’R’ is
prepended to prevent arequest-namefrom beginning with a digit. Allrequest-namesare
truncated to a maximum length of 15 characters.

−re By default, all output generated by a batch request sent to thestderrfile is temporarily into a
file residing in a protected directory on the machine that executes the request. When the
batch request completes execution, this file is then spooled to its final destination, possibly
on a remote machine.

This default spooling of thestderr output file is done to reduce the network traffic costs
incurred by the submitter (owner) of a batch request which is to return itsstderr output to a
remote machine upon completion. In some cases, this behavior is not desired. If it is neces-
sary to override this behavior, then the−re flag can be specified which says thatstderr

11

Q () Q ()

output produced by the request is to beimmediatelywritten to the final destination file, as
output is generated, no matter what the networking cost.

Circumstances may not allow a giv enNQS implementation to support this flag, in which
case it will be ignored, and thestderr output file will simply be spooled as it ordinarily
would without this flag.

−ro By default, all output generated by a batch request sent to thestdout file is temporarily
spooled into a file residing in a protected directory on the machine that executes the request.
When the batch request completes execution, this file is then spooled to its final destination,
possibly on a remote machine.

This default spooling of thestdout output file is done to reduce the network traffic costs
incurred by the submitter (owner) of a batch request which is to return itsstdoutoutput to a
remote machine upon completion. In some cases, this behavior is not desired. If it is neces-
sary to override this behavior, then the−ro flag can be specified which says thatstdoutout-
put produced by the request is to beimmediatelywritten to the final destination file, as out-
put is generated, no matter what the networking cost.

Circumstances may not allow a giv enNQS implementation to support this flag, in which
case it will be ignored, and thestdoutoutput file will simply be spooled as it ordinarily
would without this flag.

−sshell-name
Specify the absolute path name of the shell which will be used to interpret the batch request
script. This flag unconditionally overrides anyshell strategyconfigured on the execution
machine for selecting which shell to spawn in order to interpret the batch request script.

In the absence of this flag, theNQSsystem at the execution machine will use one of three (3)
distinct shell choice strategiesfor the execution of the batch request. Any one of the three
strategies can be configured by a system administrator for eachNQSmachine.

The three shell strategies are called:

fixed,
free, and
login.

These shell strategies respectively cause the configuredfixed shell to be exec’d to interpret
all batch requests, cause the user’s login shell as defined in the password file to be exec’d
which in turn chooses and spawns the appropriate shell for interpreting the batch request
script, or cause only the user’s login shell to be exec’d to interpret the script.

A shell strategy offixed means that the same shell (as configured by the system administra-
tor), will be used to executeall batch requests.

A shell strategy offree will run the batch request scriptexactly as would an interactive
invocation of the script, and is the defaultNQSshell strategy.

The strategies offixed and login exist for host systems that are short on available free pro-
cesses. In these two strategies, a single shell is exec’d, and that same shell is the shell that
executes all of the commands in the batch request script.

Theshell strategyconfigured for a particularNQSsystem can be determined by theqlimit(1)
command.

−x Export all environment variables. When a batch request is submitted, the current values of
the environment variables:HOME , SHELL , PATH , LOGNAME (not all systems),USER (not
all systems),MAIL , andTZ are saved for later recreation when the batch request is spawned,
as the respective environment variables:QSUB_HOME, QSUB_SHELL, QSUB_PATH,
QSUB_LOGNAME , QSUB_USER, QSUB_MAIL , andQSUB_TZ. Unless the−x flag is speci-
fied, no other environment variables will be exported from the originating host for the batch

12

Q () Q ()

request. If the−x flag option is specified, then all remaining environment variables whose
names do not conflict with the automatically exported variables, are also exported with the
request. These additional environment variables will be recreated under the same name
when the batch request is spawned.

−z Submit the batch request silently. If the request is submitted successfully, then no messages
are displayed indicating this fact. Error messages will, however, always be displayed.

If the batch request is successfully submitted and the−z flag has not been specified, therequest-idof the
request is displayed to the user. Arequest-idis always of the form:seqno .hostnamewhereseqnorefers to
the sequence number assigned to the request byNQS, andhostnamerefers to the name of originating local
machine. This identifier is used throughoutNQS to uniquely identify the request, no matter where it is in
the network.

The following events take place in the following order when anNQSbatch request is spawned:

The process that will become the head of theprocess groupfor all processes comprising the
batch request is created byNQS.

Resource limits are enforced.

The real and effective group-id of the process is set to the group-id as defined in the local
password file for the request owner.

The real and effective user-id of the process is set to the real user-id of the batch request
owner.

The user file creation mask is set to the value that the user had on the originating machine
when the batch request was first submitted.

It the user explicitly specified a shell by use of the−s flag (discussed above), then that user-
specified shell is chosen as the shell that will be used to execute the batch request script.
Otherwise, a shell is chosen based upon theshell strategyas configured for the localNQS
system (see the earlier discussion of the−s flag for a description of the possibleshell strate-
gies that can be configured for anNQSsystem).

The environment variables ofHOME , SHELL , PATH , LOGNAME (not all systems),USER
(not all systems), andMAIL are set from the user’s password file entry, as though the user
had logged directly into the execution machine.

The environment string:ENVIRONMENT=BATCH is added to the environment so that shell
scripts (and the user’s.profile (Bourne shell) or .cshrcand.login (C-shell) scripts), can test
for batch request execution when appropriate, and not (for example) perform any setting of
terminal characteristics, since a batch request is not connected to an input terminal.

The environment variables ofQSUB_WORKDIR , QSUB_HOST, QSUB_REQNAME, and
QSUB_REQID are added to the environment. These environment variables equate to the
obvious respective strings of the working directory at the time that the request was submit-
ted, the name of the originating host, the name of the request, and the requestrequest-id.

All of the remaining environment variables saved for recreation when the batch request is
spawned are added at this point to the environment. When a batch request is initially sub-
mitted, the current values of the environment variables:HOME , SHELL , PATH , LOGNAME
(not all systems),USER (not all systems),MAIL , andTZ are saved for later recreation when
the batch request is spawned. When recreated however, these variables are added to the
environment under the respective names:QSUB_HOME, QSUB_SHELL, QSUB_PATH,
QSUB_LOGNAME , QSUB_USER, QSUB_MAIL , andQSUB_TZ, to avoid the obvious con-
flict with the local version of these environment variables. Additionally, all environment
variables exported from the originating host by the−x option are added to the environment
at this time.

The current working directory is then set to the user’s home directory on the execution
machine, and the chosen shell is exec’d to execute the batch request script with the

13

Q () Q ()

environment as constructed in the steps outlined above.

In all cases, the chosen shell is exec’d as though it were thelogin shell. If theBourneshell is chosen to
execute the script, then the.profile file is read. If theC-shell is chosen, then the.cshrc and .login scripts
are read.

If the user did not specify a specific shell for the batch request, thenNQS chooses which shell should be
used to execute the shell script, based on theshell strategyas configured by the system administrator (see
the earlier discussion of the−sflag).

In such a case, afree shell strategy instructsNQSto execute the login shell for the user (as configured in the
password file). The login shell is in turn instructed to examine the shell script file, and fork another shellof
the appropriate typeto interpret the shell script, behavingexactlyas an interactive inv ocation of the script.

Otherwise no additional shell is spawned, and the chosenfixedor login shell sequentially executes the com-
mands contained in the shell script file until completion of the batch request.

QUEUE TYPES
NQS supports four different queue types that serve to provide four very different functions. These four
queue types are known asbatch, device, pipe, andnetwork.

The queue type ofbatchcan only be used to executeNQSbatch requests. Only NQSbatch requestscreated
by theqsub(1) command can be placed in abatch queue.

The queue type ofdevicecan only be used to executeNQSdevice requests. Only NQSdevice requestscre-
ated by theqpr(1) command can be placed in adevice queue.

Queues of typepipe are used to sendNQSrequests to otherpipe queues, or to request destination queues of
typebatchor device, as appropriate for the request type. In general,pipe queues, in combination withnet-
work queues, act as the mechanism thatNQS uses to transport bothbatch anddevice requests to distant
queues on other remote machines. It is also perfectly legal for apipe queueto transport requests to queues
on thesamemachine.

When apipe queueis defined, it is given adestination setwhich defines the set of possible destination
queues for requests entered in thatpipe queue. In this manner, it is possible for abatchor devicerequest to
pass through many pipe queues on its way to its ultimate destination, which must eventually be a queue of
typebatchor device(matching the request type).

Eachpipe queuehas an associatedserver. For each request handled by apipe queue, the associated server
is spawned which must select a queue destination for the request being handled, based on the characteristics
of the request, and upon the characteristics of each queue in thedestination setdefined for the pipe queue.

Since a different server can be configured for each pipe queue, andbatch and device queues can be
endowed with thepipeonlyattribute that will only admit requests queued via anotherpipe queue, it is pos-
sible for respectiveNQSinstallations to usepipe queuesas arequest classmechanism, placing requests that
ask for different resource allocations in different queues, each of which can have different associated limits
and priorities.

It is also completely possible for apipe queue server, when handling a request, to discover that nodestina-
tion queuewill accept the request, for various reasons which can include insufficient resource limits to
execute the request, or a lack of a corresponding account or privilege for queueing at a remote queue. In
such circumstances, the request will be deleted, and the user will be notified by mail (seemail(1)).

The queue type ofnetwork, as alluded to earlier, is implicitly used bypipe queues to passNQS requests
between machines, and is also used to handle queued file transfer operations.

QUEUE ACCESS
NQS supports queue access restrictions. For each queue of queue type other thannetwork, access may be
eitherunrestrictedor restricted. If access isunrestricted, any request may enter the queue. If access is
restricted, a request can only enter the queue if the requester or the requester’s login group has been given
access to that queue (seeqmgr(1M)). Requests submitted by root are an exception; they are always
queued, even if root has not explicitly been given access.

14

Q () Q ()

Useqstat(1) to determine who has access to a particular queue.

LIMITS
NQS supports many batch request resource limit types that can be applied to anNQS batch request. The
existence of configurable resource limits allows anNQS user to set resource limits within which his or her
request must execute. In many instances, smaller limit values can result in a more favorable scheduling
policy for a batch request.

The syntax used to specify alimit-value for one of thelimit-flags (−llimit-letter-type), is quite flexible, and
describes values for two general limit categories. These two general categories respectively deal with time
related limits, and those limits are not time related.

Forfinite CPUtime limits, thelimit-value is expressed in the reasonably obvious format:

[[hours :] minutes :] seconds [.milliseconds]

Whitespace can appear anywhere between the principal tokens, with the exception that no whitespace can
appear around the decimal point.

Example timelimit-values are:

1234 : 58 : 21.29 − 1234 hrs 58 mins 21.290 secs
12345 − 12345 seconds
121.1 − 121.100 seconds
59:01 − 59 minutes and 1 second

For all otherfinite limits (with the exclusion of thenice limit-value−ln), the acceptable syntax is:

.fraction [units]

or

integer [.fraction] [units]

where theinteger and fraction tokens represent strings of up to eight decimal digits, denoting the obvious
values. In both cases, theunits of allocation may also be specified as one of the case insensitive strings:

b − bytes
w − words
kb − kilobytes (2ˆ10 bytes)
kw − kilowords (2ˆ10 words)
mb − megabytes (2ˆ20 bytes)
mw − megawords (2ˆ20 words)
gb − gigabytes (2ˆ30 bytes)
gw − gigaw ords (2ˆ30 words)

In the absence of anyunits specification, the units ofbytesare assumed.

For all limit types with the exception of thenice limit-value(−ln), it is possible to state that no limit should
be applied. This is done by specifying alimit-value of "unlimited", or any initial substring thereof. When-
ev er aninfinite limit-value is specified for a particular resource type, then the batch request operates as
though no explicit limits have been placed upon the corresponding resource, other than by the limitations of
the physical hardware involved.

The complications caused bybatch requestresource limits first show up when queueing abatch requestin
abatch queue. This operation is described in the following paragraphs.

If a batch request specifies a limit that cannot be enforced by the underlyingUNIX implementation, then the
limit is simply ignored, and the batch request will operate as though there were no limit (other than the

15

Q () Q ()

obvious physical maximums), placed upon that resource type. (See theqlimit(1) command to find out what
limits are supported by a given machine.)

For each remainingfinite limit that can be supported by the underlyingUNIX implementation that isnot a
CPU time-limit or UNIX execution-time nice-value-limit, the limit-value is internally converted to the units
of bytesor words, whichever is more appropriate for the underlying machine architecture.

As an example, aper-process memory size limit valueof 321 megabytes would be interpreted as 321 x 2ˆ20
bytes, provided that the underlying machine architecture was capable of directly addressing single bytes.
Thus the original limitcoefficientof 321 would become 321 x 2ˆ20. On a machine that was only capable of
addressing words, the appropriate conversion of 321 x 2ˆ20bytes / #of-bytes-per-wordwould be per-
formed.

If the result of such a conversion would cause overflow when the coefficient was represented as asigned-
long integeron the supporting hardware, then the coefficient is replaced with the coefficient of: of 2ˆN-1
whereN is equal to the number of bits of precision in a signed long integer. For typical 32-bit machines,
this default extreme limitwould therefore be 2ˆ31-1 bytes. For word addressable machines in the super-
computer class supporting 64-bit long integers, thedefault extreme limitwould be 26̂3-1 words.

Lastly, some implementations ofUNIX reserve coefficients of the form: 2ˆN-1 as synonymous with infinity,
meaning no limit is to be applied. For suchUNIX implementations,NQS further decrements thedefault
extreme limitso as not to imply infinity.

The identical internal conversion process as described in the preceding paragraphs is also performed for
eachfinite limit-valueconfigured for a particular batch queue using theqmgr(1M) program.

After all of the applicablelimit-valueshave been converted as described above, each such resultinglimit-
value is then compared against the correspondinglimit-value as configured for the destination batch queue.
If, for every type of limit, the batch queuelimit-value is greater thanor equal to the corresponding batch
requestlimit-value, then the request can be successfully queued, provided that no other anomalous condi-
tions occur. For requestinfinity limit-values, the corresponding queuelimit-value must also be configured
as infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism, either by a
direct use of theqsub(1)command, or by the indirect placement of a batch request into a batch queue via a
pipe queue. It is impossible for a batch request to be queued in anNQS batch queue ifany of these
resource limit checks fail.

Finally, if a request fails to specify alimit-value for a resource limit type that is supported on the execution
machine, then the correspondinglimit-value configured for the destination queue becomes thelimit-value
for the unspecified request limit.

Upon the successful queueing of a request in a batch queue, the set of limits under which the request will
execute is frozen, and will not be modified by subsequentqmgr(1M) commands that alter the limits of the
containing batch queue.

CAVEATS
When anNQS batch request is spawned, a newprocess-groupis established such that all processes of the
request exist in the sameprocess-group. If the qdel(1) command is used to send a signal to anNQS batch
request, the signal is sent to all processes of the request in the createdprocess-group. Howev er, should one
or more processes of the request choose to successfully execute asetpgrp(2) system call, then such pro-
cesses willnot receive any signals sent by theqdel(1) command. This can lead to "rogue" requests whose
constituent processes must be killed by other means such as thekill (1) command. However,NQS takes
advantage of anyUNIX implementations that provide a mechanism of "locking" a process, and all of its
subsequent children in a particularprocess-group. For suchUNIX implementations, this problem does not
occur.

It is extremely wise for all processes of anNQS request to catch anySIGTERM signals. By default, the
receipt of aSIGTERM signal causes the receiving process to die.NQSsends aSIGTERM signal to all pro-
cesses in the establishedprocess-groupfor a batch request as a notification that the request should be pre-
pared to be killed, either because of anabort queuecommand issued by an operator using theqmgr(1M)

16

Q () Q ()

program, or because it is necessary to shutdownNQSand all running requests as part of a general shutdown
procedure of the local host.

It must be understood that the spawnedshell ignoresSIGTERM signals. If the current immediate child of
the shell does not ignore or catchSIGTERM signals, then it will be killed by the receipt of such, and the
shell will go on to execute the next command from the script (if there is one). In any case, the shell will not
be killed by theSIGTERM signal, though the executing command will have been killed.

After receiving aSIGTERM signal delivered fromNQS, a process of a batch request typically has sixty sec-
onds to get its "house in order" before receiving aSIGKILL signal (though the sixty second duration can be
changed by the operator).

All batch requests terminated because of an operatorNQSshutdown requestthat did not specify the−nr flag
are considered restartable byNQS, and are requeued (provided that the batch request shell process is still
present at the time of theSIGKILL signal broadcast as discussed above), so that whenNQS is rebooted,
such batch requests will be respawned to continue execution. It is however, up to the user to make the
request restartable by the appropriate programming techniques.NQS simply spawns the request again as
though it were being spawned for the first time.

Upon completion of a batch request, a mail message can be sent to the submitter (see the discussion of the
−me flag above). In many instances, the completion code of the spawnedBourneor C-Shellwill be dis-
played. This is merely the value returned by the shell through theexit(2) system call.

Lastly, there is no good way to echo commands executed by unmodified versions of theBourne and C
shells. While theC-shellcan be spawned in such a fashion as to echo the commands it executes, it is often
very difficult to tell an echoed command from genuine output produced by the batch request, because no
"magic" character such as a ’$’ is displayed in front of the echoed command. TheBourneshell does not
support any echo option whatsoever.

Thus, one of the better ways to write the shell script for a batch request is to place appropriate lines in the
shell script of the form:

echo "explanatory-message"

where the echoed message should be a meaningful message chosen by the user.

LIMITATIONS AND IMPLEMENTATION NOTES
Network queues have not yet been implemented.

In the present implementation, it isnot possible to see thestderr or stdout files produced by the batch
request while the request isrunning , unless the-re and-ro flags have been respectively specified.

Lastly, the strange "@$" syntax used to introduceembedded argumentflags was chosen because it rarely
conflicts with anything else present in a shell script file.NQSusers with better minds will (rightly) suggest
improved alternatives to this convention.

SEE ALSO
qdel(1), qdev(1), qlimit(1), qpr(1), qstat(1), qmgr(1M), plus mail(1), kill(2), setpgrp(2), signal(2)

NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 − Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

17

