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Abstract. Spherical GW detectors offer a wealth of so far unexplored
possibilities to detect gravitational radiation. We find that a sphere can be used
as a powerful testbed for any metric theory of gravity, not only GR as considered so
far, by making use of a deconvolution procedure for all the “electric” components
of the Riemann tensor. We also find that the sphere’s cross section is large at
two frequencies, and advantageous at higher frequencies in the sense that a single
antenna constitutes a real xylophone in its own. Proposed GW networks will
greatly benefit from this. The main features of a two large sphere observatory are
reported.

The view that direct observation of Gravitational Waves (GW) is going
to open a new era for the observation of the Universe is widely shared within
the international community. GW physics is also meant to be a powerful
tool to select amongst competing theories of gravity on the basis of analysis
of the multipole structure, polarisation states and propagation speed of the
waves [1] inferred from detector data. Resonant antennas (cryogenic cylin-
drical bars) have been experimentally demonstrated to be capable of long
term operation, and the antenna EXPLORER, for example, has reached a
sustained strain sensitivity A = 6 x 10~!? for millisecond bursts over a several
consecutive months period [2]. New generation ultracryogenic bars are now
ready to begin taking data with an expected sensitivity in the range of one
order of magnitude better than the above (3, 4].
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Negative detection results so far are a clear indication that improved
sensitivities are necessary; the question of how much improvement is required
~ is however difficult to answer, due to the large uncertainties in our current
understanding of supernova physics. Supernova explosions typically happen
a few times per century and galaxy [5], so a minimum coverage out to, say,
Virgo cluster seems desirable. Event rates within this range would rise to
several per month, though intensities would obviously be smaller on average.
A rather optimistic A~ 102! for Virgo cluster events is sometimes quoted in
the literature [6], a figure well beyond present capabilities, anyway; one may
not strongly stick to this, but the figure appears an interesting objective to
beat, at least in principle. _

A cylinder has only one quadrupole mode interacting strongly with GWs,
and presents a markedly directional detection pattern: amplitude sensitivity
drops as sin? @ (@ = angle of wave incidence). It would take siz such bars to
determine with isotropic sensitivity the two GW amplitudes h,, hy and the
two incidence direction angles (8,¢) [7]. It has been recognised that a single
spherical antenna, with its five degenerate quadrupole modes, also allows an
isotropic sky coverage and determination of the desired parameters [8, 9, 10].
In addition, the sphere has a number of other features which make of this
shape the natural next step towards a resonant antenna GW observatory.
We have investigated these matters, and give in this report a synthesis of our
new results.

A convenient way to characterise a resonant detector sensitivity is through
its GW energy absorption cross section, defined as

aab:(w) - QQE(:”'_(_‘:)_OI (1)

 where AE,(w) is the energy absorbed by the detector at frequency w,and
&(w) is the incident flux density expressed e.g. in watt/ m? Hz. Estimation of
0ass(w) requires a hypothesis about the underlying gravitation theory to cal-
culate &(w), and specification of the antenna’s shape to calculate AE, (w). As
shown by Weinberg [11], if General Relativity (GR) is assumed then oas,(w)
can be calculated independently of the details of the interaction antenna-GW
by use of an optical theorem. Applying that theory to a spherical detector,
we find that
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where G and c are the usual fundamental constants, M is the sphere’s
mass and v, the speed of sound in the material the sphere is made of; w,
is the n-th [-pole (2/+1)-degenerate resonance frequency of the sphere, and
['in is the linewidth of the mode. Finally, F}, is a dimensionless coefficient
which is characteristic of each mode, whose calculation requires to solve the
sphere’s vibration eigenmode problem, and is rather lengthy. We find that
Fin 1s zero unless [=2, i.e., only quadrupole modes can possibly be excited
—a reassuring result since we are assuming GR.

Numerical analysis yields F3;=2.98, about 17% better than the cylinder’s
8/m in its fundamental mode: on equality of mass, the sphere is a slightly
better GW antenna than an optimally oriented cylinder; if we average over
directions and polarisations, the sphere’s cross section becomes a factor 4.4
better for equal masses. This result confirms that obtained by Wagoner and
Paik using a different approach [9], and has also been recently discussed in
numerical detail by Zhou and Michelson {10].

We have gone beyond this, however, to assess the higher mode cross
section values. We find F3;=1.14, a remarkably high value, which means
that the sphere has a good sensitivity also in its second quadrupole mode.
Higher mode values are F33=0.107, F5,=0.039, Fy5=0.115, Fy2=0.044, etc. A
plot of the first three of these coefficients is shown in Figure 1 as a function of
the eigenvalue frequency, along with the corresponding figures for a cylinder
of the same fundamental frequency for comparison. Interesting consequences
can be derived from these numbers, as we now discuss.

Consider the following: let there be several solid spheres made of the same
material, such that sphere 2 has its fundamental frequency at the second
frequency of sphere 1, sphere 3 has its fundamental frequency at the third
frequency of sphere 1, etc. This array constitutes a zylophone of frequencies
precisely defined once the first is known. Table I shows the frequencies and
diameters of these spheres and also, in the third column, the ratio of the
cross section of the largest sphere at each frequency to that of the respective
smaller ones in their first mode. These numbers indicate that, save for the
non-significant exception of the fourth mode, the single larger sphere has
better sensitivity than the rylophone. The situation is graphically displayed
in Figure 2 for the first two spheres; it is based on the model of reference



Table 1: A xylophone of spheres of Al15056 whose fundamental frequencies
are equal to the successive harmonics of a larger one. In the third column,
the ratio of the cross section of the larger sphere to that of the smaller one

at the corresponding frequency.
Frequency (Hz) Diameter (metres) CS ratio

910 3.10 1
1747 1.61 2.72
2959 0.95 1.23
3750 0.75 0.92
4217 0.67 3.81
5271 0.54 2.84

[12] for the strain noise spectrum h(w), and figures correspond to 3.1 and 1.6
metre diameter spheres of Al 5056 operated at quantum limited noise level.
The just described “single detector xylophone™ has the limitation that its
frequencies are fixed and too widely spaced; still, xylophone proposals {12]
should benefit from the above considerations in the sense of reducing the
number of required elements in them. Clearly, in order to make full use of
these properties without severely complicating the detector readout, a set of
non-resonant wideband transducers should be employed.

An also important result is the integrated sensitivity for broadband, short
duration bursts. This is shown in Figure 3 for the same material as in
Figure 2. The tails in the sensitivity curves tend to overlap in the higher
frequency region. This emphasises the convenience of going for larger spheres
in future design work, as smaller ones do not offer better burst sensitivity,
even in their fundamental mode. Integrated cross section figures are given
in Table II for projected spheres and existing cylinders. Inspection of the
numbers reveals that the sphere can absorb over 20 times more energy than
the cylinder for the materials and dimensions quoted, while cross section
for the sphere second mode is still high. The quoted numbers correspond
to the detectors EXPLORER and NAUTILUS at INFN Frascati, AURIGA
at INFN Legnaro, and ALLEGRO at LSU. Cross sections for more massive
bars having the same fundamental frequency scale as D?, where D is the



Table 2: Integrated cross sections for a typical Al15056 cylinder in its first
longitudinal mode with optimal orientation with respect to the incoming
radiation, and for a sphere of the same material and fundamental frequency
in its first two quadrupole modes. Antenna dimensions are also specified.

Cylinder Sphere
. Vig = 910 Hz
vie = 910 Hz Ve, = 1747 H3z
L = 3.0 melres
D = 0.6 metres ¢ = 3.1 metres
M, = 2.3 tons M, = 42 tons

01, = 9.2%1072° cm? H=z
09, = 3.5%107%° cm? H:z

(Optimal orientation) - (Omnidirectional)

01 = 4.3%107%! cm? Hz

cylinder’s diameter. The figures quoted in Table II are similar to those of
Zhou and Michelson [10], but we also include sphere’s second mode data.

The results quoted so far rely on the hypothesis that GR is correct’.
As it turns out, however, a spherical GW antenna is a unique laboratory
to probe that very hypothesis, too. This is so thanks to the possibility of
using the sphere as a multimode detector. The potentialities hidden in such
capability have not been fully realised so far, so let us describe how they can
be accomplished. Here, we shall give a sketch of the procedure; full details
will be found in [13]. | ' |

In a metric theory, the GW driving term is given by the tidal force density

fi = pc® Roioj T; (3)

where the “electric” components Roio; of the Riemann tensor are them-
selves the components of a symmetric 3-tensor; like all such tensors, it can

be split as

3Except the discussion on the “single sphere xylophone” above, which is in fact valid
under any metric theory of gravity [13].



Roio; = Sij + %T&'j (4)

where S;; is traceless and T'=Ry; is the trace; Si; contains the five
quadrupole contributions to the driving force, and T contains the monopole
one. This means that measurement of the sphere’s monopole and quadrupole
mode amplitudes enables full reconstruction of the Riemann tensor compo-
nents Ro;o; regardless of any assumption about any specific theory of gravity.
The following precision must however be made in this respect: since ac-
tual detector bandwidth is severely limited by noise, in order to accurately
reconstruct the Roio; it is necessary that its spectrum be sufficiently broad-
band to overlap with the antenna bandwidths at its resonance frequencies.
For a source with a sufficient dependence of strength on frequency may well
emit monopole (quadrupole) radiation and not excite the antenna’s monopole
(quadrupole) modes, since the sphere quadrupole and monopole lowest fre-
quencies differ by a factor of almost 2.

Now, if the GW incidence direction is known ahead of time (from whichever
astrophysical evidence) then the possibility arises to assess which is the the-
ory —or, indeed, class of theories— compatible with the measured Ry;o; as
follows: pick a rotation taking the laboratory vertical axis into coincidence
with the GW wave vector, and apply it to the measured matrix Ro:o;; then
apply a classification algorithm to the so transformed Riemann tensor com-
ponents in order to decide in which class the tensor belongs, thence in which
GW theory. The classification scheme has been described in detail in [14]. If,
on the contrary, the incidence direction is not known prior to détection, then
the above test cannot be performed; if, however, a specific theory is assumed
a priort then this assumption can be used to sort out the unknown incidence
direction. Such is the basis of Wagoner and Paik’s proposal [9], and can be
extended to theories other than scalar-tensor [13].

~ Clearly then, if the GW incidence direction is unknown then a GW theory
cannot be probed —since it has to be assumed. However, vetoes can be estab-
lished on the tracelessness and transversality properties of GWs as a result of
the full reconstruction of the Ry;; in the laboratory frame. If, for instance,
six identical resonant transducers arranged with dodecahedral symmetry and
tuned to the fundamental quadrupole frequency —as proposed in [12]—, plus
one additional transducer, tuned to the monopole frequency (which is about
a factor of two higher than the quadrupole one) are attached to the sphere’s



surface, then evidence of excitation of the monopole modes is straightaway a
veto on tracelessness, while evidence of excitation of quadrupole modes other
than those with m=+2 implies some degree of non-transversality in the inci-
dent GW. Let us emphasise that these vetoes can be excersised with no SNR
penalty, as they are obtained by monitoring mode amplitudes with the sen-
sitivity reported in Figures 2 and 3. We underline that unprecedented limits
on scalar radiation could be set up by monitoring the sphere’s monopole
mode.

A single sphere, however, will not suffice to autonomously identify a GW
event: at least two antennas are always necessary for minimum coincidence
analysis. Furthermore, if timing of signal arrival time is sufficiently precise,
two detectors can remove the antipodal ambiguity in the source direction,
i.e., discern whether its position in the sky is (8,¢) or (x — 8, + 7), and be
used to calculate the GW propagation speed, thus completing the features-of
the observatory {15}. It has been shown [7] that a timing accuracy of a small
fraction of a millisecond is attainable in a network of resonant detectors with
a post-detection bandwidth of about 50" Hz, provided SNVR 1s about 10 or
more. Such time resolution is sufficient to resolve differences in signal arrival
times at two detectors an earth surface distance apart.

A minimal observatory constituted by two spheres has additional advan-
tages over a network of several directional antennas with different orienta-
tions. For example, coincidence analysis between spheres is greatly simpli-
fied, since the same amount of GW energy will be deposited in each detector,
while in an array of directional antennas everyone will absorb according to
their orientations, thus complicating that analysis. (The reader is referred
to [10] for a discussion of coincidence analysis between spherical detectors).

An additional point we want to stress is this: when accidental events
from cosmic rays are considered (over 10* are expected per day in a several
ton resonant detector operated at the quantum limit [16]), it is enough to
place just one detector in an underground laboratory to reduce the number
of random coincidences to about one in 3 years. A system of two large
A15056 spheres resonating at 800 Hz (3.5 metre diameter, 60 tons of weight)
would reach an omnidirectional burst sensitivity (SNR=1) of about hnin =
3 x 10~22, Feasibility studies on the fabrication technique and cooling of such
large detectors are currently underway [17].
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Figure 1 Reduced cross section (i.e., per unit mass) for a sphere and
a cylinder having the same fundamental frequency. Note that the second
sphere mode still shows a remarkably high cross section, while the third and
subsequent (not shown) decay sharply.



—_— 1] -

500 800 1100 1400 1700 2000
frequency (Hz)

Figure 2 Calculated strain noise spectrum h (in 1/v/Hz) for various
detectors at the quantum limit: solid lines for the lowest quadrupole mode
of A15056 spherical detectors 3.1 and 1.6 metres diameter, respectively; dot-
dashed line for the second quadrupole mode of the 3.1 metre sphere, and
dashed lines for the equivalent cylindrical bar optimally oriented.
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Figure 3 Burst sensitivity curves for A15056 spherical antennas of

different sizes and quantum limited noise. Burst is one sinusoidal cycle of

duration 7,, and we represent in abscissas the frequencies v = 7.



