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ABSTRACT

We analyze the performance of a resonant gravitational wave antenna equipped with
a resonant, d.c. biased capacitive transducer, an untuned superconducting matching
circuit and a d.c. Squid. We derive simple relations for the detector energy
sensitivity that serve as guidelines for device development and we show that, with
reasonable improvements in Squid technology, an effective temperature for burst
detection of 2 uK can be, achieved.
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1. INTRODUCTION

One of the most difficult experimental problems of the gravitational wave research with
resonant antennas is the realization of an electromechanical transducer highly coupled to the
antenna and with high mechanical and electrical quality factors Q. Furthermore the electronic
amphfier, which 1s part of the transducer itself, must have very low noise, possibly down to a
level such to allow detection of one single quantum of the antenna vibrational energy.

Various attempts to realize such a goal have been made since the early seventies. The
piezoelectric ceramics used by Weber are powerful devices to detect small vibrations, but they
have the drawback that their mechanical Q is small (of the order of 1000) at all temperatures. An
important breakthrough [1] was the resonant transducer. It consists of a small mechanical
oscillator with resonance frequency equal to that of the antenna. In this way one has a system of
two coupled oscillators (antenna and transducer) and the antenna vibration energy can be
entirely transferred as mechanical energy to the transducer. To convert this mechanical energy in
an electrical signal one can use an inductive (as in Stanford or LSU [2]), capacitive (as in Rome
[3]) or parametric (as in Perth [4]) pick-up coupling to the low noise amplifier. Several ways to
realize these types of transducer have been devised over the years, by selecting the material, the
resonator geometry, the specific electrical pick-up, the matching circuitry and the electronic
amplifier. Last, but not least of the technical problems, is then to fasten the transducer to the
antenna without degrading its performances.

The purpose of this paper is to show that by using a capacitive resonant transducer
coupled to a dc SQUID amplifier via a non resonant matching circuit, one can indeed approach
the Giffard limit for sensitivity [5] and, with the expected improveménts in dc SQUID
technology, the Standard Quantum Limit. We think it is advantageous for the Rome group to
push this technology to its limits, and we evaluate what these limits represent in terms of
antenna sensitivity to g.w. bursts. The experimental effort required is challenging, and the
sensitivity goal, in the 102 K range, 1s ambitious for the next five to ten years.

2. RESONATOR GEOMETRY

Mechanical resonators suitable for resonant transducers can be divided into two broad
categories: distributed oscillators, like diaphragms [2], mushrooms [3] or flaps [4], and lumped
element oscillators, like loaded diaphragms and loaded cantilevers [6]. In the latter class
resonating mass and elastic constant are localized in different parts of the resonator, and can
therefore be adjusted independently, leaving a greater design freedom. On the other hand,
diaphragms and mushrooms must satisfy constraints that relate geometrical and physical
quantities, leaving two free parameters among the four quantities R, t, fy and my (radius,
thickness, resonant frequency and mass of the resonator)

The results in this paper are derived for a particular geometry (the rosette resonator)
recently adopted in some devices of the Rome group [7], but they apply to both classes of
resonators except where explicitly stated.

A rosette resonator, schematically shown in fig. 1, is well schematized by a number N1 of
cantilevers that support a disk of mass my from its edge.

Note that the loading mass is actually supported by 2N1 arms: however the boundary
conditions of cantilevers loaded at their center are more appropriate to represent our oscillator,



and yield more accurate results, than twice as many cantilevers loaded at the free edge.

For a disk of radius R and thickness h, supported by N1 pairs of arms of total length L,
thickness t and width w, the resonant frequency is given by:

16N, Ywt’ 2 v, [Nwt’
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where the second expression is derived under the assumption that the central mass and the
cantilevers are made of the same material, with Young modulus Y and sound velocity vg. Eq.
(2.1) actually apply to any resonator described by the loaded cantilever model.

N
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Figure 1 — A loaded cantilever resonator and its conceptual model.

In the case of a rosette resonator, where the arms are curved in order to maximize their
length in the available radial space, exact determination of the arm length L is somewhat
arbitrary, although effective rules of thumb have been devised.

We can compare Eq. (2.1) with the corresponding relation for distributed resonators:

f, = Ay, L (2.2)

_ R?
with A =0.49 for a diaphragm or A=0.21 for a mushroom (the Poisson ratio has been taken
equal to 0.3).

Clearly Eq. (2.1) depends on more parameters and allows us to independently choose the
resonant mass my and frequency fy. However, practical considerations, that will not be
discussed here, set a lower limit on the mass my : for Alluminium, we get my >250 g.

Note that, according to the loaded cantilever model, the central disk moves as a whole,
i.e. there is no mode weighting of the amplitude of vibration: in the notation of [3b], yt = 1.
This implies that no tuning effect (change of resonant frequency with applied electric field)



should arise from the mode shape. In what follows, different resonators with yt # lcan be
accounted for by multiplying the stored electric field E by vt .

3. THE READ OUT CIRCUIT
A capacitive transducer is coupled to a SQUID amplifier via a superconducting matching

circuit [8)] as shown in fig. 2. The transduction effect is represented by the equivalent voltage
generator:

ve=E (y-X) | (3.1)

where E = Vp/d is the electric field stored in the transducer gap d and y-x is the relative
displacement between the transducer (y) and the antenna end face (x). We shall neglect
dissipation in the readout circuit: losses are indeed negligible in a superconducting circuit, as
long as we keep away from the electrical resonance of the LC circuit of figura 2.
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Figure 2 — The read out circuit of the Explorer and Nautilus Antennas. Ct, Cp and
C{ are respectively the transducer, stray and decoupling capacitances; Lo and L are the

primary and secondary inductances of the super—conducting transformer; Lip and Lgq
are the input and SQUID loop inductances.

Using Thevenin's theorem the above circuit can be simplified to the following:

Cq
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Figure 3 - Equivalent electrical circuit.
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where Ve=Ve ot O (3:2)
t P

Although the scheme of fig. 3 is inaccurate in describing back-action effects (not all the
noise current flows into the transducer), it only overestimates its effects by a factor (C¢+Cp)/Cy,

carrying negligible consequences on our analysis since C¢ >> Cp.
We define:

Mi=k \/ﬁ the mutual inductance of the matching transformer,

Mo =k9 o ,LinLSQ the mutual inductance between the Squid and its input
inductance and

_ L
Ler]-ml

s

Solving the circuit of fig. 3, neglecting the influence of the SQUID, yields for the current
in the secondary coil: |

—
LO
. C
= vy VL (3.3)
+C, . L+L, 1| 1 .
Y TP oL k, - in + joL
o™l : 0
where
C4(C +Cp)
C= :(Ct +Cp) (3.4)
Cq +C +C
is the combined capacitance as seen from the L terminals, and the second equality holds in the
usual case Cg>>Ct+ Cp. | |
By defining also the transformer effective current gain factor
_ /Lo L
N, = T ky C+L. (3.5)
we find | | |
. C N
i=v, — : (3.6)
where the resulting impedance is
Zo () = e + JOLo (1 - Y.k} ) = — - (3.7)
© | _](DC ° s _](DC 03%1 '

and the electrical resonance is given by
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(3.8)

We can now relate the magnetic flux in the SQUID, ®= M, i, to the mechanical signal

O=M,i=0,(y—x) [Wb] | (3.9)
with |
O, = ¢ NM, g = jo,C, NeM, SE [Wb/m] (3.10)
1— _t
2
O)el}

where eq. (3.4) and (3.7) have been used. We find that in Eq. (3.10) the factors (C+Cp) cancel
out, except for a weak dependence in we]. We can then draw the unexpected conclusion that, as
long as the electrical frequency is well above the operating frequency fy=wy /2m, the
transduction coefficient as is unaffected by the stray capacitance Cp.

Eq. (3.10) holds for any capacitive transducer equipped with the circuit of fig. 2. For a
mushroom or diaphragm resonator, due to eq. (2.2) linking resonant frequency and geometry,
one finds that the product ©{Ct simplifies to a constant times t/d [9]. This is not the case for the
other resonators considered here.

Note that, in order to maximize the signal fed to the SQUID (as long as the electrical
frequency is maintained above the antenna resonance), we find the obvious prescription to make
a transducer with the largest active capacitance, and a transformer with large coupling coefficient
and turn ratio (but keeping the secondary coil L close to the SQUID input coil L;,. The SQUID
mutual inductance M3 is usually not at the experimenter's disposal, and the electric fields E is
turned up as high as it is safe and practical (E<2 107 V/m).

4. THE SIGNAL - SYSTEM RESPONSE TO AN IMPULSIVE EXCITATION
Consider an impulsive (delta-like) force acting on the antenna:

Fx(t) = Fo o(t) [N] - (4.1)

The amplitude of vibration of the end face of the bar turns out to be:

Fo 1 | 0F - (D% : w? - 0)%
) ( Sin® .t -

() 1 - O @4 .
where the eigenfrequencies of the two normal modes for the coupled antenna-transducer system
are:

sinm_t ) (4.2)

2
0? =1 0> (1+ 1)+ o+ (m2(1+u)+m2) — 40 m? (4.3)
pi y X y X X yJ

where p = my / mx is the ratio of the equivalent masses of transducer and antenna and is, for

I+



any realistic system, u<<lI.
The response of the transducer is given by

Mx % -0?

| -0 +s1in(w 4t) + -0 _sin{o® _t) ]

or, separately considering each normal mode:

(Y - X)z = ! — O 35in(0 1) (4.4)

Eq. (4.4) shows that both modes respond with virtually the same amplitude of vibration to
an 1impulsive force, regardless of the degree of tuning of the transducer. A well tuned transducer

(0y = wx) has the advantagq of a much larger response for both modes, because the
denominator in Eq. (4.4) assumes its minimum value. "

Indeed, in the well tuned case and with p<<l, we get

2 1] o
o’ ——[mx i\/ﬂ] (4.5)

F, .
— XK= W+ SIn {O+t

so that:

5. DISSIPATION AND BROWNIAN NOISE

The losses of the antenna and transducer are characterized by amplitude decay times tx
and Ty. These 1n turn determine those of the two normal modes 1+ .

At each mode the thermal noise variance is given by:

"|1

2 4k-Tm 2 4k Tm B
—B_x +lWyy((o+) 5 Y il (5.1
T ERLT SR
X Y )
where T is the thermodynamic temperature and kg the Boltzmann's constant. The transfer

functions are:

(y=x0 ={|Wyx(@,)

A
’ m,D(w )
W 240 242jm /1,
7 myD(w ) (5.2)

- D(0)=[- %40 #+po $H+jo 2/4+2u/1)][-o 2+ $+2jo /1]
-[no +2jo p/ty o §H+2jo /1)

In the optimal case of a well tuned transducer we compute, using Eq. (3.9) the magnetic
flux coupled into the SQUID by the Brownian noise:



(5.3)

'We remark that this calculation holds only as long as the resonant interaction of the
electrical resonator LC with the mechanical resonators can be neglected. Otherwise, a different
analysis considering three normal modes on equal footing must be applied. Besides, . the noise
spectra of the two normal modes must not overlap, so that we can analyze them separately: this
1s true as long as the mode separation is larger than their intrinsic bandwidth (see below, sect.8):

A® = Wy "E >4 |33. (54)

6. THE COUPLING COEFFICIENT B

The transducer energy coupling coefficient {3 is, in many respects, the figure of merit of a
transducer. It 1s defined as the fraction of mechanical energy that the transducer is capable of
converting 1n electrical energy during one period of oscillation.

It is convenient to define 3 at the SQUID input, where the noise sources are referred:
1 —
— L 1

B=2—ro = | (6.1)
1

2m

where an impulsive excitation (Eq. (4.1)) has been considered and the magnetic energy is
evaluated at the SQUID input coil Ljp.

With the aid of Eq. (3.6) and (4.4) we find:

| ) 2 2
B — Lin Ct NeE __03+ + (D_ (6.2)
2m, | C, +C 2
x\ St Cp )[40 (mi — 0)3)
that can be re-expressed, using Eq. (3.8), as
2 2 2 2 2 2
|3 = OLS __0)+ o _ & Lin a)+ TO_ (6.3)

- 2 2
2m,Lgq (0)2 — @2 )2 em My ( _%_ wz)
S lo) - |

These equations hold in the general case. 'Iheyﬁ can be simplified for a well tuned
transducer to

= _Lip %)2 6.4
p = (e (6.4)



7. THE AMPLIFIER NOISES AND THE BACK ACTION.
The SQUID amplifier [10] contributes both a wide band flux noise in the SQUID, with

;f{_" (@ = 2.07 10-15 Wb is the flux quantum)
z

and a current noise circulating in the SQUID. These two noise sources can be represented by a

current noise and a voltage noise generators at the SQUID input. The voltage noise is
responsible for the back action effect. The voltage noise Vy, in practical d.c. SQUID amplifiers

spectral density ¢p, that we express in unit of

has not yet been measured (or even detected), but reasonable estimates [9] predict Vp = 1.5

10-16 VA/Hz at 1 kHz.

In the devices presently used in the Rome group [8] the measured wide band flux noise
¢n=2 1000 NHz corresponds to a current noise In=ppn/M2= (2 10-6 ®/Hz2 10-9 H) = 2
10-12 AWHz. From this we can estimate the amplifier noise temperature Tp=Vnlp/kp~20 nK.

7.1 The noise match impedance ratio A
The parameter A is defined as the ratio between the optimum noise match impedance of the
amplifier and its actual input impedance. For the SQUID of fig. 2 it takes the value:

2
A= L +L|1-k2—2
1 .2 2

Vo O —0
el

(7.1)

For a SQUID with the above noise sources we find A~1 00.

7.2 Back Action

The back action is a noise force exciting the modes due to the SQUID voltage noise, with
a transfer function almost identical to that of the transducer Brownian noise. It is, in all respects,
indistinguishable from the thermal noise, so that it can be described by an increase in the
thermodynamic temperature of each mode [11]:

Tec=T+ Ty, =T+ B%{“ (7.2)

It depends on the voltage noise (Tp/A) and it is therefore not observed in the present detectors
equipped with d.c. SQUIDS. Anyway, with the above estimates for the SQUID voltage noise,
we conclude that the back action can be neglected with respect to a bath temperature T=100 mK,
as long as BQ < 10°.

8. ANTENNA SENSITIVITY FOR G.W. BURSTS (TUNED TRANSDUCER)
From now on we shall assume the resonant transducer to be perfectly tuned to the antenna

for optimal response. The sensitivity of the antenna to a short burst of gravitational radiation is

expressed by means of the effective temperature, that can be computed, as long as condition
(5.4) holds, by the relation [12]:

— AEmin

~4T\T (8.1)
kp

Teff
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where Te is the bath temperature'including back action (Eq 7.2) and I 1s the ratio between wide
band and resonant noise:

2
I = (bn — Tn (7\, <+ —1—) (82)
2‘5(1)1%1- 2T Q A

We shall assume, in what follows, that back action adds a negligible noise, and therefore we
ignore it. From Eq. (8.1), (8.2) and (5.3) we find

| 4. |m kpgT
kpTos = il ’ (8.3)
ol Vo«

It is interesting to note that (8.3) is valid in general for any linear transducer, as ¢, ®/0 is
just the equivalent noise velocity at the antenna input and the second term is the equivalent
brownian force [5].

Substituting Eq. (3.11) for ag we get

(
2

4¢, i W |1 |kgT m, (8.4)

NMC, | o? BV«

€

kgTegr =

showing that, as far as the transducer geometry is concerned, one should minimize the ratio

Jm,

C . a small mass transducer is desirable, whitin the limits discussed in next section, but
t

with a large capacitance: hence the importance of achieving a small gap. Assuming that the
resonator has a simple disk geometry, so that Ci= ggn R2%/d and my = PT R2 h (as for all

transducers considered in sect.2, but the flap) we can write:

¢ ] 2| [ fop 4 1T

() T
ter ) e e N || R B HI AT

€0\ TKp | e ®° ] 2
where we grouped five terms:
-the first is a universal constant, equal to 6.86 1022 LS. units,
-the second depends on the electric properties of the superconductive transformer,
-the third depends on the transducer mechanical parameters and stored field,
-the fourth on SQUID coupling and noise
-and the last one on the mode temperature and decay time.
i
Note that for mushrooms and diaphragms the ratio — is set by the resonant frequency,

R

as shown by eq.(2.2), so that Teff has no dependence on the resonator shape and size, except
for the gap[9].



9. OPTIMUM MASS, BANDWIDTH AND III MATCHING CONDITION
The antenna (or, rather, the mode) bandwidth (FWHM) is the characteristic frequency of
the Wiener filter, and 1s the inverse of the optimum sampling time[11]:

2 o1 [rad/s] (9.1)
_~ rad/s .
’C\/F Tl g

B, = o, |kgT
0,0 | myT
where Eq. (8.1) and (8.3)have been used.
We have mentioned earlier that the transducer mass cannot be made small at will, even if

this apparently yields a large bandwidth and a low Teff. Indeed the III matching condition,

derived in ref.[11] for the particular case of vanishing thermal noise, can be cast in a more
general form as:

\
> 4P [ZTK +f3 (9.2)
T.Q

where the second term, representing the back action, 1s usually much smaller than the first,
thermal one. This relation can be derived in several different ways and states, as already pointed
out in (5.4), that the SNR frequency curves of the two normal modes should not overlap.

When the dependence on the transducer mass my in p and p i1s worked out, one finds [13]
(as long as A>>1 and neglecting back action)

OLS kBme

2, |
(oxq)n E

'rn =4

y (9.3)

We want to stress that all equations derived 1n sects. 5 through 9 hold for detectors
equipped with capacitive transducers with a resonating mass larger than or equal to this value.
For lighter transducers a different approach must be taken [14], as the single mode analysis
breaks down.

Moreover, Eq. (9.3) neglects back action, and 1s inaccurate when its effects are
significant. As Tha depends on my (Eq. 7.2 and 6.5), a more elaborate optimization is
required, yielding a larger value for my. |

When the transducer mass 1s optimized according to (9.3), we find the detection noise
temperature

r . /2 r -13/4
kpT

oTun 28] €2 e[ K

B 4 eft as X T

(9.4)

showing that the detector sensitivity to g.w. burst flux F(w) = kB Teff / £ (where X i1s the

€ross section, proportional to my) improves slightly less than linearly with the antenna mass.
We have not addressed the issue of tuning the LLC circuit to the mechanical modes. This

tuned configuration was tested in one of the Nautilus preliminary runs, and several practical
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disadvantages have emerged that have convinced us to procrastinate the adoption of this

solution: mainly, one has to deal with three modes, experimentally a more complex and critical
system, without achieving sufficient benefit [14,15].

10. NUMERICAL EXAMPLES AND CONCLUSION

We remark that the above considerations have been fully tested experimentally with the
antennas of the Rome group+ [8] to the level of Teff = 5 mK.

We now evaluate Teff, bandwidth and optimum transducer mass and mode spacing (beat
frequency) and show the results in Table L.

The first column reports parameter values already attained with a mushroom transducer,
and represents the state of the art of our antenna-transducer system: the sensitivity of 280 pK
will be reached on the Nautilus ultracyogenic detector [16] when the system tune-up is
completed, with elimination of all external noise. Note that in the present set up the transducer is
much heavier (300 g) than the optimum value, because the latter is not compatible with the
achieved active capacitance of 4 nF. A constrained optimization is possible with numerical
methods [14]. |

In the second column we foresee reasonable improvements, within the reach of present
technology. The sensitivity of 19 uK could be achieved in the near future.

The third column reports more optimistic, but by no means unreasonable values:
however, at the level of sensitivity here discussed, sounder estimates of the SQUID voltage
noise are needed, in order to appropriately account for back action effects.

The small value for ¢ implies, besides foreseable SQUID fabrication advances [17], also
the development of an improved second stage amplifier. The large capacitance of 20 nF can be
achieved either by reducing the gap to values of the order of 6 jtm, or by using two electrodes in
a push-pull configuration.

We believe that a few resonant antennas with such a sensitivity will be a powerful mean to
search for gravitational waves in a still unknown Universe.
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Table I - Performance of the Nautilus ultracryogenic g.w. detector equipped

with present, advanced and very advanced capacitive transducers.

PARAMETERS State of the art Near future Optimistic
Ct (F) 4.2E-9 1.2E-8 2.0E-8
Cp (F) 6.0E-10 3.0E-10 2.0E-10
d(ium) 49 10 6
Lo (H) 2.9 2.0 2.0
L (H) 8.0E-7 1.0E-6 1.0E-6
Lin (H) 1.0E-6 1.0E-6 1.0E-6
ki 0.77 0.8 0.9
Lsq (H) 5.60E-11 5.00E-11 5.00E-11
ko 0.5 0.6 0.7
M1 (H) 1.16E-03 1.13E-03 1.27E-03
Vs 0.44 0.50 0.50
Ne 647 566 636
M2 (H) 3.7E-9 4.2E-9 4.9E-9
fel (Hz) 1584 1231 1027
T (K) 0.1 0.1 0.1
T (S) 500 1000 2000
on (0oNHZ)) 2.0E-6 1.0E-6 2.0E-7
Vn (estimate) 1.5E-16 1.5E-16 1.5E-16
Tn (estimate) 1.2E-5 5.1E-6 8.7E-7
E (V/m) 8.0E+6 1.0E+7 1.0E+7
my (kg) 0.30 0.28 4.28
PERFORMANCES

as (Wb/m) 6.8E-4 3.5E-3 1.5E-2
B 8.6E-4 1.9E-2 1.8E-2
My_opt 0.038 0.276 4.280
A | 53 24 4
Tha (estimate) 1.3E-4 5.7E-3 1.2E-2
Teff (LK) 280 19 2
Bandwidth at each mode. (Hz) 0.90 7 29
mode spacing (Hz) 15 14 93
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