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Abstract |

A data analysis based on artificial neural network classifiers has been done to identify
cosmic ray electrons and positrons detected with the balloon-borne NMSU/Wizard-TS93
expeniment. The information is provided by two ancillary and independent particle detectors: a
transition radiation detector and a silicon-tungsten imaging calorimeter. Electrons and positrons
measured during the flight have been identified with background rejection factors of 8013 and
S00137 at signal efficiencies of 72+3% and 8612% for the transition radiation detector and the
silicon-tungsten imaging calorimeter, respectively. The ability of the artificial neural network
classifiers to perform a careful multidimensional analysis surpasses the results achieved by
conventional methods.
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1 Introduction

The investigation of cosmic ray positrons and electrons is of special interest to
study of cosmic ray propagation and production. Cosmic ray e~ are mainly of primary
origin whereas et are produced in nuclear interactions of the primary cosmic rays with
the interstellar medium (ISM), via the #t —u*—et decay chain [1]. In addition e*
may also be produced by mechanisms such as pair production in strong magnetic
fields near pulsars or the annihilation of heavy dark matter particles, such as massive
neutrinos or supersymmetric particles, in the galactic halo {2]. Because of their low
mass, e lose significant amounts of energy by interacting with electromagnetic fields
and photons during the propagation in ISM. Measurements of the equilibrium energy
spectra of these particles and comparison with those calculated by the predictions of
"model can provide a better understanding of the origin of cosmic ray e* and of their
propagation 1in the Galaxy.

Observation of cosmic ray positrons is a very difficult task because of the high
proton background. Their detection requires complex instrumentations and involves
stringent cuts on the data. From the instrumental point of view the main problems to
be solved in balloon-borne experiments are the short exposure factors available. The
harsh conditions experienced during a balloon flight also introduce some systematic
changes of the detector performances with time. In order to identify the e* signal
against the large background sophisticated analysis techniques are required.

Nowadays many procedures currently used in high energy physics - from real time
pattern recognition (triggering) (3] to off-line data analysis [4] - are performed by the
“application of neural network (NN) techniques. NNs are particularly apt to classify
complex phenomena and provide robust and reliable methods to design eflicient and
fast particle identification systems.

In this paper we show that classifiers based on feed-forward neural network are able
to effectively identify electrons and positrons measured by two independent and an-
cillary particle detectors employed in the NMSU / Wizard-TS93 apparatus {5]. Thus,
the neural network based analysis can be used for a careful evaluation of the energy
spectra of cosmic ray positrons and electrons. The reliability of the results achieved
is confirmed by means of the statistical compatibility, based on the Kolmogorov test,
between the neural feature space of the simulated and real data.

2 The TS93 flight instrument

The TS93 experiment is devoted to the measurement of the energy spectra of
cosmic ray positrons and electrons in the energy range from 5 to 50 GeV. The de-
tector system employed is shown in fig. 1. It comsists of: (1) a superconducting
magnet, equipped with multiwire proportional chambers and drift chambers, used as
spectrometer; (2) a set of plastic scintillator providing trigger, time-of-flight and ab-
solute charge measurements; (3) a transition radiation detector, for identification of
electrons and positrons with energy above 3 GeV and (4) a silicon-tungsten imaging
calorimeter to identify different particles according to the topological and energetic



pattern released in the detector (i.e. straight tracks for muons and non-interacting
protons; hadronic showers for interacting protons; electromagnetic showers for elec-
trons and positrons).

The transition radiation detector [6], positioned at the top of the balloon payload,
i1s composed of ten modules, each one made of a carbon fiber radiator followed by a
Xe — CH, filled multiwire proportional chamber (MWPC). Each radiator consists of
an alluminium frame containing four bags, each filled with 6 mm long, 7 yum thick
and 1.76 g/cm?® dense carbon fiber segments. The MWPCs are equipped with 256, 3
mm-spaced, wires and they have an active area of 76 x 80 cm?. The MWPC signal
processing is based on the cluster counting method [7].

The calorimeter [8}, positioned at the bottom of the balloon payload, is composed
of 5 silicon planes, sensitive both in the X and Y coordinates, interleaved with one
- radiation length (=3.5 mm) of tungsten, for a total calormeter thickness of four
radiation lengths. The sampling layer of the calorimeter is an array of 8 x 8 pairs (X-
Y) of detectors (6 x 6 cm?, divided in 16 strips, each 3.6 mm wide). Each sampling
layer consists of two arrays having 1284128 readout channels. A built-in system
equipped with ADCs and digital processors accomphishes the data acqusition.

3 The neural network classifier

A classification system transforms an information space (pattern space) in to a
discriminating variable space (feature space) [9]. The study of the human decision-
making process has led the investigators to formulate a formal paradigm in order
to gain knowledge by examples {10]. Neural networks are very popular paradigms
to build up example-based classifiers. In the present work the “three-layered feed-
forward” Neural Network is considered [11]. It consists of units (formal neurons)
arranged in contiguous layers, as shown in fig. 2. Each neuron k, (k = 1,..., N;)
belonging to the hidden layer, receives as input the output X; (I = 1,...,N;) of all

the neurons [ of the input layer, to which it 1s connected by wf;) synaptic strengths.

On the other hand, the neuron k is also connected, with strengths wg), to the neuron
of the output layer. The transfer function of the neurons is the sigmoid funtion:

1

=0 eahE-) 2

where 6 and 3 are the neuron threshold and the gain factor, respectively.

The synaptic matrix W(®? is trained by showing to the network a data set of
examples (training data set) and updating the weights according to the delta rule
[11], which minimizes the mean squared error function E of the classification system.
After each training epoch, the quality of the new model W(™¥) is estimated by means
of an independent data set (test data set). The learning session is stopped when the
error function E, evaluated on the test set, reaches its lowest value. The training and
stopping procedures are unbiased general criteria to build up a classification system
in an accurate way. A further method to check the reliability of the classification



Table 1. Characteristics of the neural network used to classify the TRD data.

Neurons in the input layer | i0
Neurons in the hidden layer 5
Neurons in the output layer | |
[ gain factor - 1

| § neuron threshold ‘ 0.5
a momentum term 0.9

| 77 learning rate ] 1
Learning algorithm Backpropagation
Learning mode Incremental

Il Number of Epochs I 3500

| Training Set Cardinality | 12000
Test Set Cardinality 12000

| Validation Set Cardinality ~ 10000
Test Classification Error ~ 6%

| Kolmogorov Test )} >10%

Table 2. Characteristics of the neural network used to classify the calorimeter

data.

Neurons 1n the input layer 10

P Neurons in the hidden layer 15

I Neurons in the output layer 1
B gain factor - 1 ]

| 8 neuron threshold « 0.5 [
a momentum term 0.9 1
1 learning rate | 1

| Learning algorithm | Backpropagation

| Learning mode | Incremental
Number of Epochs 500 1

{I Trainming Set Cardinality 3000
Test Set Cardinality 3000 ‘K
Validation Set Cardinality l -~ 100000
Test Classification Error ~ 1%

1: Kolmogorov Test | . >10%




is to compare the output spaces of the test data set and the real data set using
the Kolmogorov test [12]. Tables 1 and 2 summarize both the parameters and the
Kolmogorov indicator for the NN classifiers used in this paper.

From the point of view of data analysis each input neuron is associated with a
physical variable. Therefore NNs enable one to explore a multidimensional input
space, by taking into account several complex information about the physical event.
The neural network architecture described above has been skilled in order to improve
the signal/background discrimination of the real data measured by the TRD and the
calorimeter during the flight. In both cases three different kinds of data sets have
been used for the analysis: (i) training data, for the synaptic weights formation; (ii)
test data, for the error evaluation of the trained NN; (i11) application data, to vahidate
the classication model and then evaluate the detector performances dunng the flight.
Training and test data have been obtained through a simulation; application datais a
sample of real events selected with high-purity, in a low acceptance region, by means
of stringent one-dimensional cuts on the whole experimental data set. In particnlar
the TRD (calorimeter) results have been carried out using application data selected
by the time-of-flight, the spectrometer and the calorimeter (TRD).

4 Experimental results

The data set analyzed here was collected during the balloon flight of the NMSU /
Wizard-TS93 instrument performed at 4.5 GV /c geomagnetic cutoff. The fight took
place on September 8, 1993 from Fort Sumner, New Mexico (USA). Only particles
fullfilling the following pre-selection criteria were taken into account in this analysis:
(a) momentum p larger than 5 GeV/c and smaller than 50 GeV/c; (b) both x.?
and x,2 < 5 for the reconstructed track; (c) deflection uncertainty o, <0.02 GV ~%;
(d) absolute electric charge | Z | = 1; (e) events moving downward in the detectors

system (e.g. no albedo particles); (f) at least 6 TRD modules crossed by the particle
(13, 14, 15].

4.1 TRD data analysis

In some previous work evaluations of particle discrimination capability of a TRD
prototype were done on different classical sets of variables in a standard way(6, 16].
A good degree of accuracy was obtained by taking into account macroscopic variables
such as the number of planes fired in the track nyian.s, the number of hits fired in
the track np;,, or some suitable combination of them, such as the geometrical mean
indicator GM = (Nplanes - nh;t,)l/ 2_ It is worth pointing out that these indicators have

inherent drawbacks because they neglect several important physical and instrumental
effects, such as, in particular:

(1) the detection efficiencies of each MWPC plane;

(2) the topological distribution of the hits in the spatial window which defines the
physical track;



(3) the weak dependence of the yields of close TRD’s modules, due to X-ray escaping
detection in the relative MWPC and their conversion in the following one.

A more careful analysis has been carried out by using a neural network. In order
to overcome the above-mentioned drawbacks, the pattern space used for the classifi-
cation of the TRD data consists of the total number of hits detected by each TRD
planes in a small spatial window (10 planes - 5 wires) around the physical track. as
reconstructed using a cross-correlation algorithm {17}, and the information from the
magnetic spectrometer. Results obtained using a TRD prototype with test beam
data are shown in {18, 19|.

Neural network responses (feature spaces) for flight data are shown in fig 3. The
background rejection factor at various signal efliciency is shown in fig. 4. together
with the rejection achieved by means of one-dimensional cuts on the geometrical mean
indicator [13, 15]. The reliability of the results obtained by the present analysis has
been checked by performing a comparison between feature spaces for simulated and
~ application data. It must be pointed out that the events used for this companson were
not used to train the network. The agreement between the two statistical distmbution,
evaluated by means of the Kolmogorov test, is positive at 10% significance level.

4.2 Calorimeter data analysis

Lepton/hadron discrimination 1s achieved with the calorimeter by exploiting the
different longitudinal and lateral energy deposit profiles of e.m. and hadronic show-
ers. To this end, some discriminating variables are derived from the patterns in the
detector, describing the energy, the number of hits and the shower aggregation of
each event. These discrnminating variables are built as being maximally invanant
with respect to position within the detector, while retaining the largest amount of
information contained in the pattern.

In order to exploit completely the weak correlations among the variables, these
latter are fed as input to the artificial neural network described in table 2. together
with the rigidity of the event measured by the spectrometer. Moreover this enables
to correlate automatically the rigidity of the particle with the different behaviour of
the discriminating vaniables, 1n different parts of the energy spectrum. Results using
a calorimeter prototype with test beam and simulated data are shown in ref. [20]

In the present work the discriminating variables considered are selected from the
set of 12 variables used in conventional analysis {13, 14]. They include the total energy
released and number of hits fired in the calorimeter, as well as the fraction of energy
relased in clusters close to the track path. In order to judge the performance of the
classifier the Kolmogorov test has been used, as described in section 3. As a result. a
set of 10 physical variables has been selected and fed as input to the network.

The neural network responses for application data are shown 1n fig. 5. Figure 6
shows the background rejection factor of the calorimeter at various signal efficiency,
together with the result achieved by conventional analysis {13, 14].



5 Conclusions

In this paper two different classification systems, for TRD and calorimeter re-
spectively, are proposed to eftectively identify electrons and positrons detected by the
NMSU / Wizard-TS93 cosmic ray space experiment. Classifiers are based on a neural
network computational architecture in order to carry out a careful multidimensional
analysis. In both cases the results show that the neural network classifiers are capable
of discriminating between positrons and protons with higher efficiencies (for a fixed
contamination level) than those achieved by conventional analyses. Specifically, the
data analysis methods described here permit to identify electrons and positrons with
a background rejection of 8013(stat) and 500+37(stat) at the enhanced efficiency
of 72+3(stat)% and 86+2(stat)%, for the TRD and calorimeter, respectively. These
results are particularly useful in the context of balloon-borne experiments where, in
searching rare events with the constraint of short exposure times, a signal efficiency
as large as possible is required. The neural network based analysis can be used to
improve the evaluation of the energy spectra of cosmic ray positrons and electrons.
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Fig. 1 - The New Mexico State University balloon-borne magnet facility equipped with Wizard

T893 apparatus used for the 1993 flight to identify cosmic ray electrons and positrons
in the energy range from 5 to 50 GeV.
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Fig. 2 — The three-layered feed-forward neural network classifier used to select electrons and
positrons detected with the TRD and Calorimeter.
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Fig. 3 — The neural network output for TRD (a) signal and (b) background events selected with

hgh purity by means of the time-of-flight, spectrometer and calorimeter.
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Fig. 4 — Proton rejection factor versus stgnal efficiency of the TRD on flight data (black circles);
the result of the conventional analysis (ref. [13,15]) is also drawn (white box).
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Fig. 5 — The neural network output for calorimeter (a) signal and (b) background events
selected with high purity by means of the time-of-flight, spectrometer and TRD.
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circles); the result of the conventional analysis (ref. [13,14]) is also drawn (white box).



