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The microcanonical fermionic average method has been used so far in the context of lattice models
with phase transitions at finite coupling. To test its applicability to asymptotically free theories, we
have implemented it in two-dimensional QED, i.e., the Schwinger model. We exploit the possibility,
intrinsic to this method, of studying the whole 8, m plane without extra computer cost, to follow
constant physics trajectories and measure the m — 0 limit of the chiral condensate. We recover the
continuum result within three decimal places. Moreover, the possibility, intrinsic to the method, of
performing simulations directly in the chiral limit allows us to compute the average plaquette energy
at m = 0, the result being in perfect agreement with the expected value.

The microcanonical fermionic average (MFA) method
for performing lattice simulations with dynamical
fermions [1] is ideally suited for discussing the phase
structure of theories with phase transitions at finite cou-
plings, and it has been applied so far in this context |2,
3].

The conventional wisdom, however, requires that phys-
ically interesting theories are asymptotically free like
QCD. It is then interesting to test the applicability of
the MFA method to a theory without phase transitions
at finite coupling [4]. In this paper we present an analysis
of the Schwinger model on the lattice. Strictly speaking,
the Schwinger model in the continuum is not asymptoti-
cally free, since it 1s super-renormalizable and the Callan-
Symanzik ( function vanishes. However, in the lattice
version, since the continuum coupling is dimensionful, the
continuum theory is reached at infinite lattice coupling,
much in the same way as four-dimensional asymptotically
free theories such as QCD.

The continuum model is confining; it is exactly solv-
able at zero fermionic mass, so that we can compare the
results of our simulations with exact ones. This check
has become standard for any proposal for simulating dy-
namical fermions in lattice gauge theories.

We have simulated the (unquenched) model in lattices
ranging from 162 to 150%; we present here results for the
average plaquette and for the chiral condensate, in the
nonsymmetric (§ = 0) vacuum of the model.

The evaluation of the chiral condensate has been made
easier by the fact that, in the MFA approach, the main
computer cost resides in the evaluation of an effective
fermionic action at fixed pure gauge energy by evaluat-
ing all the eigenvalues of the fermionic matrix at m = 0.
It is then essentially possible, at no extra cost, to move in
the plane 3, m to follow constant physics trajectories in
approaching the correct continuum limit. This is easier in
this model since here the renormalization group amounts
to simple dimensional analysis, and constant physics lines
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are exactly known. This approach differs from the way
the chiral condensate is generally computed, which re-
quires arbitrary extrapolations in the lattice mass; in this
model a direct comparison of the two methods is possible.

The MFA method is fully described in [1]. Starting
from the partition function in terms of the total action
S = Sr + S¢, the sum of the fermionic and pure gauge
contributions, we define the density of states at a fixed
pure gauge action (i.e., Euclidean energy)

N(E) = /DU(S(S(;(U) — VE) (1)
and an eflective fermionic action through

e-—ng(m,ﬂf,E) — (det A%L>E

~ [DUdet A7 §(Sg(U) — VE) ,
= N(E) , - (2)

which is the microcanonical average of the fermionic de-
terminant.

In terms of the effective action the partition function
can thus be rewritten as

Z = / dEN(E)e PVE-Siu(mns . E) (3)

Massless electrodynamics in 1 + 1 dimensions is con-
fining, super-renormalizable and exactly solvable.
Its partition function is

Z = / DA,DyDpel @ =i Fur Fuutd DY) (4)

with the usual definitions of F,,, and IJ . The electric
charge is dimensionful in this model.

The partition function (in the bosonic sector) can be
rewritten as [5]

Z = fDApefdzx[%F""F“"+%A“A”], (5)
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i.e., as that of a theory of free massive vector bosons of
.. In particular the Green’s functions of

mass M = \_/—;

purely bosonic operators are the same in both theories.
This fact can be exploited for obtaining the average pla-
quette in the lattice (see later).

As for the chiral properties of the model, the chiral
current is anomalous. If the chiral limit is obtained from
m # 0, then the 8 = 0 vacuum is selected. In this vacuum
the chiral condensate is (with one flavor)

Ye

1, - e
E(¢¢>c — . \/7—1.
while it diverges at zero flavor (i.e., the quenched limit)
and is zero with two flavors. This is the value of the chiral
condensate to be compared with the results of lattice
simulations, where its chiral limit is obtained from m # 0.

In the present simulation the pure gauge part is de-
scribed in terms of noncompact fields, while for the
fermionic gauge term we use the standard staggered for-
mulation with n;s species.

Since the continuum theory is equivalent to a theory

= 0.159 95, (6)

of a free, massive vector boson, the average plaquette of

the Schwinger model can be compared with that of the
vector boson, which can be exactly computed on a finite
lattice:

1 2 —CcosSp) — COS Py
= — 7
EL =3y 283 (1 — cospy) + M? ")

(py = 3=k,) and, for V — oo,

B 1 / d*p 2(1 — cospy) + 2(1 — cos py) (8)
2 (2m)?2 M2+28% (1—cospy)

The value M = -\-/1-—; corresponds to the continuum
Schwinger model, while the quenched value is
1
M=0)=—. 9

Since e is dimensionful, 3 explicitly contains the lattice

spacing, 3 = ;-51;7 , so that the continuum limit of the the-

ory is approached at 3 — oo. The limit must be reached
keeping fixed the dimensionless ratio 7¢ = \/Bm. This
ratio defines constant physics trajectories.

We have performed simulations in lattices up to 1502.
We present here the results for the 64% lattice, where we
have the best statistics (for a total of 70 Cray-equivalent
hours). We will mainly discuss the one-flavor case.

As stated before, we compute all the eigenvalues of the
fermionic matrix. This allows us to compute the effective
action for all values of the mass, including m = 0. We
have done so for 20 values of the energy, from 0.08 to 1.3.

One advantage of the MFA method is that the phase
structure of the theory can be inspected directly from
the fermionic effective action, whose derivatives must be
discontinuous in order to generate a phase transition, at
least for small ny (2], if the underlying pure gauge theory
has no transition. In the case of two-dimensional QED
(QED3) the continuum theory is obtained as 8 — oo
and one does not expect finite 3 transitions. The effective
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fermionic action numerically evaluated for the model does

not show any sign of nonanalyticity and hence of phase
transition.

The average plaquette is obtained as

. deN(E)Ee"ﬁVEe_ fff(msn.f!E)
B Z

and can be directly computed at m = 0. Since the un-

derlying pure gauge theory is quadratic, the density of
states 1s known analytically,

(E)L

(10)

N(E) = CgE:V~13, (11)

so that the integrals in (10) are simple one-dimensional
integrals.

In Fig. 1 we report the value of the average plaquette
energy {diamonds), multiplied by 23 to improve the visi-
bility, compared with the exact result for a massive vector
model on the lattice. It is important to notice that the
Schwinger model is equivalent to a vector model in the
continuum. On the lattice, there is no guarantee that the
two models are related. From Fig. 1 one can see that at
small 3, where presumably we are far from the contin-
uum, there is disagreement between the numerical results
and the analytical ones. However, already at 3 ~ 1 the
agreement becomes excellent, showing that, at least for
this operator, the continuum physics is reached quickly.
Notice also that these results do not rely on any kind of
mass extrapolations.

The straight line in Fig. 1 is the quenched value
2B3(F) = 1, and one can see that, as m increases, the
asymptotic value of (E) moves towards it.

The chiral condensate

1 [dEe S« 2 SE

‘an dee"'Sﬁff

(i) = - (12)
at m = 0 vanishes on a finite lattice, so it must be ob-
tained as the limit m — 0. To reach the correct contin-
uum value, this limit has to be taken simultaneously with

the 8 — oo one, keeping the product /3m fixed. This
can be easily done with this method, which does not re-
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quire a separate simulation of the fermionic contribution
for each pair of parameters (3, m).

In Fig. 2 we report the value of the chiral condensate
for three values of the ratio —=. For relatively large values
of this ratio, scaling sets up already near 3 ~ 1, but even
for a very small value (in this lattice) as —< = 0. 01 where
finite spacing and volume effects appear n the small and
large (3 regions, there is a clear scaling window.

We have repeated this procedure for 12 values of -——i,
and the values of the chiral condensate in the scalmg
window so obtained have been reported in Fig. 3(a).

The behavior of the condensate is very clear towards
the continuum value, indicated in the figure as a circle.
By fitting the points at small ™< with polynomials we
have always obtained consistent results for the intercept:

(¥4} = 0.160 % 0.002 (13)

in perfect agreement with the theoretical value.

To put 1n evidence the potentiality of our method of
computing the continuum chiral condensate, we have
plotted in Fig. 3(b) the chiral condensate against the
fermion mass in lattice units, for two typical values of the
coupling 3 in the scaling window. One can conclude from

this figure that the value of the chiral condensate com-
puted by mean of mass extrapolation, will be strongly de-
pendent on both the extrapolation function and the mass
region used to extrapolate. Deriving the chiral conden-
sate from constant physics lines has the advantage that
we can unambiguously extract the value of the observ-
able for each value of ™=, and that the minumum value of

the continuum mass (before finite size effects set on) can
be easily established looking at the (absence of) scaling
window.

From a formal point of view the excellent result ob-
tained for the chiral condensate is also important since it
shows that, even with staggered fermions, where it can-
not be proven rigorously, the usual introduction of the
flavor number through powers of the fermionic determi-
nant 1s correct; in fact the numerical value for the chiral
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FIG. 3. (a) Chiral condensate vs -,
smaller than symbols. (b) Chiral condensate vs fermion
masses in lattice units ma at 8 = 3.60 (continuous line) and
B = 5.38 (discontinuous one).

ny = 1; errors are

condensate, which exactly matches the continuum value,
is obtained here by taking the square root of the deter-
minant in the partition function.

We have also analyzed the zero- and two-flavor cases.
In the zero-flavor limit there is really no scaling region,
with the chiral condensate increasing at large 3, indicat-
ing that it diverges as expected [6]. On the contrary, in
the two-flavor case, the behavior of the chiral condensate
at finite mass indicates a vanishing value in the chiral
limit, again in agreement with expectations [7].

In conclusion, the results we find agree completely with
the analytical expectations of the continuum theory. This
shows unambiguously the absence of systematic errors,
at least for the lattice sizes explored in our numerical
research, and hence the reliability of the MFA method.
Another important conclusion which follows from this
work is that the MFA approach can be also applied to
lattice models where the continuum limit is approached
at infinite inverse coupling, such as QCD.

It is particularly interesting, in view of more ambitious
applications, the ease with which constant physics tra-
jectories can be followed in this approach: in particular,
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since the mass dependence of the lattice Dirac operator
has become trivial, it is possible to move in the 3, m pa-
rameter space without extra computer cost. It is useful
to remember that also the ny dependence is trivial [2].
This potentiality has been fully exploited in the
Schwinger model, where renormalization group amounts
to simple dimensional analysis and constant physics tra-
jectories can be exactly defined through the whole param-
eter space; as a consequence our numerical results for the
chiral condensate are quite independent from the extrap-
olation to zero fermion mass and [as shown in Fig. 3(a)]
are by far the best available in the literature. It would

be interesting to have a similar detailed simulation of the
Schwinger model with other standard methods, such as
hybrid Monte Carlo algorithm, in order to compare both
accuracy and efhiciency.

All the above simulations have been performed on
vartous Transputer networks at L’Aquila University,
Zaragoza University (RTN), the bulk on the Transputer
Networks of the Theory Group of the Frascati National
Laboratories of the INFN. This work has been partly

supported through a CICYT (Spain)-INFN (Italy) col-
laboration.
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