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Abstract

The Fermi-Watson theorem, established for low energy reactions and then applied to

high energy collisions, is revisited. Its use for the processes of inelastic diffraction is

discussed. The theorem turns out to be valid in the case of inclusive cross-section of
diffractive transitions.

PACS.: 13.85.; 03.80.4r; 11.80.-m

Submitted to Physical Review D

il el e

* On leave of absence from H. Niewodniczanski Institute of Nuclear Physics, Krakow.

+kx Address: Institute of Physics and Computer Science, ul. Podchorazych 2,
30-084 Krakow, Poland.

E-mail: AMALECKIQVSB01.IFJ.EDU.PL and MALECKIQLNF.INFN.IT




The Fermi-Watson theorem allows to express the inelastic transition amplitude
in terms of the amplitudes of elastic scattering in the initial and final states. It was
established in the fifties [1],{2], concerning reactions at low energies in which the exit
channels, being close to their thresholds, are weakly coupled to the initial state [3].
The theorem had been rediscovered in another form in the seventies [4] and applied

to inelastic diffraction of high energy particles [5],{6] and to high energy break-up of
light nuclei [7],]8].

The representation of the inelastic diffractive amplitude [4] as a difference between
elastic amplitudes for the entrance and exit channels became a part of the folklore
of high energy physics [7]. It is most easily understood in terms of the ’eigenstates
of diffraction’ [9] which do not mix with each other, undergoing only the elastic
scattering caused by their absorption at the expense of inelastic channels. High
energy inelastic diffraction arises thus from the differences in absorption probabilities
for various components of the wave function of the incident particle. The passage to
the Fermi-Watson theorem requires, however, an additional assumption that elastic
scattering amplitudes of diffractive eigenstates coincide to a good approximation with
those of real physical states. Despite of the experimental fact that the total cross-
sections for inelastic diffraction are much smaller than the elastic ones, the above
assumption may be put in doubt by invoking the very sense of elastic diffraction as
a unitarity-driven shadow scattering or a feed-back process coupled to the inelastic
channels. In fact, it would be curious that at high energies, when all channels are
open, the intermediate virtual transitions were hidden .

In this note we discuss how to account for the virtual transitions inside the set of
diffractive states. It turns out that this diffractive contribution to the shadow of all
inelastic transitions affects strongly the elastic amplitude [10] around and above its dip
where the value of the cross-section is many orders of magnitudes lower with respect
to the forward peak. Thus the violation of the Fermi-Watson theorem for ezlusive
diffractive amplitudes may generally be expected only at large momentum transfers.
On the contrary, in the case of inclusive cross-section of inelastic diffraction it is

just the Fermi-Watson term which saturates the majority of the inelastic diffractive
cross-section. |

We derive the Fermi-Watson theorem after an elementary recapitulation of the
scattering formalism. The complete knowledge of a collision process, including all
possible connections among channels allowed by conservation laws, is contained in

the scattering operator S which is unitary: Sst = 81s = 1. Alternatively one may
use the transition operator T, where S = 1 4 1T, which 1s normal and satisfies the
relation: TTT = TIT = i(TT — T'). The amplitude of transition from the initial

state [1) to the final state |f) is then Ty; = (f|T|¢). Dynamics of scattering will not
change under a simultaneous unitary transformation of the physical states | 3) —| Uj)

(UU]L = Uty = 1) and of the transition operator T — Ty = UITU . Such a
transformation may be viewed as the choice of a convenient basis in the Hilbert space
of states. Any physical state can be expanded in terms of these base states, e.g. the



initial state | 1) = 3. U% | Uj) where U;; = (¢ | U | 7). The transition amplitude
can thus be expressed through the matrix elements of the transformation operator U
and of the transition operators T or To:

Tri=(f|T|i)= ) UnU;t; (1)
7)1k}

where t,; = (Uk | T |Uj) =(k|To | 7).

The unitary transformation operator may alternatively be written as:
U=eM=1-A (2)

where the operator M is hermitian (M = M Jr) while the normal operator A satisfies
the relation:

AAT = ATA = A + AT (3)

In frequent cases of physical interest the part of the T-matrix, correspondmg to a
given entrance channel, is nearly diagonal:

T =Ty + ic _ (4)

where Ty is diagonal and the matrix elements of the operator € are all small. Such a
situation is typical for reactions at relatively low energy as compared to the thresholds

for the most important inelastic channels; e.g. the Ansatz (4) was used by Fermi [1]
in the case of pion production by nucleons.

The above decomposition of the transition operator in ’large’ (or ’hard’) and
'small’ (or ’soft’) parts can also be viewed as the result of a suitable unitary trans-
formation which would diagonalize operator T subject to condition the transforming
operators M or A in (2) were ’soft’, i.e. their matrix elements were small. While the
diagonalization of the operator T through a unitary transformation is always possible,
the satisfaction of both unitarity and softness (which means M? = A? = 0) conditions

imposes a severe constraint on the transforming operators: A = —1M and A = ~Af
instead of the less strmgent relation (3).

In the case U = '™ ~ 141 M we obtain the following soft limit of the Haussdorf
expansion in terms of multiple commutators of the operators M and Tj:

iﬂ

T = eiMToe"'"M = To + Z[M,...,[M,Tg],.. .,]—“— ~ Tg +Z[M,T0] (5)

!
n=1 n.

Alternatively, when U =1 — A we have :

T =(1-A)To(1 —Al) = To = ATy - ToAT + ATAA = T — (A, T (6)

Thus the ’soft’ non-diagonal operator in (4) reads: ¢ = [M,To] = i[A,Ty). The
antisymmetry of the commutator together with symmetry under time reversal means



that the matrix elements of both M and A are antisymmetric which implies ReM;; =
ImA ;. = 0. From Eqs (5) and (6), on the account of diagonality of Tp, one obtains
the amplitude of transition:

Tf,' = t,'Jﬁ —_ iMﬁ(tf — t;) = t;é;,- + Aﬁ(tf — t,')

= Tf;tSf.‘ - iMfi(Tff - Tii) = Tia‘Jﬁ + Afi(Tff - Tii) (7)

where T;; = t; = (3 | To | 7) is the amplitude of elastic scattering in the state |j),
t; being the eigenvalue of the diagonal operator Tp. Eq. (7) contains the essence of
the Fermi-Watson theorem . Denoting T;; = exp(2:;), ; being the conventional
scattering phase-shift, Eq. (7) can be transformed to the ’product form’ as in the
original paper [1]:

| Trgi = ipyi expli(ai + ay)], (8)

where p;;r = 2sin(a; —ag)Aji 1s a real symmetric matrix. In one of its application Eq.
(8) allows to relate the phases of pion photoproduction on nucleons to the phase-shifts
of the elastic pion-nucleon scattering [3].

Turning now to diffractive processes let us first relax the assumption of ’softness’
and then specify precisely that of diagonalization as used in Ref. [4]. The transformed
transition operator Tp 1s assumed there to be diagonal in a particular class of physical
states [D]. The states belonging to [D] are called diffractive states and those from its
orthogonal complement [~ D] are referred to as non-diffractive. Thus for any state

| 7) € [D)] one has :
To |5) =t 1)+ 2. t | k) (9)
k)€[~D]

Eq. (9) can be interpreted as the requirement that the base states of the diffractive
sector are subject only to elastic scattering which arises from absorption related to
the production of non-diffractive states.

If the transition takes place between two diffractive states, i.e. when | z) € [D]
and | f) € [D], one has then on account of Eqs (1) and (9):

Tf,' = Z Ufj U:;- L. (10)
5)€(D]}

Using the Ansatz (2) the diffractive transition amplitude (10) 1S

Tf,' = t,'(sﬁ = Af:' ti — :f ty + Z Af.f t.‘fA:rj
l7)€lD}

or equivalently

1 ) . ]
Ty =05 + §(Af=‘ — A (g —t)+ D A At — §(tf +t:).  (11)
l7)€lD]



In particular, the elastic scattering amplitude reads

Ti=t+ > |Ajl°(t; —t). (12)
|7)€[D]

If all Ax; were small then retaining only the terms linear in A (violating thus the
relation (3) resulting from unitarity) one would yield the elastic scattering amplitude
equal to the eigenvalue of Ty in the initial state. Instead, the inelastic diffraction
amplitude would be proportional to the difference of these eigenvalues in the initial
and final state , which is just the ’difference form’of the Fermi-Watson theorem (7),
as given in Ref.[4].

The last terms of Eqs. (11) and (12) can be considered as the unitarity corrections
from the intermediate diffractive states. In fact, the role of the virtual transitions
inside the set of diffractive states is much greater. In our approach to diffraction {12]
we reject the condition (9) regarding the diagonalization of the transition operator.
First, this is a redundant assumption since the required division of channels into the
two classes may be formulated otherwise. Secondly, considering the most general

expression:
Tolj)= D tilk) + 3 tilk) (13)
|k)€[D] |k)€[~D] |

one reveals there, besides the absorption of non-diffractive origin, also another source
of absorption implied by transitions inside the set of diffractive states.

The fundamental point in the description of diffraction is the presumed ex-
istence of two orthogonal subspaces of diffractive and non-diffractive states. This

requirement can be rephrased by saying that there exist unitary operators U and U f
which are reducible in the Hilbert space of physical states. This implies the existence
of a non-trivial subspace [D] such that for any |3) € [D] also |Uj) and |U i 7) belong
to [D]. In consequence, for any state |k) belonging to the orthogonal complement

[~ D] also |Uk) and |U i k) will belong to [~ D]. In terms of the matrix elements this
reads:

(k|U5) = (k|UTj) =0 (14)

for any |j) € [D] and |k) € [~ D] . A careful inspection of the passage from Eqgs.
(1) and (9) to Eq. (10) indeed reveals that the above relations of orthogonality were
implicitly assumed.

The states [Uj) obtained through the unitary transformation (14) constitute a
natural base for the description of diffraction. The amplitude of diffractive transitions
follows then directly from Eq. (1) by restricting the summation over states to the
class [D] of diffractive states. Using U = 1 — A one obtains :

Tri = tpibpi — D At — D trpAl; + D AgitiiAj. (15)
[k)e[D] |7)e{D] 7},1k}€[D]



The three last terms of (15) can be rewritten as follows:

Y. Aptei = Np(To)Agits

A%t N5 (TY)

[
e
“a,

-

ol ;

1

l7)€(D]
Z Aptii Ay = Z Nyi(To)AyitiA3;
|3),|k)€(D] s)elD]
= Y At ASNE(TY) (16)
l5)€[D}
where {; are the diagonal matrix elements of Tj :
t; =t =0 1To]J) (17)
and .
Nii(To) = . . Al | To | 7)- 18
J( ’ Akj(] | To |.7) |1)EZ[D] ( ) 18)

In order to estimate the undimensional quantities Ni; we rewrite (18) in the form:

1 ) - o . et —1 : .
No. L= D, Auty] ), Awty] (19)
k1 1y#15)€[D] i e(D]

If the class of diffractive states { D] contains a huge number of states, then the second
term in (19) will approach unity. This means Ni; = N — oo for any pair of states

k) and |7).

We have thus discovered the infinite dimension of the diffractive subspace which
was hidden inside the quantities Ni;. This leads to an enormous simplification of
Eq.(15) :

Tf,' = t,—é,, N(A/,t +A‘ftf— Z Ath A* (20)
E
which is almost identical, except for the factor N, with the ’diagonal’ Eq. (11). But

this difference turns out to be essential. In other words, the effect of non-diagonal "

transitions can be factorized: the diffractive transition amplitude has the form NAt
where At represents a diversity of diagonal matrix elements of the transition operator
over the set of diffractive states. Such expressions are to be considered in the ’diffrac-
tive imit’ {11]: N — oo, At — 0 under requirement that NAt is finite. Diffraction

thus arises as infinite sum of the infinitestimal contributions from all intermediate
states belonging to the diffractive sector.

In the case of elastic scattering Eq.(20) becomes:

Tii=ti+ N Y |A;°(t - t) (21)
5)€ELD]



which, in contrast to Eq. (12), is to be considered in the ’diffractive limit’, assuring
the second term in (21) to remain finite. We refer to this term as the diffractive
contribution to elastic scattering since it originates from the action of the operator
A which filters as intermediate states only those diffractive, 1.e. equivalent to the
initial state. The numerical analysis of the elastic scattering of high energy hadrons
reveals the importance of the diffractive term around and above the dip of differential
cross-section [10, 12]. By contrast, the first term in (21) which is mostly feed by the
shadow of non-diffractive transitions, is dominating at small momentum transfers and

negligible above the dip.

Making use of completness of diffractive states in their subspace one may obtain
from (20) the inclusive cross-section of inelastic diffraction:

Yo TP = NI A Its)? — 2( Re(As)* — Re(Ais) + |Aal®) [t:)

| £)#1t) |f)
~ | % AirPt 1T = 2(1 — 2Re(Ass)) Re(t; ;Z>: AylPe5).  (22)
f f

Applying now the identity : | Aii | + Re(Ai)? = 2[Re(As)]’, Eq.(22) can be written

in the form: |
o S THP =N > AglP by -t - l-Tal>. —  (23)
| £)#lt) |£)€(D]}

Another way of writing the inclusive cross-section (23) is :

1 2 1 — G
S TalP =N Y AP It ——= > Al + —=ti-Tul® (24)
1£)#£1i) 1£)€(D] 9i |iYe(D] gi

where ¢; = 3¢} |Ai;]* = 2Re(Ay;) is the normalization constant. The first term

of Eq. (24) represents a dispersion of the diagonal matrix elements of T while the
second term is proportional to the square of diffractive contribution in the elastic
scattering amplitude (21).

Rather a small value of g; would be expected to reflect the experimental fact that
the cross-sections for inelastic diffractive processes are about one order of magnitude
smaller than elastic ones. Qur analysis {12] of the inclusive inelastic cross-sections
obtained at the ISR and SPS colliders [13, 14] confirms this expectation : g; < 0.07 .
Now by comparing Egs (23) and (24) one may conclude that the majority of the
inelastic diffractive cross-section is contained in the first term of Eq. (23) . But it
is just this term which, being suitably corrected for the intermediate virtual transi-

tions, corresponds to the Fermi-Watson approximation (7) of the inelastic transition
amplitude. |

This work was partially supported by the Polish Committee for Scientific Research
(K B N) and the Italian Institute for Nuclear Physics (I N F N).



References

[1] E. Fermi, Nuovo Cimento Suppl. 2 (1955) 17.
(2] K. M. Watson, Phys. Rev. 95 (1954) 228.

[3] B. T. Feld in Models of Elementary Particles (Blaisdell, Waltham, 1969), p.
73.

(4] A. Bialas, W. Czyz and A. Kotanski, Ann. of Phys. 73 (1972) 439.
(5] W. Czyz, Phys. Rev. D 8 (1973) 3219.
[6] H. Miettinen and J. Pumplin, Phys. Rev. D 18 (1978) 1696.
[7] J. V. Noble, Phys. Rev. C 8 (1973) 2508.
(8] A. Foursat, E. Lyovshin and K. Sailer, Nucl. Phys. A 392 (1983) 399.
9] M. L. Good and W. D. Walker, Phys. Rev.120 (1960) 1857.
[10] A. Malecki, Phys. Lett. B 267 (1991) 523.
[11] E. Etim, A. Malecki and L. Satta, Phys. Lett. B 184 (1987) 99.
(12] A. Malecki , LNF-94/075 (1994)- to appear in Phys.Rev. D.

[13] M. G. Albrow et al., Nucl. Phys. B 108 (1976) 1; J. C. Armitage et al., Nucl.
Phys. B 194 (1982) 365.

[14] D. Bernard et al., Phys. Lett. B 186 (1987) 227.



