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Abstract

We report on an investigation of the possibilities offered by solid resonant
spheres to detect gravitational radiation. A spherical detector has isotropic
sensitivity and can determine the source direction and wave polarisation pro-
viding vetoes on General Relativity. A deconvolution procedure for a general
gravitational wave is described, along with tests and vetoes on the trace and
transversality properties of gravitational waves. We find that the sphere’s
gravitational wave absorption cross section is large at two frequencies and
that if the wave direction is known, a spherical detector can determine all the
six polarisation states predicted by the most general metric theory. Assum-
ing General Relativity, a two sphere observatory completes the deconvolution
process, removing the 180° ambiguity in the source position, enabling the de-
termination of the gravitational wave speed and providing powerful vetoes on
local disturbances. We discuss the sensitivity of spheres of different materials
and frequencies of operation. A 3 metres diameter A15056 sphere is shown to
be able to reach a 1 ms burst sensitivity of h ~ 6 x 10~%? if operated at the
quantum limit.
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1 Introduction

One of the most remarkable properties of almost any metric theory of gravity is
their prediction of the existence of propagating solutions of the field equations,
or gravitational waves (GWs). The distinguishing characteristics of such waves,
1.e., propagation speed, polarisation states and multipolar structure, vary from one
theory to another (1], and so direct measurement of the effect of a GW is potentially
a powerful tool to select a candidate theory against its competitors. So far, only
weak field, near zone tests have been performed —but this helps little, if at all, to
discern between competing alternatives. Direct observation of GWs will provide a
new testing ground for gravity theories in the far zone regime.

Quite independently of which i1s the “correct theory” of the gravitational field,
the analysis of GWs will also open a new window for the observation of the universe,
thereby founding a new Astronomy. GWs will produce unique information about
the coherent bulk motion of the matter generating the waves “revealing features of
the source which none could ever learn from electromagnetic, cosmic ray or neutrino
physics” [2]. The strongest detectable events are thought to be bursts generated
by a variety of possible sources: coalescence of binary neutron stars to produce
black holes, the collapse of white dwarfs to form neutron stars, or neutron stars to
produce black holes, the echo of a supernova event in which a collapse to a dense
object happens at the centre and, likely, a wealth of other so far unsuspected sources.

Direct detection of GWs has thus become one of the great challenges of contem-
porary experimental physics.

The binary pulsar PSR 1913416 has now been observed for twenty years. Evi-
dence based on the decay rate of the orbital period of the system provides the most
compelling argument so far in favour of the GW phenomenon (see {3] and references
therein). In spite of the truly remarkable precision with which General Relativity
(GR) fits the experimental data —0.4%— the binary pulsar observations so far can
only confirm one aspect of GW physics: the back-action effect of the emitted GWs
on the emitter, as revealed by the pulsar’s pulse arrival time pattern. But there are
many other features of GWs which cannot be probed with those data. So we need
an expertment which enables the measurement of other specific properties of GWs.

On the other hand, after more-than-twenty-years work of development, several
GW detectors are now in continuous observational mode with the unprecedented
burst sensitivity A = 6 x107!?. Such a sensitivity should allow to detect gravitational
collapses in our Galaxy and in the Local Group [4], but still appears to be insufficient
for more remote (and therefore more numerous) sources.

All these detectors are of the cryogenic resonant-mass type (cylindrical bars).
Since the fundamental noise sources of this type of detector are of thermal origin,
cooling to low temperatures was the key action for obtaining high sensitivity. The
underlying non-gravitational physics associated with these detectors is today rea-
sonably understood, and further improvements appear based on solid technological
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There 1s one way to improve sensitivity and performance of resonant mass de-
tectors which is independent of the detector noise: 1t is to change its shape and
symmetry. In particular, we want to reexamine why spherical detectors constitute
the natural step towards a resonant antenna GW observatory.

Resonant antennas can be characterized by their symmetry properties and classi-
fied by the symmetry group consisting of the symmetry operations of their structure
[5]. The antenna eigenmodes serve as the basis of the matrix representations of the
symmetry group and are categorised by the nature of the representations. A certain
antenna mode can be GW-inactive or active depending on its symmetry character-
istics. In GR, a particular antenna mode is GW-active only if it has a nonvanishing
quadrupole moment. In other theories, modes with different polarities may also be
GW-active. Multimode detection appears then a natural way to investigate different
gravitation theories. In addition, since every mode has its own radiation pattern, the
simultaneous detection of a sufficient number of modes can alse be used to determine
the source direction and the wave polarisations. |

Suppose e.g. that GWs are correctly described by GR. Then the wave has two
polarisations with the force patterns rotated 45° from each other in the transverse
plane. There are five unknown quantities that one would like to determine: the
amplitudes of the two polarisations {h4,hy), the two angles of the source direction
(0,), and the polarisation angle in the wavefront (¢). These parameters could
be determined by using multiple antennas of low symmetry with requisite relative
orientations, or by simultaneously detecting several modes of a highly symmetric
antenna.

The cylindrical bar antenna, introduced by Weber, has the lowest symmetry and
measures only one of the above parameters: the amplitude of a combination of the
two polarisations. Likewise, square and torsional antennas have been developed and
configured to detect one polarisation. It would take at least five of these antennas
to determine all the desired parameters, and six of them to give isotropic sensitivity
[6].

The antenna geometry which has the highest degree of symmetry is a sphere.
It has five degenerate quadrupole modes, which fact allows one, in principle, to
determine the five unknowns. Each mode can act as a separate antenna oriented
towards a different polarisation and direction, giving a perfectly omnidirectiional
detector. A spherical detector can detect in a very natural way not only the tensorial
waves predicted by GR, but also scalar waves predicted by other metric theories of
gravitation, like the theory of Brans and Dicke {7]. This type of radiation could
be emitted by time variations of the source monopole moment, like in the radial
oscillations of vibrating neutron stars, and should be detected by monitoring the
excitations of the monopole mode of the sphere.

It was recognized long ago by R. Forward [8] that a spherical detector can be
considered a true GW observatory. In 1975, Ashby and Dreitlein [9] studied the
response of an elastic sphere to gravitational radiation. In 1976, Wagoner and Paik
[10] found a set of equations for determining source direction and wave polarisations



from the amplitudes of the quadrupole modes of the sphere for scalar-tensor theories.
Comparing a sphere to a cylindrical bar of the same material and same resonant
frequency (this condition is roughly given by the equality between the bar’s length
and the sphere’s diameter), the sphere has a larger cross section because of its larger
mass and because it 1s omnidirectional.

These facts have been overlooked for many years. The cylindrical bar geome-
try was a more practical choice, because of the easier mounting of the transducer
and ease of manufacture. Today, new facts give the experimentalist the necessary
confidence to start a new project:

e the reliability reached by the cryogenic resonant antennas;

o the feasibility of the cooling to below 0.1 K for the new generation of resonant

antennas, demonstrated by NAUTILUS [11];

o the feasibility of a nodal point suspension to support a large resonant mass
[12];

e the determination of a clear method for the orientational deconvolution of the
signal from a set of transducers coupled to a spherical resonant mass {13}, and

o the possibility of making large resonant antennas using new bonding methods
[14].

In section 2, we briefly review the sensitivity of cylindrical bars. In section 3,
we reexamine the sensitivity of an elastic sphere to GWs, extending and perfecting
previous analyses. In that section we also.assess the signal deconvolution problem.
In section 4, we present the features of an observatory constituted by two spheres in
terms of sensitivity and of tests of gravitation theory. Also, we discuss the frequency
of operation in terms of sources of astrophysical interest. In section 5 the main
keypoints of a feasibility study are discussed and conclusions are drawn.

2 Review of cylindrical bar sensitivity

The problem of detection of short bursts of GWs by a resonant antenna has been
clarified in its main aspects since many years [15]-[16]. The antenna responds to
the oscillating field of GWs and a suitable sensor perceives its vibrations. If the
detector is assumed to be a single large mass, the energy absorbed (AE,), due
to GWs, can be calculated by means of the detector cross section o. For a thin
cylindrical bar (length much longer than radius), the most popular shape, and for
its most favourable mode of vibration (the first longitudinal one), the cross section
takes the form [17]:

8 GMv, L (2.1)
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where v,=(Y/p)!/? is the speed of sound in the bar material, with Y the Young
modulus, M the mass of the bar, 8 the angle between the direction of propagation
of the GW and the cylinder longitudinal axis, ¢ the azimuthal angle of the wave’s
polarisation ellipse and I' the linewidth of the mechanical resonance of the first
longitudinal mode at frequency wy.

The energy absorbed by the detector can be written as:

AFE, = F(UJO)/Jab,(UJ)dUJ (2.2)

where F(wg) is the value of the spectrum energy density of the GW burst at
the resonance frequency wy. For a burst consisting in a sinusoidal oscillation of
amplitude h and duration 7,, at the frequency of the first longitudinal mode wy, we
can write |
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The energy absorbed, A E,, must be compared to the variance of the noise energy
fluctuations, AE,, of the detector. This energy noise can be written as the sum of
two contributions, originating from two uncorrelated Gaussian processes: the ther-
mal noise in the resonant mass and the electronic noise of the readout system [18].
We assume that a fraction 3 of the antenna energy is converted into electromagnetic
energy by a noiseless transducer; the signal at each transducer is then fed to an am-
plifier, assumed to have an additive noise at its output, whose spectral density is
S,; the amplifier also exerts a back action noise force onto the antenna mode with
spectral density S;. The energy fluctuations in the readout system can then be ex-
pressed by the noise temperature T, = k~*(S;w?S,)!/2. If antenna and transducer
are correctly matched, it is found that

F(wo) =

AE, = L LT, (2.4)

pQ

where T is the thermodynamic temperature of the cylindrical bar and Q 1s the
quality factor of the vibration mode. It is costumary to express the energy noise
as the Boltzmann constant times a detector noise temperature T.sy, writing AE,, =
kTeqy.

Most groups make use of cylindrical bars made with the high @ aluminium alloy
Al 5056 (v, = 5.1x10°% ms™!), whose length, of about 3 metres, is fixed to get the
resonant frequency vp (=wg/27) around 1 kHz, where the signal energy density is
expected to be largest. The typical mass is a few tons. The detector’s signal-to-noise
ratio (SN R) is defined by SNR = AE,[/kTy;. _

The sensitivity of the detector, i.e., the minimum detectable GW amplitude hmin
(SN R=1), can be written as:
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The detector bandwidth, defined by the width of the SV R resonance curve, is of
order Swp, much larger than the purely mechanical resonance linewidth I' = wo/Q
of the vibrational mode.

Since the beginning of the GW research, all the efforts for improving the sensitiv-
ity have been focused on the reduction of the effective noise temperature T.;s. The
use of cryogenic technologies permitted to reduce T.;; by a factor of 10%, from the
tens of Kelvin to a few millikelvin. This result was obtained by cooling the detec-
tors to liquid helium temperatures and adopting electromechanical readout systems
making use of superconducting devices.

Further developments are in progress in order to improve the energy resolution
up to one vibrational quantum (Awe at 1 kHz corresponds to T.sf ~ 10~7K). The
quantum limited sensitivity reachable by the ultralow temperature (T' < 0.1 K)
cylindrical bar antennas under development is A, = 3x 10722,

In order to reach this goal, the experimental parameters which determine the
detector noise must be pushed to the extreme limit of the existing conventional and
quantum technologies.

3 The elastic sphere as a GW antenna

In this section we reassess the question of how an elastic solid sphere can be made
to work as a resonant GW antenna. We shall assume that Einstein’s General Rel-
ativity (GR) is the correct theory to describe GWs. This —or, indeed, any other
assumption as to which is the “correct” theory— is an unavoidable requirement in
order to deconvolve the signal which will eventually be found to have hit the an-
tenna; one can then find tests and/or vetoes on the assumed theory. We first study
the antenna’s cross section for absorption of GW energy, then address the problem

of signal deconvolution.

3.1 The sphere’s spectrum and cross section

Let an incoming flux F(w) of GWs of (angular) frequency w impinge on a given solid
body which is intended to be used as a GW antenna. A part of the energy carried
by the incoming radiation, say AF,(w), will be absorbed by the antenna, thereby
its vibrational modes being excited. It is convenient to quantify the energy that the
solid can absorb in terms of an absorption energy per unit flux, or absorption cross
section (see earlier):

AL, (3.1)

gabs(w) — F(CLJ)



For GWs whose wavelength A is much larger that the antenna’s typical dimension
R, and propagating in a space whith a radius of curvature much larger than A\, we
can follow theory developed by Weinberg (see {19]) to find that, for a spherical elastic
antenna, '
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(3.2)
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where wyp is one of the sphere’s resonant frequencies, assumed close to w, I is the
linewidth of the mechanical resonance and n = ['j,4, /T, with

r = Eecw

grav —
anci“

(3.3)

[=! is thus the time scale for the damping of the sphere’s oscillations due to

grav

re-emission of GWs caused by those very oscillations. Formula (3.2) is based on
GR, so Egw will also be calculated using GR, more specifically (cf. [20]),

Fow = = @5 (1) Gy (1) (3.4
where
Qi;(t) = / (ai 2 — Lz 6;5) plz,t) d°z (3.5)

is the antenna’s quadrupole moment.

To evaluate these quantities, as well as the precise motion induced by the GWs on
the detector, the full problem of the elastic vibrations of the sphere has to be solved.
We shall assume that the displacements and velocities of the solid are sufficiently
small that the equations of motion are those of the non-relativistic linearised theory
of elasticity (as described e.g. in [21]).

Let u(z,t) be the field of displacements in the solid. If it is driven by the volume
force density f(zx,t), its vibrations are given by those solutions to the system of
partial differential equations |

0*u

P oz ~ uViu — (A +p) V(Vu) = f(z,t) (3.6)

which satisfy the boundary condition that the solid’s surface be free from any
tractions or pressures. In (3.6), A and p are the usual Lamé coefficients, and

filz,t) = —5 p(z, ) his(®) 2, (3.7
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is the GW-induced tidal volume force, expressed in terms of the “electric” com-
ponents of the GW’s Riemann tensor at the antenna’s location:

1
2c?

The absorption cross section, however, only depends on the homogeneous so-
lutions to (3.6) —which characterise the solid’s normal modes. From now on we
specialise to the case of a homogeneous spherical antenna. Its solutions have been
known for a long time —cf. e.g. [22]—, and belong to two different families of normal
modes. The first family is constituted by the so called toroidal modes: these con-
sist of purely tangential displacements with no volume and density changes. These
modes will never be excited by a metric GW, as any such wave always involves non-
zero radial displacement patterns —see Figure 1. The second family is formed by
the spheroidal modes, and these do contain radial displacements. In vector notation,
their analytical expressions are:

Roio; = hij (3.8)

Unim (T, 1) = ug € [Ani(r) Yim (0, 9) n — Bu(r)in x LY1n (0, )] (3.9)
where

Aulr) = Bo(kR)ji(ar) - 10 + ) LB (qR) 2 (3.10.2)

Bu(r) = Bs(kR) j‘g‘f'l - % (qR zl;:a(ir) (kr ji(kr)] (3.10.b)

In these expressions n is the radial outward unit vector, L is the “angular mo-
mentum” operator L=—:zxV, ji(z) is a spherical Bessel function, and Yi.(8,p) is
a spherical harmonic. up is an arbitrary constant amplitude, R the sphere radius

and
— pw;, 2 _ pwr /2
kz( v ) ’ q:(f\;"?lﬂ) (311
Finally
Bi(z) = d% (j‘(j)) (3.12.2)
Ba(z) = %]f'(z) + (l(l;-l) — 1) J:(:f) (3.12.b)



The frequencies w,; are the solutions of a somewhat complicated eigenvalue equa-
tion; such equation is independent of m —it only depends on [— and we label its
solutions with the index n, which runs from 1 to infinite for each value of {. In
Figure 2 we give a line representation of the first few eigenfrequencies corresponding
to the lowest multipole modes [ = 0,1,2. Every one of these frequencies is therefore
(2l + 1) - fold degenerate for each n.

There are five quadrupole ({=2) modes —all of them with the same frequency of
oscillation, as just remarked. A pictorial representation of their radial displacements
is given in Figure 3 in terms of real spherical harmonics.

Once the precise form of the resonant modes is known, it is relatively straight-
forward to calculate [y, in (3.3), and thereby obtain the sphere’s cross section for
each mode. The result can be cast in the form

GMv? r
Gube(w) = Fin 2
¢ (w—wp) +1?2/4

(3.13)

where Fj, is a dimensionless quantity whose calculation involves a number of
cumbersome algebraic manipulations. It possesses the remarkable property of being
zero for [#2, which means that only the quadrupole modes of the sphere can possibly
be excited by an incoming GW —an expected result. In (3.13), v? is the velocity
of sound, as in (2.1). By way of example we have, for the first quadrupole mode,
F5,=2.99; this is a factor of 1.17 larger than 8/m, the optimal orientation—-optimal
polarisation coefficient for a thin cylinder of the same mass as the sphere —cf. (2.1)
If we average over directions and polarisations, the sphere’s cross section becomes a
factor of almost 5 better for equal masses.

In Figure 4 we plot the cross section per unit mass (or reduced cross section) for
a sphere and an optimally oriented cylinder versus mode frequency. We consider
the first three modes in each antenna, assuming that the antennas are tuned to have
the same fundamental frequency. Remarkably, the second sphere’s mode still shows
a rather high cross section value, only about half the maximum for the fundamental
mode. As is well known, only the fundamental cylinder mode shows a significant
cross section value.

So a spherical antenna is potentially sensitive to two eigenfrequencies within the
range of astrophysically interesting events —cf. next section—, this being a new
advantage of this kind of antenna over cylindrical ones. We underline here that the
cross section value at this second mode is higher by a factor of almost 3 than that
of that smaller sphere which has that frequency as its first mode. Implications for
a network of detectors are obvious.

An also interesting figure is the integrated cross section for actual antennas. This
is displayed in Table 1 at the indicated frequencies for projected spheres and existing
cylinders, always under the assumption of optimal orientation for the latter. Note
that the sphere can absorb over 20 times more GW energy than the cylinder in the
fundamental mode, and about 8 times in the second mode.
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- Cylinder - Sphere

v1s = 896 Hz

V1. = 896 Hz ! Ve, = 1720 Hz

L = 2.9 metres
| D = 0.6 metres

M, = 2.2 tons M, = 38 tons

o1, = 8.3%x107%° em? Hz
O2s = 3.2x107*° cm? Hz

(Omnidirectional)

¢ = 3 metres

o1 = 4.1x107%! ¢cm?® Hz

(Optimal orientation)

Table 1: Integrated cross sections for a standard cylinder in its first longitudinal
mode and with opiimal orientation with respect to the incoming radiation, and for
a sphere 1n its first two quadrupole modes. Antannee dimensions are also specified.

3.2 The signal deconvolution

Once the vibration modes of the sphere are accurately known, we need a convenient
readout system to monitor them. This is accomplished by means of a set of trans-
ducers attached to the sphere —cf. next subsection. And once we know that and
such modes have been excited and how much they have been excited, we want to
use this information to trace back the causes of their being excited in that particular
way or, as we shall say, to deconvolve the signal.

Of course a deconvolution procedure is necessarily bound to depend on a specific
GW model. The experimental observations will then produce tests and/or vetoes on
that model. We shall be assuming GR in this paper, but begin with the description
of a somewhat more general framework.

The most general metric theory of gravity contains siz independent polarisation
states for a GW, which correspond to the six “electric” components Rg;o; of the Rie-
mann tensor entering equations (3.6) and (3.7). The associated canonical patterns
are those of Figure 1. The most general metric GW is thus a linear superposition
(in the weak signal regime) of all six such states. A particular theory, however, does
not necessarily predict them all: GR for example only predicts the first two, while
Brans-Dicke’s also predicts the sixth, etc. Obviously, evidence of non-predicted
modes produces a velo against all theories predicting their absence; the converse
statement, however, is more delicate —cf. [1] for a more detailed discussion.

We now describe a deconvolution procedure on the basis of the observation of
the vibrations of a spherical antenna.

We first of all recall that any symmetric 3-tensor, like Ry;0,, admits the following
decomposition:

10



Roio; = Si; + T 4y (3.14)

where TE%- Roioi is the tensor’s trace, and S;;=Rg;0;—T d;; is its trace-free part.
S;; behaves under rotations of the coordinate axes like suitable combinations of the
five (=2 spherical harmonics, while T is a scalar under the same transformations —
thence behaving like the [=0 spherical harmonic. Now, since the spherical harmonics
happen to be the basis for the sphere’s normal modes —see earlier—, we infer
that a metric GW can possibly excite the monopole (I=0) and quadrupole (I=2)
vibration modes only. Analysis of the [=0 mode is thus the natural way to probe
the tracelessness property of GWs.

Let us consider the simpler situation, to begin with, in which we know the di-
rection of incidence of the GW, e.g., because the source is known from astronomical
observations or even a network of other GW antennas. Direct measurement of the
sphere vibration states will then produce a complete deconvolution of all the coef-
ficients h;; in a purely phenomenological way, i.e., independently of any underlying
assumption about a particular theory of gravity. The data obtained in this way can
then be compared to the predictions of a specific theory in order to either confirm
or discard it.

If, more realistically, the direction of incidence is unknown, then knowledge of
the sphere’s vibrations is insufficient to decide on whether this or that theory is
confirmed by the observations made. This is because each theory is characterised
by a specific mode pattern, or by a canonical form of the matrix h;;. Such canonical
form shows in a coordinate frame suitably adapted to the propagation direction of
the wave, and this frame will be in general be rotated with respect to the laboratory
frame. Not knowing the rotation angles is therefore a strong limitation to establish
the validity of a given theory.

A possible way out consists in assuming a certain theory, for example GR, then
determine the rotation angles on that hypothesis. This idea was suggested by Wag-
oner and Paik [10], and is as follows .

GR predicts that, in a wave-adapted set of coordinate axes, the metric pertur-

bation h;; takes on the canonical form

h+ hx O

hij=| hx —hsy O (3.15)
0 0 0

and so does likewise Rjojo —cf. equation (3.7). This can also be phrased in the
following way: in that particular coordinate system in which (3.15) holds, only the
spherical harmonics with (=2 and m=%2 are needed to make up Rgj; —or the

helicity of a GW is 2 in GR.

1The hypothesis that (;R 1s -t-rue can be partly checked by looking at the monopole mode:
indication of its being excited would be a fatal veto against GR.
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The GW-adapted set of axes will be rotated in general by three Euler angles
(0,p,%). The first two of these angles define the source direction in the laboratory
frame, while the third defines the wave’s polarisation ellipse with respect to the line
of nodes. In the laboratory frame h;; will thus look like a full 3x3 matrix, whose
canonical form will still be (3.15) if GR is true. We can now take advantage of this
to deconvolve the three angles (8,p,%) and the two amplitudes (hy,hy).

Let an(t) (m=-2,...,2) be the measured amplitudes of the five quadrupole
modes of the sphere. If a helicity-2 GW is responsible for their excitation —as
would happen should GR be true— then we are guaranteed that a rotation of the
coordinate axes exsists which reduces the set of measured modes to the canon-
ical set an(t)= (a-2(¢),0,0,0,a2(¢)). If, following standard notation (23], we call

Df,f}n,(ﬂ, @, ) the coefficients of the rotation matrix, we can write

2
in(t)= Y D@ (0,0,9)am(t) , m=-2,...,2 (3.16)

m!=—2

and so, by setting a_;(t)=ao(t)=a,(t)=0 we have a system of three equations to
determine the three angles (8,0,1). Once these are known, the other two equations
uniquely define d_,(t) and a@,(t), and these in turn determine hy(t) and h,(t) [10].
The deconvolution procedure is thus completed.

[t must however be cautioned that the viability of this procedure is strongly
dependent on GR being true: we can use e.g. (3.16) to determine (8,,,) —but this
will yield the wrong answer for the actual angles if GR fails to be correct. Should that
happen, we are expected to find algebraic incompatibilities as we proceed further to
evaluate h, and hy; such incompatibilities are to be held as vetoes on the hypothesis
that GR is true or, more specifically, on the transversality property of GWs: as can
readily be seen in Figure 1, the presence of quadrupole polarisation states other
than those with m=42 implies some degree of non-transversality.

In order to unambiguously assign a sudden excitation of the detector to a metric
GW, several types of tests can be applied. The most general involves monitoring
the detector also at frequencies other than the {=0,2 spheroidal modes. One can
for instance look at toroidal modes: since these have no radial displacements they
cannot possibly be excited by a metric GW —see Figure 1. The lowest quadrupole
toroidal frequency is so near the lowest spheroidal (less than 6%) that a veto based
on the excitation of this mode is extremly efficient: any event which is seen at
this frequency cannot be due to a metric GW. This would require a 6% wideband
transducer, or an extra number of transducers to monitor the sphere’s vibration at
the toroidal frequency.

3.3 Readout system and noise

We consider here the problem of measuring the vibration amplitude of the five
quadrupole modes of a spherical detector and the prediction of the detector sensi-

12



tivity in the presence of noise.

The spherical mass must be instrumented with a set of electromechanical trans-
ducers, converting the mechanical vibration of the antenna into electrical signals,
and a set of amplifiers. How many transducers and in which positions? There are
several possibilities. _

One 1s to use five transducers, each one coupled to one of the five quadrupolar
modes. Examination of the dependence of the modes on the spherical coordinates
shows that this is possible if transducers sensitive to motion in one direction only
are used [25]. In fact, it is possible to find five positions each one being a node for all
the modes but one in a certain direction. For instance, fixing the laboratory frame,
only the (2,0) mode has radial displacements at the north and south poles; only
the (2,%+1) modes have non-zero displacements along the local meridian at loca-
tions (0=n/2,0=0) and (0=7/2,p=n/2); and only the (2, +2) modes have non-zero
displacements along the equator at locations (0=n/2,po=m/4) and (0=7/2,p=m).

A complete set of transducers can then be constituted by one radial plus four tan-
gential transducers. Each quadrupole mode is equipped with its transducer and its
amplifier, forming an independent detection channel. The five independent channels
act as five independent detectors with different orientations.

In order to calculate the SNR of a single channel we shall assume that the
transducers are identical and noiseless, giving an output proportional to the sphere’s
displacements. For the sake of simplicity, we also assume the sphere’s thermal noise
is negligible (as it should if the quantity T/8@Q is sufficiently small), and consider
only the electronic noise due to identical amplifiers having noise temperature T;,.
The SNR in a single channel of a spherical detector can be as large as

AFE,
kT,

where AE, is the total energy absorbed by the detector, and is proportional to the
detector cross section.

Compared to an optimally oriented cylindrical bar of the same resonant fre-
quency and the same noise temperature, the improvement in SN R is equal to the
improvement in cross section.

A second possible transducer arrangement consists in a system of more than five
identical transducers, all sensitive to the same type of motion. Through a proper
linear transformation, the sensors can form five independent channels which are the
readout of the five quadrupolar modes.

Forward’s initial suggestion [8], for instance, was to put nine electromechanical
strain transducers at the intersections of great circle paths. Suitable linear combina-
tions of the nine transducers form five tensors constituting a complete, orthonormal
set, giving five physically independent outputs, each one proportional to the ampli-
tude of one mode.

A lower number of identical transducers can be used. A natural solution 1s to
arrange the transducers to match a set of N equivalent axes, like the ones going

SNR =

(3.17)
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from the centre of the sphere to the vertices of a regular polyhedron concentric with
the sphere itself. In this way the celestial sphere i1s divided into identical regular
polygons. The minimal choice to get at least five independent outputs is to arrange
six transducers along the six axes going from the centre to half the face centres of a
regular dodecahedron, or to the vertices of a regular icosahedron (see fig. 5). This
is the solution proposed by Johnson and Merkowitz [13].

A transducer arrangement is characterized by a pattern matrix B, whose ele-
ments are defined by

bmj = }/gm(aj,(pj) y ] — 1,. . .,6 (3.18)

where j identifies the transducer, and (8,, ;) is the location of the jth trans-
ducer.
The special symmetry of the dodecahedral arrangement is signaled by the special

property

3
mejbm:j — "2"—' mm’ m, m' = --2, .o ,'2 (319)
J

ris

Under the same general assumption of amplifier noise limit, whith identical am-
plifiers having uncorrelated noise sources, the six amplifier outputs z; can be linearly
combined to form five independent channels y,,:

Ym = O bmiz;, m=-=2,...,2 (3.20)
;

Each channel is a direct readout of the corresponding quadrupole mode. These
channels are uncorrelated, because of the particular symmetry of the transducer
arrangement. In fact, the cross correlation of two channels is:

Rom(7) = Elym()ym(t +7)] = D bmjbmi E[z;(t)zi(t + 7)]
.3
= %;bmjbm'iR(T }0ij = 5 R(T)0mm’ (3.21)

We are then back to the case of five independent channels acting as the output of
five independent detectors, and thus to the SN R (3.17). Actually, as a result of their
noise analysis, Johnson and Merkowitz [13] found that the improvement in SVR
with respect to the optimally oriented cylinder is a factor equal to the cross section
ratio, this indicating that this six transducer readout system does not suffer SNVR
penalties due to the complications introduced by the coupling of each transducer to
all five quadrupole modes.

The results of this section are displayed in Figures 6 and 7, where Al5056 has
been taken as the antenna’s material. Figure 6 shows the minimum GW burst
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sensitivity detectable by a single channel of quantum limited noise (i.e., kT, = fwg)
spherical detectors of different dimensions. The burst is a wave packet of duration
T4, constituted by one sinusoidal cycle. In abscissee we represent the sinusoidal
frequency v = 7,;!. The smoothness of these sensitivity curves and the little gain
(only at high frequency) predicted for the smaller spheres are consequences of the
particular shape assumed for the burst.

One can also plot the sensitivity in terms of the strain noise spectrum A, as
in {13], using the same matching parameters. This is done in Figure 7, where we
report the sensitivities of the fundamental and second quadrupolar modes of the 3
metre diameter sphere and of the fundamental mode of the 1.56 metre sphere. For
comparison, the corresponding results for typical (length/radius = 10) cylinders and

for the first generation LIGO detector are given as well.

3.4 A two sphere observatory

There are certain details in the signal deconvolution process which cannot be resolved
with a single sphere. For example, if the direction of incidence is unknown and the
procedure described in section 3.2 is applied, there is an unavoidable ambiguity: one
cannot possibly tell a given source from a source in its antipode in the sky.

Also, nothing can be said with a single GW antenna about the propagation speed
of GWs.

An array of two spheres provides the necessary means to tackle these problems
[24]: if the two antennas are placed in strategical places on the earth’s surface so
that most potential sources are seen under sufficiently different angles, this would
remove the direction ambiguity; on the other hand, if the signal arrival time can be
determined accurately, then the time delay between detection at the two antennas,
together with the information on the source position, enables the direct determi-
nation of the GW propagation speed. This measurement may be used as veto on
some metric theories. The speed of GW v, is in fact determined by the detailed
structure of the field equations of each metric theory of gravity. In vector-tensor
theories, as well as in the Rosen’s bimetric theory and in the Rastall theory values
of v, different from c are possible [1]. At present indirect experiments limit v,/c to
be within 0,01 of unity [1]. It is easy to see that if the arrival time of a GW on a
detector is determined within few u s [6], than coincidences between two detectors
1000 Km apart may improve the present limits of about one order of magnitude.

A two sphere array will help solving these problems, but it will also produce
redundant information —of course. The latter can be used as a local disturbance veto
on possible signals, thus improving detection probability. Let us be more specific on
this point.

A coincidence experiment requires that all the detectors have signals above a
given threshold at the same arrival time within a certain time window. An observa-
tory of two spherical detectors has two advantages over other proposed observatories,
such as the one constituted by six cylindrical bars [6] or that consisting of three laser
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interferometers. First, in the presence of a signal the two spheres will measure the
same energy. Six bars or three interferometers will have different individual orien-
tations, and therefore cannot use this criterion for vetoing possible signals — except
at larger SNR’s [25]. And second, the application of the orientational deconvolution
procedure to the two individual spheres provides the additional criterium of equal
source direction. |

These properties of a two spheres observatory provide criteria which can be used
to reduce the false event rate. Also, when accidental events from cosmic rays are
considered (several thousands are expected per day in a multiton resonant mass
detector operating at the quantum limit [26]), it is enough to place just one detector
in an underground laboratory to reduce this false event rate to about one in three
year. We can briefly summarise the essential additional features of a two-sphere
observatory:

e it enables unambiguous determination of the source position in the sky,
¢ it enables determination of the GW propagation speed, and

¢ it provides powerful vetoes against local disturbances.

Obviously, an observatory with more than two antennas will further reliability
of detection. Also, a network of several antennas can independently determine
the direction of the wave from the time delays, which will facilitate the procedure
described 1n the previous section.

4 Design criteria for spherical detectors

A GW detector should be designed looking to the features of potential sources giving
a reasonable rate of observable events. The subject of astrophysical sources of GWs
1s widely discussed in the literature [2]. It is generally accepted that the most
intense GWs reaching the Earth must come from dynamic deformed systems near
their gravitational radius. Perhaps the most favourable source is a star collapsing
across its gravitational radius in a highly non-spherical process.

Such kind of source involves a considerable mass compressed to very high density
in a very short timescale. In particular, the usual assumption about supernove is
that they produce a burst of radiation in a timescale characteristic of the bounce,
of the order of 1 millisecond. This would result in a burst at about 1 kHz. It 1s
possible, however, that considerable radiation from a collapse event emerges at a
frequency below 1 kHz, if rotation is involved. In fact rotational eflects slow down
the collapse and thereby lower the dominant frequency at which the radiation comes
out. The radiation amplitude produced in a galaxy a distance r from the Earth by a
collapse in which an energy F is converted into GWs in a time 7, can be estimated

as [27]
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E 1/2 y -1 N\ —~1/2 r —1
h=1.4x10"2 ( ) ( . )
5 (10"‘2 M@cz) l1kHz 1 ms 15 Mpc (4.1)

Assuming that the duration of the burst is the timescale of the rebound, i.e.,
about one millisecond, and that the strongest possible burst would emit the entire
binding energy of a neutron star, around 0.1Mgc?, then this event would produce
an amplitude of 3x10718 if it ocurred in our Galaxy, and 3x107%! if in the Virgo
cluster. A more moderate and plausible event, converting to GWs 0.01 Mgc?, would
give an amplitude of about 8x107%% at 20 Mpc. The expected rate of these events
1s a few per year. |

These numbers are relevant to our discussion of the spherical detector design.
They support the design of a detector sensitive in the range of, say, 500 Hz to a few
kHz. This frequency range requires large size and mass antaennas. The resulting
cross sections should be large enough to achieve the goal of direct detection and
analysis of GWs.

The SNR ratio reported in equation (3.17) depends on the absorbed energy and
on the amplifier noise temperature T,, which is largely independent of the sphere
parameters.

The energy absorbed by the detector is proportional to its cross section and to
the value of the energy spectral density F'(wo) at the sphere’s resonant frequency
wo. The cross section depends on the detector material through the product MvZ,
which must be maximised for optimum detector design. -

The speed of sound in a solid can be expressed as v = Y/p where p is the
material density and Y is the Young modulus. Then, putting M=pV, we can write:

Mv?=VY (4.2)

In order to maximize the cross section and design an optimal spherical detector,
two different philosophies can be followed: i) maximise the cross section at a fixed
frequency, and ii) maximise cross section without specific hypotheses on the signal
 frequency.

We will follow i) in the case of a predicted strongly frequency dependent be-
haviour for the energy spectral density F(w) emitted by particular sources, or if a
xylophone of detectors at various frequencies is envisaged. In this case one can write
the cross section as a function of frequency:

Y5/2
w3p3/2

Mv? x pRY (4.3)

The material-dependent quantity x=Y>/2/p*? is reported in Table 2 for various
materials, along with density and Young modulus.
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Material p Y X " dikn: M 1KH:z

| (10° Kgm™3) (GPa) (m) (tons)
A15056 2.7 70 1 264 26
CuBe 8.2 130 092 2.07 37
Mo 10.2 325 6.3 290 130
Nb 8.6 105 0.49 1.81 26
Ti 4.54 116 6.8 2.61 42

W 193 411 44 238 136

Table 2: Density, Young modulus, and specific cross section (normalised to A15056)
of some selected high Q materials. In the last two columns we report diameter and
mass of spheres working at 1 kHz.

Material d M U
(m) (ton) (Hz)

Al5056 3.0 38 880
CuBe 2.4 60 = 850
Mo 1.8 31 1608
Nb 2.6 80 696
Ti 2.53 38 1033
\"Y 1.7 47 1432

Table 3: Fundamental resonance frequency, mass, and diameter of spherical detec-
tors which have the same cross section

In the case 11), we can maximise the cross section by maximising the product
VY. So the simple prescription is to use material having high Young modulus and
fabricable in large volume. In Table 3 we show the diameter and mass of spheres
made with the indicated selected materials, all having the same cross section.

Table 2 shows which are in principle the best GW detector materials. However,
in order to use any material listed in Table 2, two practical requirements must be
met. First, the material should be commercially accessible in large amounts, and
second, a method for fabricating large mass spheres, preserving the high quality
factor @, should be available. We find that these requirements practically limit the
choice of material to aluminum and copper alloys.
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5 Conclusions

We have investigated the possibilities offered in principle by the multimode capa-
bilities of massive resonant spheres in the search for GWs. A spherical antenna has
large GW absorption cross section at the two lowest quadrupole mode frequencies,
1sotropic sky coverage, and can be used to determine the source direction and polar-
isation state of the incoming wave. Also, it adds the ability to provide in a natural
way tests and vetoes on gravitation theories. The large cross section values proba-
bly make a 1 kHz resonant sphere the most sensitive detector of GW bursts in the
forseeable future. A two sphere observatory also offers the possibility of resolving
the antipode ambiguity in the wave direction and of determining the speed of the
waves by monitoring the arrival times at the two detectors, as well as providing
strong vetoes on local disturbances.

Various questions, however, have been left aside from this investigation. Compli-
cations in the readout systemn may arise due to departures from spherical symmetry
caused by the suspensions, transducer arrangement or internal efiects; these would
slightly modify the sphere’s eigenmodes and eigenfrequencies. A related problem is
the transfer of energy between degenerate modes (negligible, though, if the time for
such transfer is small compared with the mode damping time). All these details can
be experimentally studied in a smaller scale prototype.

Other technical aspects are under study, such as the design of a cryogenic ap-
paratus capable of cooling in a reasonable time an up to 100 ton mass [28] or the
determination of the sphere’s fabrication technique.

Let us finally emphasise the complementarity of a GW observatory based on
resonant spheres and one based on large laser interferometers. They are sensitive
in different frequency ranges: 10 to 10° Hz for the latter [29, 30], and above 1
kHz for resonant spheres. Interferometers should be superior in determining wave
forms because of their inherently broad frequency bandwidth, while spheres should
perform better in determining wave direction. Both will eventually use very different
technologies.
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Figure 1 The six polarisation patterns associated to the most general weak
metric GW. Five of these are quadrupole modes, while the sixth is a monopole. The
values of [ and m are displayed, along with the direction of incidence of the GW.



kR

The elastic¢ sphere frequency spectrum

Figure 2 Line spectrum of a homogeneous sphere: the first few monopole,
dipole and quadrupole modes are displayed. In ordinates we represent the eigenvalue
kR, which is independent of the material of the sphere. In order to get actual
frequencies, the plotted value must be multiplied by [2r%(1 + a)]'” ? (v,/ D), where
o is the Poisson ratio and D the sphere’s diameter. For A15056 this is 1060/ D, with
D in metres.

Figure 3 Three dimensional representation of the radial motion in each of the
quadrupole modes of the sphere. Real spherical harmonics have been used in order
to make the plot possible. |
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Figure 4 Reduced cross section (i.e., per unit mass) for a sphere and a cylinder
having the same fundamental frequency. Note that the second sphere mode still
shows a remarkably high cross section, while the third and subsequent (not shown)
decay sharply.

- Figure 5 A truncated icosahedron, proposed as shape for a g.w. detector. The
transducer locations are indicated. This configuration has the same symmetry of

the dodecahedral array simplifying the problem of the orientational deconvolution
of the signals.
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Figure 6 Sensitivity curves for Al5056 spherical antennae of different sizes
and quantum limited noise. Note that the smaller spheres have their maximum

sensitivity at higher frequencies but, remarkabky, such sensitivity is not better than
that of the larger spheres.
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Figure 7 Calculated strain noise spectrum h for various detectors at the quan-
tum limit: solid lines for the lowest quadrupole mode of A15056 spherical detectors
3 and 1.56 metres diameter respectively; dotted line for the second quadrupole mode
of the 3 metre sphere, and dashed line for the equivalent cylindrical bar optimally

oriented. Also shown is the thin line for the first generation optimally oriented LIGO
detector.



