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Abstract

The sensitivity of a gravitational wave resonant detector for various types of waves is
given in terms of the detector noise spectrum Sh(ω). It is shown that for g.w. short bursts the
sensitivity is determined by Sh(ω)/δν, where δν is the detector bandwidth that depends strongly
on the electromechanical transducer and associated electronics.

The sensitivity for a g.w. stochastic background depends, at the detector resonance, only
on Sh(ω) that, in turns, for a given material, depends essentially on T/MQ, where T is the bar
temperature, M is the bar mass and Q the merit factor. Thus a non sophisticated transducer
with a bandwidth of a few Hz appears sufficient for measuring, at a particular frequency, the
g.w. background.

It is shown that the very nature of a resonant bar gives a good sensitivity at the
resonance.

 A bar with M=2300 kg, Q=5 106, T=0.1 K and δν=0.9 Hz can detect a g.w. background
with amplitude 7 10-23/√Hz. Cross-correlating for one hundred days two identical detectors
installed in the same location, the sensitivity improves to 1.3 10-24/√Hz.

PACS.: 0.40.80.+z
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1. INTRODUCTION
In this note we express in a simple and unitary form, although sometimemes with

approximations only aimed to help clarity, the sensitivity of resonant antennas to various types
of gravitational waves. As a matter of fact, in the last years, some of those detectors begun to
operate with very satisfactory performance and high duty cycle over relatively long periods of
time [1, 2, 3], and more are close to operate [4, 5].

As a model for these detectors, we shall consider the simplest resonant antenna, a cylinder
of high Q material, strongly coupled to a non resonant transducer followed by a very low noise
electronic amplifier.

In practice, the detectors now operating use resonant transducers (and therefore there are
two modes coupled to the gravitational field) to obtain high coupling and high Q, followed by a
dc SQUID superconducting amplifier or by a microwave parametric amplifier.

The equation for the end bar displacement ξ is

ξ + 2 β1ξ + ωo
2 = f

m
 (1)

where f is the applied force, m the oscillator reduced mass (for a cylinder m = M/2) and
β1=ωο/2Q.
We consider here only the noise which can be easily modeled. The noise of the detector is the
sum of two terms : the thermal (Brownian) noise of the basic detector and the electronic noise
contributed by the readout system. By referring the overall noise to the displacement of the bar
ends, we obtain [6] the power spectrum:
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 Sf = 2 ωo

Q
 m k Te

where Te is the equivalent temperature which includes the effect of the back-action from the
electronic amplifier and Γ is the spectral ratio between electronic and brownian noise [7]

Γ  ≈ Tn

 β Q Te
 (3)

Tn is the amplifier noise temperature and β the transducer coupling to the bar (β ≈ 10–2-10–3).
The power spectrums are expressed in two-sided form.

When a gravitational wave with amplitude h and optimum polarization impinges
perpendicularly to the bar axis, the bar displacement corresponds [8] to the action of a force

f = 2
π2

 m L h (4)

The bar end spectral displacement due to a continuous spectrum of g.w. is similar to that
due to the action of the Brownian force. Therefore, if only the Brownian noise were present, we
would have an infinite bandwidth, in terms of signal to noise ratio (SNR).
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2. THE POWER SPECTRUMS
For a g.w. excitation with power spectrum Sh(ω), the spectrum of the corresponding bar

end displacement is

Sξ(ω) = 4 L2 ω4  Sh
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We can then write the SNR
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Sξ
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The g.w. spectrum that can be detected with SNR=1 (that is the detector noise spectrum
referred to the input) is obtained by introducing this condition in the above:

   
Sh = kTe L2 ω

v4 MQ
 (ωo
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ωo

)2) 2 + ( ω
ωo

)2 ]}     (7)

where v is the sound velocity in the bar material (v=5400 m/s in aluminum).
We remark the the best spectral sensitivity, obtained at the resonance frequency of the

detector, only depends, according to eq. (7), on the temperature T, on the mass M and on the
quality factor Q of the detector, provided T=Te, that is the coupling between bar and read-out
system is sufficiently small. Note that those conditions are rather different from that required for
optimum pulse sensitivity (see later).

In fig. 1 we plot the above function for the case of the Nautilus antenna, as we plan to have
in the near future.
The bandwidth, in this case, estimated from the figure at half-height of the power spectrum, is
∆v=0.9 Hz, as can be also calculated [6] with the formula

∆ν  = νo

Q
 1

Γ
 (8)

It is expected that the bandwidth would become of the order of 10 Hz by improving the
amplifier noise temperature Tn from 20 µK to 0.5 µK

{  Γ   ≈  5 10-7  K
10-2   5 106   0.1  K

 = 10-10  }

We come now into applying the Wiener optimum filter for detecting small signals in the
noise. It can be shown [9] that the SNR for a gravitational wave signal h(t) whose Fourier
transform we indicate with H(ω) is given by
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SNR = 
H(ν)   2

Sh(ν)
 dν

-∞
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  (9)

with Sh(ω) given by (7).
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Figura 1 – Sensitivity of Nautilus. The advanced Nautilus sensitivity will have a
larger frequency bandwidth.

3. THORNE DEFINITIONS [10]
Thorne defines, for broad band detectors, the following characteristic frequency of the g.w.

 νc =  
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and a characteristic strength :

hc = √[Sh(νc) νc] (11)
Thus
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as can be seen by putting in (9) and (10) SNR=1.

4. BURSTS

4.1 Resonant detectors
We solve (9) with SNR=1 by noticing that Sh has a minimum around the resonance (see

fig. 1) and that for a short burst H(ω)=constant=Ho [11]. From (9) we obtain

Ho
2 = Sh(ωo)

π ∆ν (13)

with ∆ν given by (8). The factor of π has been introduced because we need the equivalent
frequency band-width for a bilateral Ho.

Introducing (7) we get

Ho = kTe L2 ω
v4 M Q

 Q Γ
2 π νo

 = L
v2

 k Teff

M
 (14)

where

Teff = 4 Te Γ (15)

if the effective temperature [12]. Formula (14) is just what obtained by the Rome group in
previous papers [1,4].

With the values given in fig.1 we get Teff=0.8 mK.
With the antenna Explorer [1] we have already reached values of the order of 5 mK (with

Te = 2.5 K) in close agreement with our expectation.

4.2 Interferometers
Formula (13) is still valid with 2π∆ν ≈ νo= νc as can be seen from (9)

SNR = Ho
2

Sh
 νo

We have roughly for SNR=1

hc = H νo = √ (Sh νo) (16)

like (11), which is the widely used formula. We have to remark that the definition (11) is not
consistent with the case of a resonant detector.

5. MONOCHROMATIC WAVES

5.1 Resonant detectors
For a total measuring time tm we could detect, with SNR=1, a monochromatic g.w. with

strength [6]
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h = 2 Sh

tm
 = 2π2 k Te

M Q v2 ωo tm
(17)

The first equality is valid for all frequencies, the second one only at the resonance. The
factor of 2 takes care of the fact that Sh is two-sided.

This formula can be derived also from (9). For a total measuring time tm the
monochromatic wave is just like a wave packet of duration tm, whose Fourier transform has
maximum  hotm/2. Thus from (9) we get

SNR = ho
2 t m

2 / 4
Sh (ωo )

 2
tm

(18)

which gives (17) for SNR=1.

5.2 Interferometers
The first equality of formula (17) holds also for interferometers.

5.3 The case of splitting the total period tm in several sub periods
In the practical case it is often not possible to calculate the Fourier spectrum of the

experimental data over the entire period of measurement tm, either because the number of steps
in the spectrum would be to large for a computer or because the physical conditions change like,
for instance, the change in frequency due to the Doppler effect for a monochromatic wave. It is
then necessary to divide the period tm in n several sub periods of length ∆t=tm/n. For the search
of a monochromatic wave we have then to consider two cases:
a) The wave frequency is exactly known. In this case we can combine the n Fourier spectra in

one unique spectrum taking into consideration also the phase of the signal. The final
spectrum has then the same characteristics of the spectrum over the entire period tm and
then formula (17) still applies.

b) The exact frequency is unknown. In this case when we combine the n spectra we lose the
information on the phase. The result is that the final combined spectrum over the entire
period has a larger variance. In this case the left part of formula (17) has to be changed in

h = 2 Sh

∆t tm
 = 2 Sh

 tm
 n (19)

as can be understood with the aid of formula (21) in the next section.

6. STOCHASTIC WAVES [13]
Using one detector, the measurement of the noise spectrum corresponding to eq. (7) (see

also fig.1) only provides an upper  limit for the g.w. stochastic background spectrum. The
estimation of this spectrum can be considerably improved by employing two (or more) antennas,
whose output signals are crosscorrelated.

Let us consider two antennas, that may in general be different, installed in very close
locations with transfer functions T1 and T2, and displacements ξ1 and ξ2: the displacement
crosscorrelation function
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Rξξ(τ) = ξ1(t) ξ2(t+τ) dt (20)

only depends on the common excitation of the detectors, as due to the g.w. stochastic
background spectrum Sgw acting on both of them, and is not affected by the noises acting
independently on the two detectors. Note that the above result only holds if the crosscorrelation
function is evaluated over an infinite time. Otherwise there is a residual statistical error, due to
the noise, whose amount decreases with the duration of the observation period.

The Fourier transform of eq. (20) represents the displacement cross spectrum. This
spectrum can be expressed as an estimate of the gravitational background Sgw by multiplying it
by T1T2 times 4L2/π4, i.e. referring it to the detector input. The estimate, as obtained over a finite
observation time tm, has a statistical error. More precisely, it can be shown [14] that the standard
deviation of each sample of the spectrum is:

δSgw(ω) = S1h(ω) S2h(ω)   

tmδν
(21)

where tm is the total measuring time and δν is the frequency step in the power spectrum. From
fig.1 we get the obvious result that, for resonant detectors, the error is smaller at the resonances.
If the resonances of the two detectors coincide the error is even smaller. In practice, the best is to
have two detectors with the same resonance and bandwidth. If one bandwidth is smaller that the
other one than the smallest error occurs in a frequency region overlapping the smallest bandwith.

Note, however, that according to eq. (21) there is no improvement, besides an obvious
increase of confidence, by using two detectors instead of one, when the frequency step of the
spectrum δν is chosen  equal to 1/tm. In this case the statistical improvement factor √(δν tm)
reduces in fact to unity and the sensitivity, for two identical detectors, coincides with that of a
single detector, given by (7).

Note, in addition, that one should try to exploit all the a priori information available in
order to improve the sensitivity of the experiment. If the background spectrum is expected [13]
to be approximately constant over a few hertz or a few tens of hertz near the resonances of the
detector, we can shift our attention from a detailed, and statistically expensive, spectral estimation
to estimating its intensity over a spectral interval ∆ν much larger than the spectral step δν,
properly chosen in the region of maximum sensitivity of the detectors, as discussed above. The
uncertainty of this estimate is obtained as follows from eq. (21):

δSgw =  
S1h S2h

tm ∆ν
(22)

where ∆ν is the smallest of the two overlapping bandwidths.
For the search of a stochastic background, however, one expects at first just to put upper

limits. In this case the estimated spectrum Sgw  will be zero with a deviation given by (21). And
the overall sensitivity of this crosscorrelation experiment, considering an observation bandwidth
∆ν, will be again given by eq. (22).

We want now to discuss the result obtained  in reference [15] when the two detectors have
different bandwidths.

In [15] the authors consider a cross-correlation experiment between a bar and an
interferometer, thus ∆ν in (22) is the bandwidth of the bar. They conclude that the sensitivity of
this experiment to stochastic g.w. is independent from the bar bandwidth. The argument is based
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on the use of the antenna sensitivity to bursts. Let us suppose that a burst has duration τg.
Therefore, putting h ≈ Ho/τg, from (13) and (15) we get

hbar = 1
τg

 
Sh,bar

2 π ∆ν
    
 

 hinter = 1
τg

 Sh,inter  νc

(23)

Substituting in (22) we obtain

δSgw(ω) = 
τg 

2  hbar
2  2 π ∆ν τg 

2  hinter
2  /νc 

tm ∆ν
  (24)

independent on ∆ν (we might obtain the same result using directly the Fourier transforms
H(ω)). In [15] the authors conclude that it is better to correlate an interferometer with a more
sensitive bar instead than with another less sensitive interferometer. But it has to be remarked
that ∆ν is implicit in (24), because a larger value of ∆ν, obtained with a smaller Γ (that is a
smaller elctronic noise) gives a smaller value for hbar.

This result suggests that, for exploring a frequency region around 1 kHz over a band of
the order of 10 to 50 Hz, it might be more convenient, in terms of expenses and reliability, to put
efforts in improving  the sensitivity of a bar, which can be easily installed and oriented at will,
instead than constructing a second interferometer.

7. DISCUSSION AND CONCLUSIONS
In the past literature for resonant detectors of gravitational waves the sensitivity has been

usually expressed in terms of Teff, which is the minimum energy delivered by a g.w. burst that
can be detected by the apparatus.

What really the resonant detectors measure is essentially the Fourier transform (over a
certain frequency band) of the g.w. adimensional amplitude, as given in formula (14). This
sensitivity depends on both the bar and the transducer with its associated electronics. For
monochromatic waves the sensitivity is calculated at the detector resonance and is usually
expressed in terms of the adimensional h, the minimum g.w. amplitude that can be detected.

For studying the operation of a resonant antenna as detector for a g.w. stochastic
background we had to deal with noise spectrums. This has brought us to reconsider the
sensitivity to bursts and other types of g.w. in a somewhat different manner, that improves our
understanding of the role played by the electromechanical transducer and its associated
electronics.

The noise spectrum of the apparatus is expressed by formula (7), that also gives directly
the sensitivity for the g.w. background. We notice that the optimum sensitivity, Sopt, is obtained
at the resonance. Sopt depends essentially on the ratio Te/MQ, for a given material. The
transducer and electronics determine in practice only the bandwidth of the apparatus, expressed
by (8). Their effect at resonance is wiped out except for the influence on the quantity Te, which
is the thermodynamic temperature of the antenna plus the backaction from the transducer. It
turns out that the backaction effect, when using a dcSQUID amplifier, can be neglected or at
most introduces a small correction, as it is of the order of  less than 10 mK.

For the measurement of a g.w. background that, reasonably, should not change drastically
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in a frequency band of a few Hz it might be therefore sufficient to make use of a very simple
transducer and electronics with a small bandwidth. The use of a sophisticated transducer can
give a larger bandwidth with a better sensitivity to g.w. bursts, as illustrated by formula (13). As
far as the search for monochromatic waves a larger bandwidth is better, in the sense that allows a
larger frequency region where to search.

Finally we estimate the sensitivity that can be obtained with two identical antennas, each
one having the sensitivity shown in fig.1, operating continuously in the same location for one
hundred days. We get from (22) at the resonance

= = (25)

This sensitivity is attainable with the present resonant detectors. Increasing the bandwidth
to 10 Hz would improve the above value only by a factor of 1.8.

We would like to conclude by remarking that the resonant detectors with the smallest
possible value for T/MQ seem to be the most suited for measuring the g.w. background, as the
bandwidth has, to some extend (power of 1/4 against the power of 1/2 for the bursts), a minor
role and Sopt turns out to have, by the resonance own nature, very small values without special
experimental efforts.
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