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Abstract

We reanalyse the time evolution of the K° — K° system in the language
of certain spectral function whose Fourier transforms give the time dependent
survival and transition amplitudes. Approximating the spectral function by an
one-pole ansatz we give insight into the limitation of the validity of one-pole
approximation, not only for small/large time scales, but also for intermediate
times where new effects, albeit small, are possible. It will be shown that the
same validity restrictions apply to the known formulae of Weisskopf-Wigner
approximation as well. The present analysis can also be applied to the effect of
vacuum regeneration of K; and Kj, a possibility pointed out by Khalfin. As a
result of this possibilty new contributions to the well known oscillatory terms
will enter the time dependent transition probabilities. These new terms are
not associated with small/large time behaviour of the amplitudes and therefore
their magnitude is apriori unknown. It will be shown that the order of magni-
tude of this new effect is very small and, in principle, its exact determination
lies outside the scope of the one-pole ansatz.



1 Introduction

The present paper reconsiders an old subject of quantum mechanical time evolution
of the K° — K° system. Instead of applying the well known Weisskopf-Wigner (WW)
approach [1] to the K° — K° system [2] we examine the time evolution in the spectral
formalism which is often employed for unstable quantum mechanical systems [3].
In this formulation the Fourier transform of a spectral density function gives the
time dependent transitions and survival amplitudes. The reasons to pick up once
again the old subject of time development are twofold. Since the WW approach is an
approximation it is rather useful to have yet another, different formalism which either
confirms the WW results (within a certain accuracy) or is capable of displaying new
(howsoever small) effects. Due to some peculiarities of the K°— K° system one might
indeed suspect that the limitations of the applicability of the WW approximations
are, 1n principle, different as compared with other quantum mechanical systems (see
below). In view of the planned high precision experiments in this system it is then
not unreasonable to reconsider this subject. Secondly, the more specific reason for
this reanalysis is a result by Khalfin on the possibilty of vacuum regeneration [4] of
Ks and Kp, [5], [6], [7]. The latter would induce new terms in the time development
formulae which lie outside the usual WW approximation and whose size needs to
be estimated. We do it here by using a more refined analysis which is based on a
consistency check of the one-pole ansatz.

The K° — K° complex is one of the most important test grounds of basic
symmetry properties of nature, like CP- and eventually CPT-(non)conservation (8],
9], [10], [11]. It has also been realized that the K° — KO system can be used as
a sensitive probe of one of the fundamental aspect of the theory of nature, namely
Quantum Mechanics [10], [11]. This and the fact that the K° — K° system is till now
the only system to show experimental evidence of CP-violation makes it clear why
this specific subject has always played an outstanding role in particle physics. Since
the discovery of CP-violation in 1964 [12] an enormous number of papers has been
devoted to this subject, but even today it is an alive area and both, the experiment
and the theory, try to infer more information towards a better understanding of CP-
violation. From the theoretical side the basic framework to calculate e¢x and € in
the SU(3)c ® SU(2)r ® U(1)y Standard Model and its various extensions is well
understood [13]. We have also a good theoretical understanding of (rare) kaon decays
[14].

Independent of any specific theory a precision experiment of Quantum Theory
in the K® — K° system is desirable. It is worth stressing that many ongoing and
suggested tests, as well as their refutals, of CP-, T-, [15], CPT-symmetry [16] and
QM [17] have directly to do with the time evolution of the system. This brings us
to the quantum mechanical time development which is indeed, beside the theoretical
determination of the system parameters ¢x and ¢}, the second pillar of the K° — K°
system. Keeping in mind that any possible violation of CPT and QM is forced to




be rather small it is quite important to examine the nature of new effects the time
development might hide beyond the WW approximation (the WW approach is an
approximation, though a rather good one). To understand why deviations from WW
are expected let us recall a well founded theorem which confirms deviations from the
exponential decay law exp(—TI't) for very small (the region of ‘quantum Zeno’ effect
(18]) and very large times [19]. It is also known that the exponential decay law can
be derived consistently up to terms of order ['/M [20] which in the case of interest 1s

'y ~15 ,

— ~ 1077, X = Kg, K|, (1.1)
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That the situation in the K® — K° system might be different can be seen from the
following reasoning. First, due to mixing the mass difference m, — m  will enter

the transition probabilities like |( K°|K°(t))|? etc. We then find, in addition to (1.1),
other dimensionless quantities like
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Of course no new effects will be present which go hand in hand with the first ratio. It
is the third dimensionless ratio in (1.2) which is intruguing and which is small enough
to be dropped in the first approximation, but on the other hand not small enough to
be neglected completely.

The second reason why the K° — K° system differs from a ‘normal’ unstable
quantum mechanical system is that the Ks and K}, defined as usual, are not orthog-
onal to each other due to the presence of CP-violation in the mixing. We mention
for completeness that this peculiar property led to speculations about a EPR-like
paradox [21] in K® — K° system. This result has, however, been criticized by sev-
eral authors [22] on account of measurement theory and wave function collapse. It 1s
therefore not unimportant to state here that the effect discussed in the present paper,
in spite of being counter-intuitive, does not violate any known principle of nature (like
causality). For a more detailed discussion on the issue of non-orthogonality of Kg
and K we refer the reader to the papers [23]. Based on this non-orthogonality it has
been proved, in the formalism of spectral functions p, and p, (suitable also otherwise
for any unstable quantum mechanical system) that the vacuum (in contrast to similar
phenomena in matter) regeneration probability of Ks <> K, 1s non-zero unless there
is no CP-violation through mixing in the K° — K° system [6], [7], [24]. To estimate
this effect one needs a reasonable ansatz for p, and p,. It has been known for some
time that the one-pole approximation serves very well the purpose (the main part
of the paper will be concerned with the question up to which accuracy we can trust
the one-pole ansatz). In [6] and [7] the one-pole approximation has been used with
the result that the new terms in the transition probability |(K°|K°(t))|? etc. are of
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the order of I', /(m, — m,). It will be shown below that a consistent treatment of
the spectral formalism in general and the one-pole approximation in specific yields a
quite different picture as far as the size of this ‘new’ effect is concerned. Indeed in
6] and |[7] not all the information available in the formalism is used. This, in our
opinion, leads to the overestimate of the effect. In detail the following will be shown
below

(1) Taking into account all available information on the spectral functions p, and
p, we investigate the consistency of the one-pole approximation and find that
1t 1s valid up to terms of order I'y, /m,, (m, — m_)/m,. It will be argued that
such corrections do arise not only for very large and very small time scales [28].

(11) Through this consistency check we can determine all parameters of the one-pole
approximation needed for the time evolution formulae (again up to accuracy of
Fy/m,,(m, —m.)/m,) in terms of known quantities.

(iii) This makes it possible to derive time evolution formulae like |( K°|K°(t))|? etc.
in the spectral formalism and with the one-pole ansatz (in the accuracy men-
tioned above) without any further assumptions. The result of a lengthy cal-

culation 1s that all formulae agree with the corresponding expressions derived
within the WW approach.

(1iv) In consequence this result shows explicitly that the vacuum regeneration prob-
ability must be of the order I', /m,, (m, — m_.)/m,. This, however, does not
mean that that such an effect is associated with small/large time behaviour of
the amplitudes.

Chiu and Sudarshan {24} treat the same subject and use the solvable Friedrichs-
Lee model to show that, in general, the conclusions of ref. [6] and {7] on the vacuum
regeneration are indeed correct. However, their numerical estimate is much more
modest and agrees with the conclusion of the present paper. It will be shown below
that one can arrive at these conclusions by a careful analysis of the one-pole ansatz
which gives us also accuracy restrictions of the WW formulae.

The paper is organized as follows. In section 2 we collect all essential and quite
general formulae for the time development. In section 3 we present two of Khalfin’s
results. Section 3 investigates the one-pole ansatz and its consistency. In section 4
all the forgoing results will be gathered to derive the time evolution of the system.
In section 5 we present our conclusions.

2 Basic Formulae

Out of the Weisskopf-Wigner approximation we will essentially need only the part
which has to do with the eigenvectors of the effective, non-hermitian Hamiltonian



which is the result of two approximations made in the Schrodinger equation [25], [26].
This part defines the K5 and K, states in the usual way

|Ks) = p|K®) + q|K°), |KL)=p|K°) — q|K°) (21)
(Ks|Ks) = (KL|KL) = |p|* + |q|* = (2.2)
(Ks|K1) = (KL|Ks) = |p|" — |q|* # 0 (2.3)

The equality (Ks|Kr) = (KL|Ks) in eq.(2.3) is imposed by CPT-invariance which
we will assume to hold throughout the paper. The presence of CP-violation in the

mixing is reflected by |p|? — |q|* # 0 which enforces the states Kg and K to be
non-orthogonal to each other. |

Since the CP-violation in the K® — K° system (or equivalently the non-

orthogonality of Ks and K ) will play an important role we define for the sake of a
short notation

Ak = |p|* - lq* (2.4)

In the context of the present paper 1t will be convenient to look upon the WW
approximation as consisting of two parts: one is the definition of K and K5 as given
in (2.1) and the other is the time development. At first glance such a separation might
look artificial. Consider, however, the following. We know that the time evolution
in the WW approach i1s not complete since we know that there will be corrections to
the WW formulae for very small/large times. It is then not unreasonable to ask if
in the full solution of the problem (2.1) gets also modified. Indeed in the first step
one can assume the validity of (2.1) [27], but try to extend the formulae for the time
evolution beyond WW. If in such an approach we derive a counter-intuitive result
like the aforementioned vacuum regeneration of K; and Kg then we are left with
two possibilities. One is to question the starting assumption (2.1), the other is of
course to accept the physical relevance of the new effect. Assuming the presence of
CP-violation in the mixing of K° «+ K° and implementing therein CPT-contraints it
is, however, hard to imagine a definition of K;, and Kg which is different from (2.1),
up to possible contributions from continuum states which we neglect (for a different
point of view where in the context of a generalized quantum mechanical vector space
the physical states are orthogonal see [23] and references therein).
Given a full, hermitian Hamiltonian A according to general principles of Quan-
tum Mechanics the time evolution for K° and K° can be summarized as follows
Pr.xs(t) = (Kale ™| Kp) = (Kol Kp(t))

1K, (1)) = e K,

K, =K° K°, (2.5)

Due to the non-orthogonality of K's and K, there is a difference between the treatment
of the time evolution of K°, K® and Kg, K;. For the former the Pg,k,(t) are



expansion coefficients 1n
K°(t)) = Proxo(t)|K°) + Pgogo ()| K°)
K°(t)) = Pgogo(t)|K®) + Pgogo(t)|K™) (2.6)

which according to the orthogonality of K° and K°® and in agreement with the first
equation in (2.5) are identical to (K,|Kp(t)) for K, = K°, K°. Since the quantum
mechanical principle |A(t)) = exp(—iHt)|A) is valid for any state |A) we can use
eqs.(2.1)-(2.3) and eq.(2.5) to derive the following time dependence of Ks and Kp,

|Ks()) = p [Proxo(t)|K°) + Pioxo (1) K% + ¢ rl'Jxoxo(t)lK ) + Pyogo(t)| K°)

|KL(t)) = p [ Proko () K°) + Pgogo (£)IK°)| — ¢ | Progo(t)| K° ) + Progo(t)| K°)
(2.7)

Note that in this section we are keeping all formulae as general as possible, in accor-
dance with the general principles of Quantum Mechanics. In analogy to eq.(2.6) and

again in full generality we can also define expansion coefficients Px x(t), Pr k(%)
Pk, k(1) and Pk g, (t) through

|Ks(t)) = Prsks(t)|Ks) + Prors(8)|KL)
|K1(t)) = Pk, k,(1)|KL) + Prsk, (1)|Ks) (2.8)

Clearly the time dependent functions Pk.k,(t) and Pk, k.(t), absent in the WW
approximation, would be, unless identical to zero, responsible for vacuum regeneration

of Ks « K. Using already the following CPT-constraint (being at same time a quite
model-indendent test for CPT conservation [7}}

Progo(t) = Pgogo(t) | (2.9)

the Pg .k .(t) etc can be easily obtained from (2.7) by using the inverse transtormation
of eq.(2.1). The result is

g p
Pr ks(t) — Pk, (t) = =Pgogo(t) + = Pgogo(t)

P q
PKSKS(t) + PKLKL(t) — PKOKO(t) + PK:oK'v'o(t) — QPKOKO(t)
1 §gq p
Prsslt) = ~Pre () = 1 LProps(0 - PP} (210

Trivially egs.(2.8) imply a relation between the expansion coefficients Pg k(1) etc
and the corresponding matrix elements (Ks|Ks(?)) etc.

(Ks|Ks(t)) = Pxsks(t) + Pr,ks(t)Ak
(Ks|KL(t)) = Pk k. (t)Ax — Pr ks(1)
(Kr|KL(t)) = Pk, k. (1) — Px ks(t)Ak
(KL|Ks(t)) = Prsks(t)Ak + Pr o ks(1) (2.11)
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This explicitly displays the above mentioned difference between the K° K° and the
Ks, K1, cases. The matrix element e.g. (KL|Kg(t)) is not equal to the corresponding
coefficient Py, k.(t). Only if we impose Ag = 0 is this equality guaranteed. Hence
this property, (K |Ks(t)) # Pk, k<(t), has nothing to do with the generality of our
formulae, but in general with the fact that Ax # 0.

Based on a S-matrix formalism developped by Sachs [29] for the K° — KO
system it has been shown in [30] that |{ Ks| K )|? cannot be interpreted as a probablity.
A safer interpretation is to say that the overlap of the corresponding wave functions
is non-zero. These interpretatory issues do not, however, affect the results presented
In section 3.

Let us now come to the main point of the paper. The question which will be
addressed in the next sections is whether [4]

Py, ko(t) = —Px.k, (1) =0 or #0 (2.12)

As discussed in the introduction it has been proved in [6], [7] (confirmed in [24])
that indeed the second possibilty must be true unless there is no CP-violation in
the mixing, 1.e. Ag = 0. We will describe this result in more detail in the next
section. Before doing so let us state explicitly that in the WW approximation we

have PKLKS(t) = "'PKSKL(t) = 0 and that the Ks¢ and Kj; have the simple time
evolution

PKSKS(t)IWW = e_imste_%rst

‘PKLKL(t)IWW — e_imLte_%FLt (2'13)

as would have been expected for physical, unstable particle states (which do not mix).
As discussed above even in the WW approximation we have

(KLIKS(t»IWW 7 0, (KSIKL(t)MWW 7é U (214)
This simple exercise tells us that after all it might not be so surprising to find
a non-zero value of Pk, k. (t) = —Pxk.k,(t) in the expansion (2.8). It is also useful

to derive two further relations which will be the basis of the discussion in the next
sections. The first one follows immediately from eq.(2.11) and reads

(Ks|KL(t)) + (KL|Ks(t)) = Ak (KL|KL(t)) + (Ks|Ks(t))] (2.15)

This expression will lead in the next section to a relation between the spectral density
functions p_. and p,. This in turn will yield a couple of consistency equation when
the spectral functions are approximated by a one-pole ansatz. To obtain the second
relation we have to essentially invert the formulae (2.10) and express the Pgogo(t)
etc matrix elements through the expansion coeflients Pk k(1) etc.

PKOK-O(t) - g’ {% [PKsKs(t) "" PKLKL(t)] + PKLKS(t)} (2'16)



PI{"OKO(t) — Eq)' {% [PK'sKs(t) — PKLKL(t)] — PKLK.S'(t)} (2'17)
Pyoxs (t) = Proga(t) = 5 [Porcs(t) + Prcysc, () (2.18)

Setting therein Py, g (t) = 0 we get

Proyz ‘ | _
kogo(t) = 8—2- = const (2.19)
Pgogo(t) g

This last equation will, when rewritten in the spectral language, lead to Agx = 0.
Hence the conclusion that Pg g, (t) # 0.

3 Spectral Formulation

For the readers convenience we will reproduce in this section two results which have
been drived in {5] and [6], [24]. The first result is a relation between p. and p, which
in section 4 will play an important role in checking the consistency of the one-pole
ansatz. The second result concerns the vacuum regeneration of K7, and Ks. We refer
the reader to the original references for a more detailed discussions on the derivation
of the two results.

What we called spectral formalism for unstable quantum mechanical systems is
based on two observations. The first one is simply the completeness of the eigenvectors
lg) of a hermitian quantum mechanical Hamiltonian. We can then write an unstable
state |A,t) (which is never an eigenstate of the Hamiltonian) as

A1) = 0,1 al) BNER)

The second observation is the reasonable assumption that the unstable state has
only projections on continuum states in which it decays. Denoting from now on the
continous eigenvalue of a Hamiltonian by m we can write the survival amplitude A(t)
(or, as in case of K° ++ K° oscillations, transition amplitude) as

A(t) = /SP&C(H) dm e p(m) (3.2)

where the integration extends over the whole spectrum of the Hamiltonian and p(m)
1S

p(m) = [(m|A)|* | (3-3)

Of course the spectrum of any sensible Hamiltonian should be bounded from below.
The ground state (vacuum) can be then normalized to have zero energy eigenvalue.
The integration range in (3.2) is in this case from 0 to co. Despite this cut-off in the
integral (3.2) imposed on us by physical requirements we stress that A(t) and p(m)
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are still Fourier-transforms of each other. This is guaranteed by the Dirichlet-Jordan
(see e.g. [31]) conditions for Fourier integrals which under certain conditions (which
we assume here to be fullfiled) allow us to introduce a finite number of discontinuities
in the Fourier integrals [32]. With the following Breit-Wigner ansatz (see [20])

I 1

= 3.4
pBW(m) 271_ (m . m0)2 + 1:‘43 ( )

we obtain then for the survival amplitude
A, ()= /Oo dme™™p (m) = e ™ot i (3.5)

which gives for the survival probability the well known exponential decay law, P_,..(t) =
|A(t)|* = exp(~TI't). Despite of what has been said about the integration range above
we have integrated in (3.5) over (—o0,00) for reasons which will be evident in sec-
tion 5. There it will become apparent that taking the integral from —oo to oo is in
some sense equivalent to neglecting terms of order I'/M (where M is the mass). The
existence of a ground state in Spec(H) indroduces non-exponential corrections (and
non-oscillatory terms in Pgogo(t) etc.) which, however, using the simple ansatz (3.4)
cannot be trusted [20]. We will discuss this ansatz further in section 4.

We can now apply the above formalism to the case of Ks and K by intro-
ducing a hermitian Hamiltonian with, as before, continuous spectrum of the decay
products which we label by indices a, 3 etc.

H|¢o) = m|da), (#p(m')|¢a(m)) = dapd(m’ —m) (3.6)

The unstable states Ks and Kj, are then written in accordance with (3.1) as super-
positions of the eigenkets.

IKS /0 dm Zps |¢cx
Ki)= [ dm 3,5 (m)léo - (3.7)

Note that this can be done for any unstable state. Therefore, strictly speaking,
equations (3.7) are as such not the definitions of |Ks) and |K). The latter are still
defined as linear superposition of |K°) and |K°) in eq.(2.1).

In what follows we convert the general formulae of section 2 into the langauge

of spectral functions p(m). To do so we first write down the matrix elements from
eq.(2.11). Using (3.6) and (3.7) they are given by

(Ks|Ks(t)) /0 dm lem |
(KulKu(t) = [, dm 3 lp, p(m)fPe™



(Ks|KL(t)) /0 dm Zp (m)p,, (m)e™™
(KilKs(t) = [ dm g, (m)ps, (m)e™™ (38)
Eq.(2.15) can be then recast in the following form

e 2 [ (m)psa(m) + o3 (m)py  (m)]
[T Sl g @9

B

Taking the inverse Fourier transform of (3.9) we arrive at

S et (m)psa(m) + p%_(m)p, . (m)] = Ak ; [|p;,ﬁ(m)|2 +lps,(m)?|  (3.10)

which is valid for m € (0,00). This equation is one of the main results [5] which
will play an important role in the subsequent discussion. It tells us that the spectral
functions p,  and p, , are inter-related with each other and any reasonable ansatz
which approximates these functions should be such that eq.(3.10) is true at least to
certain accuracy. Indeed an ansatz for p,_ and p, . similar to (3.4) does not fulfill
these requirements in full generality and in section 4 we address this question in more
detail. Note also that since eq.(3.10) is an equation in the variable m we might expect
that given a certain ansatz for the spectral functions we get more than one consistency
equations from 1it.

To obtain the second main result of {6], [7], [24] it is necessary to derive
corresponding spectral expression for Pgogo(t) etc. From (2.11), (2.16)-(2.18), (2.15)
(alternatively (3.10)) and (3.8)we see that '

Pioko(t) = Progo(t) = [ dmp g 0(m)e™™

= 5 LS s + 1oy () e 3.11)

Progo(t) =/ dmp , _ (m)e™™ = — / dm Z{lp L(m)]2 = |p, ,(m)|?
0 KOK 4p q Jo 5 5,8 L.g
— p (M)p, 5(m) + pi,ﬁ(m)ps,ﬁ(m)}e‘imt (3.12)
o'e! e 1 00 |
Pgrogo(t) = fo dmp ., (m)e™™ = yy fo dm Z{Ips,a(m)lz— ., (m)|?
400 (m)p,(m) — pz_a(m)psﬁ(m)}e-w (3.19)

10



Here p_, ,(m) etc. are simply defined by the right hand sides of the corresponding
equations. As done at the end of the forgoing section if we now set Pk, g (t) =
— Pk .k, (t) = 0 we obtain the spectral version of (2.19). We write this relation in the
following form

2

> P —tm
PO [ dm |55 ) = L ()] 7 = 0 (3.14)

By virtue of the Paley-Wiener theorem it can be shown that (3.14) (i.e. F(t) = 0) is

valid for —oo <t < co. By observing from (3.12) and (3.13) that p_ . = P, o and
taking again the inverse Fourier transform in (3.14) we get
P. _ Proso (3.15)
P
This, however, immediately leads to
Ak =|p|* ~|q|* =0 (3.16)
Hence Khalfin’s second result states that putting Pk, x.(t) = —Pk.k,(t) to zero

invariably implies that on consistency grounds there can be no CP-violation in the
mixing provided the K and K, states are defined as in eqs.(2.1). In other words since
we know that CP-violation exists in the mixing of K°— K° we have to allow for vacuum
regeneration of Kg and K. Note that this conclusion does not depend on a particular
choice of p, and p, .. This is quite an unexpected result which, using a different
approach, has also been recently confirmed [24]. As far as the interpretation of this
result is concerned we recall that the underlying assumption in the derivation was the
usual definition of K, and K as given in (2.1). We emphasize that assuming eq.(2.1),
but extending the formulae for the time evolution beyond WW is not inconsistent
from the formal point of view (in this context we should look upon the derivation as
a mathematical theorem). From physical point of view the above result tells us then
that either we accept (2.1) and the fact that the non-orthogonality of Ks and K,
makes this system different from any other known system (except for similar system
with the same properties like B® — B? or D° — D°) or we can suspect that (2.1) is,
- strictly speaking, not complete or ill-defined [23]. We will not dwell further on this
possiblity here, and refer the reader to [23] and references therein where the issue of
the orthogonality of K; and K is discussed in more detail (see also the discussion
below eq.(2.4).

In section 2 we have already mentioned that |(Ks| K )|* cannot be interpreted
as a probability [30]. Such problems are best investigated within the context of
a S-matrix approach (combined with density matrix) developed by Sachs [29]. It
would be a worthwhile task to examine the problemtic of Khalfin’s effect by using
this particular approach and eventually to find an interpretation of the coeflicient

Pr, k. (1) in eq.(2.8) [33].
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It 1s also worthwhile noting that the above result has been derived within the
context of standard Quantum Mechanics and that CPT-symmetry has been imple-
mented. Suggested tests of CPT and Quantum Mechanics based on terms which are
in general forbidden by CPT or QM are then not affected by this result provided
the chosen observables assume zero values in the limit of CPT conservation or in the
context of QM. In particular for a ® decay Bose statistics requires that

N
» —= |

V2
where q is the spatial momentum and N a normalization factor. This expression is the
starting point of many discussions of tests of QM. We emphasize that orthogonality of
the decay products is not required in (3.17). Since one can only distinguish the Kaons
through their decays an often employed test of QM consists in looking at the two-
times correlation amplitude A(%,, fi;t2, f2) for two different decays modes f; and f5

of the Kaons. Quantum Mechanics states that for f; = f, the correlation amplitude

vanishes at equal times, ¢; = f;. The general expression of the correlation amplitude
is given by [7]

® Ks(q)KL(—q) — Kr(9)Ks(—q)] (3.17)

A(ty, fi;te, f2) = % ' {

(NWTIKsH (2T | K1) Prsks(81) Pr g (t2) — (Al TIKL)(f2A T | Ks) P s s(t2) Pr iy (81) +
(HIT|KL)(f2|T|Ks) P k(1) Pr ok, (t2) — (Ll T\ Ks){ f2|T|KL) P, ko (t2) Pk, (11) +
<f1 T I{L><f2 TlKL> [PKLKS(tl)PKLKL(t2) “" PKLKL(tl)PKLKS(t?)] +

(fllTlKS)(fZ’ITII(-S') [PK'sKs(tl)PKSKL(t2) — PKSKL(tI)PKSKS(t2)]} (3'18)

We easily see from this equation that A(t, f;¢, f) = 0 i.e. QM is not violated by the
extra terms Pk, g (t) and Pk k,(t). This means among other things that tests as
for instance most of those suggested by Eberhard [34] are not affected by Khalfin’s
effect.
Any other tests which rely on standard WW expressions might, however, be
affected. This will crucially depend on the size of this new effect. More importantly
- so as this effect has nothing to do with deviations of the exponential decay law for
very small and very large time. The latter will become manifest in the formulae for
time evolution in section 5.
It 1s therefore mandatory to try to estimate the size of this effect. A first step
in this direction will be to make an ansatz for the spectral functions p,  and p, . and
to check the consistency of this ansatz. Therefore we collect below all available general

conditions which can shed some light on the spectral functions. From (2.1)-(2.3) we
get |

fom dm ) |ps.(m)|* = ]0 " dm Zﬁj o, 5(m)> =1 (3.19)
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K

/000 m ), Sm (p;’a(m)pm(m)) = (3.20)
/Om dm Y~ Re (p(m)p, ,(m)) = Ak (3.21)

Eqgs.(3.20) and (3.21) follow from (2.3) and the fact that Ag is real. Together with
(3.10) these equations is all the information on spectral functions p; _ and p, , which
is given to us. Any ansatz for the spectral functions has to respect these relations, up
to a reasonable accuracy. We already mention that in [6] (see also [24] for a detailed

discussion) essentially only eq.(3.19) is used. We also point out that once eq.(3.10)
and (3.19) are assumed to hold eq.(3.21) follows.

4 One-Pole Approximation and its Comnsistency

- We have seen that the Breit-Wigner ansatz led to the well known exponential decay
law (up to corrections induced by the existence of the ground state). It is therefore
reasonable to assume a similar form for the p,  and p, .. More specifically we write

p (m) B fFS As,ﬁ([{S — ﬁ)
>7 V21— m . + if—i

pLs(m) = \/g: :: ﬁ(mLJ:iz (4.1)

where A, and A, are decay amplitudes. It is convenient to make the following
definitions

F |
Vo = = Am=m_—m, (4.2)

S = ZIAS ? L= ZlALJ (4.3)
R= ZER@ (A* “), IEZ\Sm (A’;JAM) (4.4)

The quantities (4.3) and (4.4) are the only apriori unknown variables which, with
the spectral functions given by (4.1), will enter e.g. equations like (3.11)-(3.13).
As already mentioned at the end of the last section we have to insert (4.1) into
the expressions (3.10) and (3.19)-(3.21) to examine the consistency of the one-pole
approximation (4.1).

We start with eq.(3.19) where the integral can be easily performed. The result

1S

S =1+ Ts | O((7s/ms)2)r L=1+ 1L ; O((7L/mL)2) (4'5)

Tm am,

- For reasons explained below we will keep, up to a certain point, terms of order I, /m, .
Since (3.10) contains the variable m pluggging the one-pole approximation (4.1) in
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(3.10) we get a polynomial in the variable m of degree two which should be identically
zero. Therefore coefficient of each power in. m should be also zero. Instead of one
equation we have three consistency conditions.

m? (2,77, - R = Ak(75 - S +7, - L)] = 0
m [_2\/75'7L(mf, + ms) R - Q\fys'h (75 - -'71,) 1+ QAK(’YsmL -5+ R L)] =0
osr, = Ak [75 ' S(mL2 + 71,2) 7. L(ms2 + 752)] = 2v/s7e (Vs7, +msm,) - R

+ 277, (vyms —vsm,) - I =0 (4.6)
From the first two we easily get
Ak
R= (vs S+, L) (4.7)
2\/757); S L
Ak Am | |
I=5— (Vs 8 =7, - L) (4.8)

whereas the last condition in (4.6) needs a more detailed treatment. The reason why

we did not neglect till now terms of order I', /m,, is now apparent. Namely, in zeroth
order of I', /m, we obtain

5SL|S=L=::1 — 0 (4'9)

Hence to estimate how badly dg; deviates from zero it is necessary to include the
next order of I', /m, . In this order using (4.5) dsy reads

Ag (fy ) 9 _ Am
dsp = — | =% : — )’ + Am?| |[(vs —7,) — 7
SL r \m, /v —1, [(71, Vs) ] ..( s L) “'m,
~ %AmB (L) (4.10)
T m,

For the order of magnitude estimate in (4.10) we have used I' . /Am ~ O(1). Strictly
speaking this amounts to saying that the ansatz (4.1) is not consistent. Note, how-
ever, the following. The smallest mass scale parameter which appears in calculations
involving the K° — K system is Am. dgz, in (4.6) has the canonical dimension 3.
What eq.(4.10) then tells us is that as compared to the third power of the smallest
mass scale dgy, 1s zero, up to corrections of order [, /m, . Therefore to this accuracy
everything is consistent so far. Clearly, by assuming Ax = 0 we obtain R =1 = 0.

The reader will have noticed that in making estimates like in eq.(4.10) we are
relying on measured parameters of the K® — K© system. In order not to lose track of
the main point we will not examine simultaneuosly the systems B°— B° and D°® — D°.
‘There the smallest mass scale parameter is not Am but the corresponding difference
in the widths AT'. The investigation of the consistency of (4.1) will be then slightly
different in those systems. The general (hypothetical) case as well as cases of physical
interest other than the K° — K system will be treated elsewhere [35].
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Using only eq.(3.10) and the normalization condition (3.19) we have already
pinned down the S, L, R and [ in terms of known quantities like widths, masses and
Ag. The equations (3.10) and (3.19)-(3.21) represent therefore an over-determined
system. In contrast to situations discussed at the end of this section this is equivalent
to a consistency check. |

On account of the validity of eq.(3.10), proved for termsup to I', /m ., eq.(3.21)
1s bound to hold. We are therefore left with one more condition, namliely (3.20).
We will discuss the calculation in connection with (3.20) in some more detail since
part of the steps will enter also the formulae of time evolution 1n section 5. The
calculation will becomne more transparent by writing down explictly the product

2.8 P (m)p, ,(m) with the spectral functions given by (4.1).

Vst
m [(m IR mL)2 T 752] [(m o mL)2 T 71,2]

-{(f.z‘,qm2 +b,m+c.)+i(a,m’ +blm+cf)} (4.11)

Zﬁ; p;,ﬁ‘(m)pL,ﬁ (m) |BW —

with
a, = I, br — (’73 —7L)'R_(ms+m1,)'1
¢, =(y,mg—vsm,) R+(mmg+v,7,)-1 (4.12)
and similar expressions for a,, b, and c,. Next the partial fraction decomposition

a,m*+bm+ec, - Crm + Dy ; Eym + Fr

[(m—m,)2 4+ [(m=m,)2+7,2 (m—my)?+72 (m—m,)*+7,?
(4.13)

]

leads as usually to a linear system for coethcients C;, Dy, Er and Fj
E; = —-C
CiAm + D} + F} = a,
Cr [(mL2 + 71,2) - (m52 752)] o QD}mL o ZF;ms — b:
D; (m,?+7,%) + Ff (mg? +7,%) + Cr |m, (m?+7,%) —=mg (m, 2 +7,%)] =¢,
- (4.14)

where we have used the redefinitions
}EDI—I-CImS, F}EFI-*CImL | (4.15)

This system plays a double role in our discussion. It appears here as a middle step
in the consistency check and is a necessary ingredient in the calculation of the time
dependent transition amplitudes in the next section. Hence we feel that it is of enough
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importance to give the explicit solution of this system in appendix A. To perform the
integral in (3.20) we need also

a,m?*+bm+c, B
[(m o mL)2 + 732] [(m o mL)2 + 71,2]
_CIAm_i_D]—I-CImS (71' ’)/S)_I_FI-—CImL (7{' ’)’L)

mp Vs Mg e m,

+ O((Tx/my)*) + O((Am/m,)*) (4.16)

A(R, I) zf:odm

such that the condition (3.20) reduces to
A(R,T) = 0 (4.17)

Taking the solutions for C;, D} and F} in terms of R and I (see appendix A) and
inserting them into (4.17) a lengthy calculation yields

R-Am [Amz + (75 T '71_,)2] |:27i' + Js T fh}

mL
- Am Am
I- Am? — 7. ) |2 = ( 4.18
F 10y ) [ 4 (3, =, ] o — 2 BT (4.18

In performing this calculation it is not advisable to make too strong approximations
right from the beginning. This is due to some cancellations which can occur. It is

now trivial to compare eq.(4.18) with (4.7) and (4.8). In a simplified form eq.(4.18)

1S |

I Am |

7 —— + Oy, /m, )+ O(Am/m,) (4.19)
which agrees with (4.7) and (4.8) when taking the approximation S = L ~ 1 [36]. The
obvious conclusion here is that the one-pole ansatz (4.1) indeed passes the consistency
check which has been imposed on us by a set of equations in section 3. This check
revealed that (4.1) is valid up to terms of zeroth order in (T, /m, ), (Am/m,). We
emphasize that this is not a trivial check. To see this let us investigate the situation
where we put by hand Ax = 0. In this case we would obtain an homogeneous
linear system whose only solution is R = I = 0. No information on the accuracy
of (4.1) would follow from this. On the other hand keeping Ax # 0 but dropping
eq.(3.10) from the analysis we would end up with four equations ((3.19)-(3.21) for the
four unkowns S, L, R, and /. Again no conclusion on the accuracy could have been
reached. This displays once again the different nature of the K° — K system and also
the usefulness of (3.10). As far as the size of one possible correction term (~ ', /m, )
is concerned the alert reader might object that this has been known all along as
corrections to the exponential decay law. This is only partly true. As we have tried to
argue above the presence of CP-violation alters the picture completely as only in this
case equations (3.10) and (3.19)-(3.21) are an overdetermined system. In this context
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we remark that: 1. a consistency check has to be performed in any case as (4.1) could
have been inconsistent for totally different reasons and 2. it is probably safer not to
rely on restrictions obtained in the framework of a CP-conserving theory. Corrections
of the order O(I', /m, ) are of course expected to the exponential decay law, but the
result here i1s more general as it explicitly states that corrections to oscillatory terms
in Pgogo(t) etc. - coming from exact (unkown) spectral functions p.  and p, , will
be of the same order. Both these corrections are totally different in nature since
corrections to exp(—I't) are associated with the small/large time behaviour of the
amplitudes whereas corrections to oscillatory terms might also arise for intermediate
time scales. Indeed Khalfin’s result on vacuum regeneration of K5 and K, discussed
in section 3 induces corrections of the latter type (see section 5). The nature of such
corrections steming from beyond (4.1) cannot be then apriori known and an analysis
1s required. That this analysis revealed O(I', /m,) and O(Am/m ) as limits of
applicability of (4.1) means also that we can trust terms of order O(I', /Am), should
such terms indeed appear along the line of further calculations. From now one we use

S=1L~]1 - (4.20)

unless otherwise stated.

We close this section by observing that the sum of (4.7) and (4.8) with S =

L ~ 1 is nothing else but the well known Bell-Steinberger unitarity relation [37],
namely

Ar (Vs +7, —1Am) = 2/ YsV. z A;,QAL,;B (4.21)
g

The reason 1t appears here in a slightly different form (compare e.g. with {38]) is the
different normalization of the amplitudes. The fact that our eqs.(4.7) and (4.8) lead
directly to the Bell-Steinberger relation (4.21) shows that the results presented here
are self-consistent. Recently corrections to (4.21) of the order O(Am/m ) have been
calculated (see the second reference in [23]). As shown above such corrections are

indeed expected. Finally we note that for the analysis in this section it is immaterial
whether or not P, k. (1) is zero.

5 Time Development

Having convinced ourselves that the one-pole approximation (4.1) is consistent if we
exclude terms of order O(I', /m, ) and O(Am/m, ) we can proceed to calculate the
matrix elements (3.11)-(3.13). With equations (4.7), (4.8) and (4.20) we have all
necessary Information to do so. We mentioned in section 3 that the ground state
in Spec(H) induces corrections to the exponential decay law (3.5). Since this also
implies the integration domain (0,00) in (3.11)-(3.13) we should handle such terms
with care and make sure that all ‘new’ terms induced by the lower integration limit
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are indeed strictly of non-oscillatory type in (3.11)-(3.13). This is also important
as we want to find out if Khalfin’s effect is correlated with small/large time scales.
The relevant integrals have been calculated analytically in appendix B. We can infer
from the expressions in appendix B that such terms contain the exponential integral
function E7 [39]. We can safely neglect the terms with E: as it should be clear that

the simple ansatz (4.1) cannot account for the correctness of such non-oscillatory
terms.

Let us now have a closer look at (3.11). In the one-pole approximation (4 1)
Pyogo(t) can be conveniently written as (see also (B.9) in appendix B)

| ) .y —mS/’Ys --1'7 ty t"‘{s.ty
Prowo(t) = Progolt) = gy €7 _fo yy +1 +] Tyt

+ [S = L]} . (5.1)

We see that we have to calculate integrals of the following type

n

K™(a)= [~ do "’+-le—=‘w

('ﬂ-) G, n) — / dfl: wz n 1 —1a.:r: (52)

Collecting only oscillatory terms from the integrals in appendix B we obtain the same
expression as in WW-approximation (this of course is not a surprise recalling that
our concern here is the last equation in (2.10) where only Pyogo(t) and Pgogo(t) play
a role)

PKOKO(t) = PKOKO(t { Timste= st + e Mmite M }+ KO 0 (t) (53)

where N, .(t) denotes all non-oscilllatory terms present in the integral. N ,, (%)
can, in principle, be extracted from equations (B.1)-(B.5) but as we said before we
cannot trust such terms to be the correct non-oscillatory corrections.

One more comment is order. Putting v./m, to zero the sum of the two

integrals in (5.1) can be compactly written as

d — —e ¥ 4
/—oo Y (12 -+ y2 a € (5 )
which of course means that
I’
N L :
10 5O (t) = 0 as — > () (5.5)

in agreement with what we said at the beginning of section 3 (see discussion below

eq.(3.5)).

13



Similarly the integration in (3.12) and (3.13) can be done analytically (see
(B.10) in appendix B) and the result reads

1 - .
PKOI{:O(t) = 4P*q {e_imSte_wst[l T F‘:s] T ewtmLtG—ﬁbt[l T K'L]} + NKOK:O (t)
1 . + .
Prro o (t) = pp- {e"mste"'Yst[l — K] — e MLfe M1 — ch]} + N, (t) (5.6)
where N _ (¢) and N (t) are again non-oscillatory terms containing the expo-

nential integral function Et and k_,, are given by

/L
kg = =20 VY5, (D} —iv:Cl]
Vs
e, = 4250 (7 iy o)) (5.7)

L

The parameter C;, D} and F} are defined as solutions of the linear system (4.14).
Equation (5.6) together with (2.10) shows that Khalfin’s effect depends crucially on
the size of the quantities k., . We could, in principle, calculate these quantities taking
the solutions C}, D} and Fj from appendix A. There is, however, a more elegant way
by going back to (4.14). This linear system fixes Cy, D} and Fj in terms of R and [
(egs.(4.7)-(4.8)) the latter being kept at that stage in section 4 arbitrary i.e. in any
order of [', /m, . But we know now that we are allowed to keep only the zeroth order
of ', /m,. Then R, I taken together with (4.20) and a redefinition of the form

CM,I CI . 1 | &I a,
D, | = 2\/;”" D, l+[o], |5 |= 2\/2375 b (5.8)
F'I K Flf’ 0 Er " Cr

convert (4.14) into a homogeneous linear system in the limit I', /m, — 0

—a, 1 1 Cr
—bI -——QmL —2m5. DI = () (59)
g P

2 2 - 2 2
—Cc, m,“+7,° M+ 9

Since the determinant of the cofficient matrix in (5.9) is non-zero [40] we get only a
trivial solution

iyt e L

Cr=D;=F;=0 (5.10)
This immediately implies that | |
k. =k, =Ax + O, /m,) + O(Am/m,) (5.11)
Equipped with this simple result eq.(5.6) take the familar form

Progzo(t) = -5—1- e Mste st — e_imLte""’Lt} + non — osc. terms

| q

Pizo o (t) = -ég—- e Mste st — e'imbte_"’Lt} + non — osc. terms (5.12)
p .
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Up to non-oscillatory terms these equations are equivalent to the WW-expressions.
What we have shown is that indeed corrections to oscillatory terms due to Khalfin’s
general result will appear in (5.12), but they are necessarily of the order O(I', /m, ),
O(Am/m,). This follows from the fact that the one-pole approximation is trustable
only up to such terms. In the calculation with the one-pole ansatz any term whose
order of magnitude is much bigger than O(T', /m, ), O(Am/m,), like ', /Am, would
be then still acceptable. But such a term does not show up along the line of the
calculation. It should also be appreciated that such corrections have nothing to
do with small/large time behaviour of the transition amplitudes (i.e. they are not
interrelated to the usual corrections to the exponential decay law). This is evident
from the way k,, enters (5.6). Since the existence of the vaccum regeneration depends

crucially on the assumption Ag # 0, one could expect that the size of the effect is
also proportional to Ag.

Finally the answer to the question we have put forward in the form of equation
(2.12) can also be given by a simple equation, namely

PKLKS(t) — _PKSKL(t) =0+ O(Fx/mx) + O(Am/mL) (5'13)

Had we not Khalfin’s theorem discussed in section 3, it would be compeletely legiti-
mate to assume Pk, .(t) to be strictly zero. Our result agrees with the conclusion
of ref. [24] reached there in a different way. In view of the smallness of the eftect
(i.e. the effect is essentially not measureable) many tests of Quantum Mechanics [41]
which make use of the WW-approximation are safe. In other words an experimen-
tally verified signal which hints towards some new physics cannot be attributed to
Khalfin’s effect. We postpone any further discussion to the next section where we
will give a summary. In the end we note that in [6] (see also [24]) the size of the new
effect has been estimated, also in the context of the one-pole ansatz, to be 4 x 10~*
(see appendix C). The difference between the approach in [6] and ours is essentially
our consistent treatment of the one-pole approximation in section 4 (in this context
see also appendix C) |

The reader will have noticed that our conclusion regarding the size of the effect
depends of course on the ansatz we make for the spectral function. Therefore. strictly
speaking, a new reasonable ansatz might, in principle, change this conclusion. Such
a new ansatz which modifies mainly the tail behaviour of the spectral function has
been proposed in [6] and [7]. One should, however, keep in mind that the one-pole

ansatz gives an overall consistent picture (this was one of the main objectives of the
present paper).

6 Conclusions

It is satisfactory to arrive after lengthy calculations at familar expressions of the
Weisskopf-Wigner approximation. More so as our starting point was completely
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different from the WW-approach. This not only gives us more confidence in the
WW-approximation whose equations, as we know, are of utmost importance for the
K° — K° system, but has also the virtue that one is able to derive the limitations of
the WW-approximation for the oscillatory as well as for the exponential terms. We
have emphasized that corrections to the oscillatory terms are different in nature from
corrections arising from small/large time behaviour of the amplitudes. It turned out,
however, that both such corrections must be of the order O(T', /m,), O(Am/m ).
This is apriori not evident due to the specifics of the K° — K© system where beside
'y /m, quantities like I', /Am do appear. Let us recapitulate the steps which have
led to our result. We have presented two of Khalfin’s theorems. One was eq.(3.10)
which played a crucial role in our analysis. Actually without this equation no con-
clusion on the validity of the one-pole approximation could have been reached. The
other one was the result on the existence of Kg and K vacuum regeneration, an
eftect usually associated with interactions of K¢ and K} in matter. Although this
result 1s quite ‘exotic’ the author of the present paper could not find a loop-hole in
the arguments which led to this result. The vacuum regeneration of K5 and K7, goes
against what one would intuitively expect and what one is normally used to. Note,
however, the this ‘intuition’ is based on quantum mechanical systems where the un-
stable states have zero overlap. |Ks) and |K.) have non-zero overlap, a singled-out
property which is then responsible for counter-intuitive effects. The proof of Khalfin’s
result relies on well established formalism of Quantum Mechnics (eqs.(3.1)-(3.3)) and
seems therefore hard to dispute once we assume that |Ks) and |K) are given as in
(2.1). To estimate the size of such an effect we had to perform a consistency check
of the one-pole approximation (4.1). The outcome of this check provided us with
limits of the applicability of (4.1) and the determination of apriori unkown variables
(combinations of decay amplitudes). Indeed the difference between the present pa-
per and the result obtained in [6] can be traced back to exactly this point. In a
subsequent step we have derived the time evolution of the system starting from the
equations (3.11)-(3.13). The formulae so obtained agreed with expressions from the
WW-formalism. This in turn implied that the effect of vacuum regeneration of K
and K, is necessary small and of the order of O(T', /m, ), O(Am/m, ), provided we
accept the one-pole approximation as an reasonable ansatz. It was one of the objec-
tives of the present paper to show that the one-pole ansatz gives a consistent overall
picture and should therefore be trusted within a certain accuracy:.
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Appendix A

We list here the solutions of the linear system (4.14). Since the expressions are lengthy
1t 1s convenient to use the following notational abbreviations

3

X+ — 732 + 71,27 X_ = 732 — 7L

4 = mr_,752 o 'rnsf}/i,2

Y; = Am* + 2Am? X, + X2 (A.1)

2

The solutions in terms of a,, b, and ¢, defined in eq.(4.12) then read
Fr-Yr =a, -Amszz —(m, 2+, )X — Amm, X, + (m, + mS)Z] +
b, .Amsz + Z — Am'yL] +
Am? + X_| (A.2)

1Y =a, iAmzmsz + (m52 + 752)X— + Amm Xy —(m, + ms)Z] +

AmPm, — Z + Amy,| +
Am? — X___] | (A.3)

Cr-Yr — 4, [AmB _ Am(ms2 T mL2 “ 752 — 71,2) _' (ms + mL)X—] o
br [Am(ms T mL) T X—] o
c,2Am (A.4)

Appendix B

This appendix contains the relevant integrals appearing in (3.11)-(3.13) with p, _ and

p, . approximated by (4.1). The integrals K™ (a) and J((a,7) are defined in (5.2).
We have [39]

e ¢ — ! [e‘“Ez’(a) — eaEi(—-—a)] (B.1)

1 T
2 2

-
+ 1
where E: are transzendental functions called exponential integral functions. Any

other integral K™ with n > 0 can be obtained from (B.1) by differentiating (B.1)
with respect to the variable a. For instance

KW (a) = / " dz —
0 xI

QT

KOa)= [ do
0 ¥

Z —~31aL __ T _a 1 —a o
e =gt g [e Ez(a)_—l— e Ez(ﬂ—a)] (_B.2)




The integral J™) are more complicated. To obtain J® we have used the Fourier
indentity

7 1 oo ei‘ﬂy — ]_ o0 iyt
| f@ye=— | dyS—— [ e f(E)dt (B.3)
0 27 J oo 1Y o0
Here we quote only the result
Ja,n) = /n dzx : et = : 1sgn(n)e™* + e *Ei(a(l — 1))
’ 0 z? 41 21
—e*Fi(—a(l4+1n)) — e “Ei(a) + e“Ei(—a)} (B.4)

where sgn(n) is the sign of n. Again J™, n > 0 can be obtained from (B.4) by
differentiation of (B.4) with respect to a

. 1 '
::- 16_mc - “5{53973(77)6*& — e *Ei(a(l —1in))

JM(a,n) = /On dzx =
—e"Fi(—a(l +1n)) + e"Ei(—a) + e“”’Ei(a)} (B.5)

The reason why we have to distinguish between the signs of n has to do with the
following property of the exponential integral function E3 [39]

Ei(z F1:0) = Ei(z)Lem, 2> 0 (B.6)

One can check (B.4) by using the integral representation

—xt

Ei(+zy) = -'-e:]”"y/ dt =
0 y F i

, Re(y) >0,z>0 (B.7)

and differentiating both sides of (B.4) with respect to n. We also mention here the
connection of Ei(x) with the incomplete beta function I'(c, z) [39] through

I'0,z) = —Ei(—x) (B.8)
Finally the integrals (B.1)-(B.5) enter (3.11)-(3.13) through the expressions

> —im 1 —imn | b
/; dm Z lpS,a (m)I26 f=—e s* [_J(O)(’)’sta “ms/ys) + K (0)(7st)] (B'g)

T

and

/000 dm ; Im (psjﬁ(m)p’;’ﬁ(m)) et —

\/7571. ood a1m2+blm+cf —imt __
o M lm-m )ty m—m, 2 +72
T
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Vs fe7™s | ) ,
Vs “{ Dy - (=JO(vgt, —mg/75) + KO(v,1))

+ 75'01 ' (“J(l)(')’s ’ _ms/7s) + K(l)(stt))_] -

— [F; (=IO t,=m, ) + KOy, 1))
— 7, Cr- (=W, t,—m, [,) + K(l)(’ht))]} (B.10)

Appendix C

In the main text we have strictly applied the spectral formalism to the K°— K0 system.
Especially our integration domain over the variable m has been kept consistently in
the range (0, 00) in determining the parameters L, S, R, I (see eqs.(3.19)-(3.21) and
(4.3)-(4.4)) as well as in the formulae for time development in section 5. We have done
it mainly for reasons of consistency to show explicitly that the spectral formalism,
in the range of validity of the one-pole approximation, gives us the well known WW
expressions up to non-oscillatory terms. It is, however, instructive to investigate the
case when the range of integration is changed to (—o0,00) dropping thereby non-
oscillatory terms right from the beginning. This can serve us as an explicit check of
our calculation. To do so we take the expression for Pgoio(t) as derived in [6], [7]
(see also [24]) by changing the integration range in (3.12) to (—o0, c0) [42].

1 . : |
Propo(t) = 4p*q{6_ms e st (14 k)~ e mete L1 + h:*)} (C.1)
where \/
20,/ T,
~ A, A* .2
f_i: —Am—l—i(FS—[—FL); S@” L (C2)

Note that a purely real x would lead in eq.(C.1) to the WW expression up to a
normalization factor. Assuming already || << 1 it follows from (C.1)

1
~ 16|p|?|q|?

|Pgogo (t)]° {e“zrst +e 2!

— 2e” s+ ) cos Amit + 2|k sin 8, sin Amt]} (C.3)

where . 1s the phase of k.
To evaluate « let us first us the approach advocated in [6] and [7] where the
sum }_, A; A7 is saturated by the main decay of Kg, Ks — 2m. The relevant

y & L,a
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amplitudes are then As(Ks — 27) and AL(Kp — 27) ~ ex As(Ks — 2m) where ek
1s related to p and ¢ from eq.(2.1) by

q= ' (C.4)

We can then write

ZAS.aAI,a ~ |A3(Ks — 27!')|26}{ ~ 6;( (05)

The last equality follows from the fact that out of the consistency conditions (3.19)-
(3.21) we are still using the normalization condition (3.21)(but not the other condi-
tions). Only then we can recover the WW formulae for Pgogo(t) = Pgogo(t) where
no new effect is expected. We have then ¥, A, |* ~ |As(Ks — 27)|*> ~ 1. Using
experimental data (central values) and identifying in this case 2I';,, with the mean
life times we obtain

12k sin 8] ~ 107° (C.6)

i.e. in the context of the saturation method we obtain a rather sizeable result. Before
commenting further on this estimate we first note that in the above calculation (we
mean here specifically the calculation which makes use of (C.5)) it is not advisable to
use too strong approximation like e.g. ex ~ |ex|e™* and Am/T's ~ 1. This would
lead to a real k even in this case.

Let us now show that the estimate (C.6) is essentially due to the saturation

method expressed through eq.(C.5). Indeed using our solution from section 4 we can
write

Y A, AT =R—il (C.7)

where R and I are given explicitly in eqs.(4.7)-(4.8) (with the replacementy,,, — I'y
[42]) Recall that the solution for R and I have been obtained in section 4 through
eqs.(3.19)-(3.21) which must be true for any ansatz, at least at a certain level of
accuracy. Insofar we indeed should rely on the solutions for R and I given there, in
the context of the one-pole approximation.

From (C.7) we now easily find

k= Apg | (C.8)

in full agreement with (5.11). This once again confirms our previous conclusion about
the size of Khalfin’s effect in the context of the one-pole approximation (see egs.(5.12)
and (5.13)). It also shows that the truncation of the sum 3°, A; A% as donein (C.5)

can lead to an overestimate of the effect (eq.(C.6)).
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