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Abstract

In this paper we present the full calculation of the final photon polarization in the
Compton scattering on electron ¥ + € — ¥ + ¢. We claim to be in disagreement with
some of the results quoted in Ref. {4].
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1 Introduction

A general discussion of the polarization effects in Compton scattering can be found
in Ref.[1] and in several other review articles published elsewhere (2, 3, 4, 5]. The
polarization of the final photon is of particular relevance for the experiments where
high energy polarized photons are produced by backscattering of laser light against
high energy electrons in a storage ring [4]. As a matter of fact, since the electron
spin-flip amplitude vanishes in the backward direction, the final photons retain almost
entirely the initial laser polarization. However, at other angles the photon polarization
can change due to the role of orbital angular momentum. The knowledge of the
average value of the final photon polarization is essential for any experimental activity
with the backscattered photon beam.

After a short summary of the basic theoretical formulas, we derive the expres-
sions of all the quantities of interest in the general case where the initial electron i1s
arbitrarily polarized. In particular we find that some of the final photon polarization
parameters quoted by F.R.Arutyunian and V.A.Tumanian in Ref.[4] (in the following
referred as AT) are wrong. The correct expressions are presented and discussed.

2 Photon Polarization

The most general state of the photon polarization is elliptical and it can be expressed
in terms of the two basic vectors of either circular or linear polarization. If the circular
base is chosen, up to an overall phase factor, the electric field of a monochromatic
plane wave of frequency w propagating along the z-direction can be written as follows

(c=1):
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where 3.7 are the parameters that describe the elliptical trajectory of the electric
field shown in fig.(1). The d4-semiaxis are determined by the electric field amplitude
and the angle J

| E

d? = (1 + sin23) d? +d* =|E | (2.2)

The Stokes parameters are defined by the following combinations [6]:

E=2Im{ (&, - E) (€2 - )} = sin 2/3 sin 2p
§2=1 8% E |2 — |2k |2= cos 2/3 (2.3)
E3=2Re{ (&7 - E)"(¢2 - E)} = sin28 cos 2n



With the appropriate choice of the values of the parameters 3 all the cases of interest
can be selected (A is the photon helicity)

o left aircular (A =1): pg=0,x
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E = ez, vzt ¢ = (0,1,0) (2.4)
e right arcular (A =-1): F==%7/2
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Once the Stokes parameters are given, it’s easy to verify that:

e (1 + £3)/2 represents the probability to find the polarization directions along
the r and y axis, respectively;

o (1+¢£;)/2 representsthe probability to find the polarization directions forming
an angle /4 and 37 /4 with the  axis, respectively;

o (1 £ &)/2 represents the probability for states with helicity £1.

Moreover, the linear (F;), circular (P.) and total (P) degrees of polarization are
defined as follows:

P=V&+&, P=lal, P=yP+P (2.7)
For the monochromatic plane wave (2.1). eqs.(2.3) yield:
P, =|sin28|, P.=|cos28|, P =1 (2.8)

In the case of a partially polarized plane wave (P < 1) the espressions (2.3) give
now the quantities £/ P and eq.(2.8) becomes:

P = Pl|sin28|, P.= Plcos23] (2.9)

For further reference, we note that under rotation of an angle ¢ of the (z,y)-axis,
the Stokes parameters transform according to:

£l =& cos2¢ — &3 sin2¢
£, =& sin2¢ + &3 cos2¢ (2.10)



3 The Compton Process

The kinematics of the process is shown in fig.(2) with the usual definitions of the
(s,t,u)-variables:

s —m’=3§=2pk
t = — 2kk’ (s+t4+u=0) (3.1)
u—mi=u= —2pk’

The process can be conveniently discussed by introducing the Stokes parameters

of the incoming photon ({,fi)) and those associated with the polarization detector (o).
The general expression for the squared amplitude is [1]:

5
M |P= Srie Z'Mf (3.2)
t =0}
where
Mo=Tr{p QopQo +(P’Q) ' (.Pé’)}
My=Tr{(+ED)-(p'QopQ'+ p' QpQo)}
My=iTr{(¢ =€) (p'Q)x (pQ")}
My=Tr{(¢ N (p'QupQo—(p'Q)(pQ")} (3.3)
My=Tr{p" (& Q) p(ED-QNV+p (V- Q)p(v-QN}
Myg=iTr{(¢ x £?). (0" QopQ' —p'QpQo)}
The Stokes "vectors”

g(i) — ( 1“)15;&), 3(5)) y 1/’ — (““01,“02103) (3-4)

are referred to the unit vectors:
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are defined by (p = p.7")
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In eqs.(3.3) p and p’ are the density matrices of the initial and final electrons, respec-

tively. If the initial electron 1s polarized but its final polarization remains undetected,
we have:

1 | |
p = i;(ﬁ‘l“m)(l — 5 10) p = ':3‘(?5""7”) (3.8)

where, by indicating with (T/2 the average spin of the initial electron in the ERF
(electron rest frame) system, the 4-vector w satisfies the conditions

it — — (2
w,pt =0, w,wh = —(

In the LAB-system, where the electron has momentum p, one has:

0

w :—(gﬁ) ﬁ:5+E+mP (3.9)

The squared amplitude of eq.(3.2) can be written in the following form:

M 2= 16726 {Fo+ (€O F)+(&-F')+(5-TEW)} (3.10)

where the coefficient Fy and the components of the vectors F and F' are given by:

— imPay(14+mlay)—b  (b=242 3.11
Fo = 4m ay (1 + m“ay) ( ﬁ+§) ( )
Fl = 0 | . | Flf — F1
F, = —=2ma, {(1 4+ 2m?ay) (kw) + (K'w) } F) = Fo(k k') (3.12)
F3 = —4m?ay (1 + mfay) Fi{ = F5
and the T-matrix is defined by the following elements:
b
7111 =2 (1 —+ '2777,2(14.) T22 = — "2" T11 T33 = 2 - F3
Ty, = i.. 13 = —4 E a4 e Pu'wuk,\k,: Tis =15, =0 (3'13)
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Tos =may { 2% (kw) + Ty (K'w) } Tsy = may {11 (kw) + 2—&-— (k'w) }

Eq.(3.10) can be rewritten in the following form

MP=c [MP{1+(5-£U)) (3.14)
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where

e Y =(i -
£(f) = ( l(f)’ Z’U)? éf)) AO(F +Tf()) (3.15)

1Is the Stokes "vector” of the final photon referred to the unit vector base
(f )
X1

G (3.16)
X1~ |

: A k' x
1()1 XZ(f)"'|E

which should not be confused with that of eq.(3.5) defined for the initial photon. The

presence of the scalar product & - E (f) allows to determine the photon flux in any
given polarization channel by selecting the appropriate value of the detector Stokes

"vector” & in eq.(3.14). Moreover, by putting & = 0 in eq.(3.10) and multiplying by
2 the result, one obtains the squared amplitude summed over the polarizations of the

final photon
| M 2= 32r2e* { Fo + (€W . F)} = 327%* Ao (3.17)

3.1 The ERF System

In this system the calculations of the coefficient Fy, the components of the vector F
and the T-matrix elements, greatly simplify. With the positions

7 £
, LD LE]
m m

and by indicating with # the angle between the incoming and outgoing photons, one
has:

s=2m*v - a=-2m% - (3.18)

Ao
+£§"(;‘f;+%)cose— &7 v'(1-cos8)(§-()}  (3.19)
é”:-;%—{31n?9+£2“v1 cos 8) (g () + &7 (14 cos?0)}
0



Ay = (-5—; + LL— sin29) + &V sin2g — fzm v(1 — cos §) (f 5) (3.20)
and
/ /
F=hcosd+ k'l | F=k+iLcost
v v
g=k—k'cos8 , G = kcosl — Kk’ (3.21)
 h=kxk’

Following eq.(3.17). the cross-section averaged over the polarization states of the
final photon becomes (rg = €*/m): |

do 15 ,v'

2 = (——-)2/{0 (3.22)

vV

that is the usual Klein-Nishina formula {1, 2, 3].

3.1.1 Unpolarized Electrons

In the case (:4 = 0 eqs.(3.19,3.20) specialize into the known expressions:

i 2cos 6
gl(_f) —_ ‘51( ) AO
() _ ) CosO v vy
2 =62 Ao (u’ T ) (3:23)

1 i
3(;‘)_ 1 {sin’ @ + 53)(1+c0529)}

where Ay is given by

7, v!

Ao = (= + sin?0) + &) sin® 6 (3.24)

v’ v

The same expressions are reported in eqs.(3.13) of Ref.[4] and can be compared with

ours by renaming the indices: (1,2,3)ar — (3,1,2)). The components ¢ and )

are identical and thus, we completely agree with Ref.[4] when the photons are linearly

polarized. On the contrary, the AT-value for 2” ) is:
(N, _cosbprv v NG (i
§2 IAT - Ao { (';}' + N 2) p 128, } (3-25)

which is incorrect because it allows for a circular polarization component of the final



photon even when the initial photon is purely linear (f;t) = (). A typing error is
possible but not consistent with the rest of the AT-paper.

According to egs.(3.23,3.24), the Stokes parameters do not show any explicit de-
pendence upon the ¢-emission angle of the final photon. As a matter of fact, this

dependence is only hidden in the expressions of the unit vectors Xl(% and Ql(fz) In the

reference system w here the kinematics of the process has been defined (the 2-aX1S$ 1S
along the incoming photon momentum), these expressions are:

1() = (— cos ¢, sin ¢, 0) = (—sin ¢, — cos ¢, 0)
Af) _ ~ ()
1 = Xa

= (—cos @ sin ¢, — cos d cos ¢, sin )

.-d-"':-

(3.26)

>

By rotating these two sets of unit vectors of an angle ¢, at constant €, one obtains

(see eq.(2.10)):

1 . . i .
slm-—__ i { — s5in“#sin2¢ + 31” [(1 F cos)?sin®*2¢ + 2cosb]

_ 15 [(1 F cos0)? sin4g ] }

5
(f) (1) cos 6 vV 7 -
32 —_— 32 140 ( ‘1';_; "';“‘ ) (3.2! )
¢ 1
sé“‘)——{ sin® # cos 2¢ + 5 51 =) [(1 F cos §)*sin 4¢ ]
+ 38 [(1 F cos0)?cos? 2¢ + 2cos 8]}
with Ay given by
/ ) .
Ao = (5 + ZV— — sin29) + (31’) cos 2¢ + sét) sin 2¢) sin® 8 (3.28)

g -

The Stokes parameters 5(*) and 5{/) are expressed in terms of two reference bases
perpendicular to the corresponding photon momentum. The unit vectors defined for
the initial photon coincides with those T and y of the reference system, whereas those
of the final photon depend upon 8. The double sign corresponds to the emission of
the final photon in the forward (upper sign) and backward (lower sign) emisphere,

respectively. Since eqs. (3.5,3.16) assume that the third axis is oriented along the

photon momentum and the unit vector iz(f ) changes direction under reflection (see

eq.(3.26)), the final photon turns out to be described in systems with opposite hand-
ness when is emitted forward or backward. This explains why the ¢-dependence has
to be taken with opposite signs when the photon is emitted in the two emispheres.
As for the circular polarization no @-dependence is expected. Hence, no double sign

appear in the expression for .Sz(f ) and a circularly polarized photon changes helicity
passing from one emisphere to the other.
On the experimental side, the final size of any practical detector requires to per-

form an integration over its finite ¢-acceptance. By weighing eqs.(3.27) with the



differential cross section and averaging over the full ¢-range

o dp Ao3) 77 dp Ags!))

(f) ~ —
< 8 > = :
2T de Ag < Ag > (3.29)
one has:
() iy (14 | cos @ |)?
< 8 >=s
! ! 2 < Ap >
(f) (1) cos 6 v v’
< S8 > = — —_ :
s > =8 ——(=+) (3.30)
() i) (14 ] cos @ |)?
< & > = '
3 °3 2 < Ao >
where
v v
<Ag>= — + sin® & (3.31)
v ",

Fig.(3) shows the behaviour of the Stokes parameters of the final photon as func-

tion of the ratio a = v'/v)_ _, when UV-photons from a frequency quadrupled

Nd — Y AG laser with A = 266 nm (4.66 eV') collide against the electrons of the
up-graded NSLS X-ray ring at BNL (E. = 2.8 GeV) [8]. This behaviour can be
understood from the analysis of the kinematical term appearing in eqs.(3.30,3.31).
This factor can be rewritten as tollows:

v’ v4(1 — cos #)?
—_ = 2 . 3..
* v T 1 + v(1 — cos8) (3.32)

v
1

i/

and, for v ~ 1 (as in fig.(3)) is always very close to 2, in the whole angular range. Ac-
cording to eqs.(3.30,3.31) the photons emitted inside the two cones centered around
the § =0 (a = 1) and = 7 (a = 0.883, in the kinematical case considered in fig.(3)),
retain the same degree of polarization of the initial photon. The cusp, present only in
the case of linearly polarized photons (see fig.(3a)), occurs at § = 7 /2 as consequence
of the absolute value appearing in eqs.(3.30). In the case of incoming circularly polar-
ized light (see fig.(3b)), the final photon mantains the helicity in forward emisphere
but scatters with opposite helicity in the backward emisphere. In both cases, the be-
haviour of the polarization degree as a function of the scattering energy, is identical.

In the region v > 1, the kinematical factor of eq.(3.32) increases with v, giving rise
to a corresponding decrease of the degree of linear polarization of the final photon.
Fig.(4a) shows that the drop of the linear polarization is dramatic when the electrons
are in the multi-GeV region. This drives to the surprising conclusion that laser
backscattering, at very high energy, can not be considered as a good source of linearly
polarized photons.

Thanks to the cancellation of the kinematical factor (3.32) in the second of
eqs.(3.30) at @ = 0, rr, this effect does not indeed occur for circularly polarized pho-
tons, as shown in fig.(4b). This is clearly expected from angular momentum con-
siderations, but disagrees quite strongly with the corresponding AT-result (third of

8



eqs.(3.25) of Ref. [4]):

| ) 0
. (f) (i) % COS
<3S >|lAT = S8
. I 2 <A0>

Here a tully circularly polarized photon is predicted to bounce back from the electron

with a degree of circular polarization that, despite the angular momentum conserva-
tion, decreases with the increasing energy.

(3.33)

3.1.2 Polarized Electrons

With the help of eqs.(3.19,3.20) we can extend these considerations to the case where
the electrons are polarized either longitudinally or transversly to the direction of the
incoming photon: any other polarization state can be reconduced to a combination
of these two basic states.

The electrons 1n a storage ring can build up a partial transverse polarization
as a result of the combined action of the polarizing synchrotron radiation and the

depolarizing effect due to the magnetic lattice imperfections. The (-dependent term
in eqgs.(3.20) shows that the electron transverse polarization can be measured with
circularly polarized photons, by looking at the ¢-asimmetry in the distribution of
the scattered photons. This opportunity has been repeatedly used to measure the
electron transverse polarization in several storage rings (SPEAR, LEP, HERA) [7].

In the case where the electron polarization vector is along the y-axis [( = (0, P.,0)],
by assuming that ¢ = 0 corresponds to the positive direction of this axis, we can
define the following up-down asymmetry:

v _ Ao(¢ = 0) — Ao(¢ = 7)

smnd

_ 1 Ao(¢ = 0) — Ao(¢ = 7)
Aol =0) + Ag(p =7) 2 < Ao >
v(l —cos@) sind

= — & —— 3.34
S2 Fe (1 4 cos28)[l + v (1l —cosf)| + v?(1 — cosB)? (3-34)

The behaviour of this asymmetry as a function of the scattering angle for thre:e
different values of v is shown in fig.(5). Let’s note that the v-dependance of this
quantity changes considerably in the low and high energy regimes

(1 —cos@) sinf

1 + cos? 0
1 siné

vl S a —tMPy

y>1 S~ —&6YP (3.35)

However, the ¢-averaged polarization of the final photon is completely insensitive to

the electron transverse polarization. |

The greatest interest arises when the electrons are longitudinally polarized. First
of all, fig.(6) shows that unpolarized photons acquire some small degree of circular
polarization (= 20 %) when they are scattered off longitudinally polarized electrons.
When the laser photons are circular, fig.(7a) shows that the electron helicity states



determine different values for the circular polarization of the final photons, as reported
also in Ref. [5]. This difference amplifies considerably at high energy [see fig.(7b)].

3.2 The LAB System

On the experimental side it’s definetely more convenient to look at the photon po-
larization in the LAB-system, where the real experiments are performed. However
in this system the formalism discussed 1n sec.3 can not be handled as easily as it has
been in the ERF-system and therefore we will limit ourselves to report some of the
most interesting results of our analysis.

3.2.1 Unpolarized Electrons

Fig.(8) shows the behaviour of the linear and circular polarization of the LEGS pho-
tons, when the electron are unpolarized. Let us notice first that the value a = 1
corresponds to backward scattering in the LAB but to forward scattering in the
ERF-system. The Lorentz transformation that connects the two system is such that
the cusp profile seen in fig.(3a) is so squeezed against the vertical axis that is not
visible in fig.(8a). This result would be in strong disagreement with that of Ref.[4],
if these authors really claim that the polarization profile is unaffected by the Lorentz
transformation. And, indeed, this seems to be the case: the energy scale along the
abscissa indicates that fig.(22) of Ref.[4] refers to the LAB-system and the reported
polarization degree exhibits the same cusp-like behaviour that we found in the ERF-
system [see fig.(3a)]. However, this evident inconsistency doesn’t show up in the
backward direction where the LEGS-type of experiments usually operate. It would
appear as a huge effect only for § < 7/2. At present, no data are available to disen-
tangle this question.

Fig.(9) shows the transverse spatial distribution of the backscattered photons 1n
the present LEGS conditions: linearly polarized light against unpolarized electrons.
According with the structure of the Klein-Nishina formula, the two dips, clearly visible
in fig.(9), line-up with the polarization direction of the initial photons and disappear
completely in fig.(10) where the same distribution is shown for circular photons.

3.2.2 PolarizedlElectrons

Fig.(11) shows the asymmetry defined in eq.(3.34) as seen in the LAB-system, ex-
pressed in terms of the angular offset respect to the backward direction.

Similarly to what has been found in ERF-system, the effect of the electron trans-
verse polarization on the ¢-averaged polarization vanishes. The interest is mostly
concentrated in the case of circular photons and longitudinally polarized electrons.
Here the cross section of eq.(3.17) depends explicitly on the relative orientation of the
photon and electron spins: fig.(12) shows how: fig.(7a) is modified under the eftect of
the Lorentz transformation.
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4 Laser Light Polarization Measurement

A possible set-up for the polarization measurement at LEGS is shown in fig.(13).
The photon beam impinges upon a quarter-wave plate that rotates at a constant
angular speed §2. After the plate, a polarization analyzer separates the z and y com-
ponents of the electric field and the two intensities are monitorized by two photodiode
detectors. The quarter-wave plate introduces a 90° dephasing into the polarization
component that lies along its fundamental axis and leaves the perpendicular compo-
nent untouched.

Let us consider the general expression for an incoming elliptical beam given by
eq.(2.1)

E={E &+ E,j}e“t (4.1)
where

| . o : . .
E,. = — (e " cos3+¢€"sins3 E, = —(e""McosfB—¢e"sinf) (4.2

It can be shown that after the rotating plate, the electric field components become:

E; r E 1l —2 [ ¢ —cos20t  sin 2§l E,
P )= )= 4
( E, ) = W) ( E, ) 2 ( sin 2§t z'+cos2Qt ) ( E, ) (4-3)

y st

and the corresponding intensities are:

, 1 , 1 :
| EL 1P =5 {1+ sin20 + 5 [ & (1 + cos 4028) — & sin 40t | }
1 . | :
| E; |*= -:2—{1 — &, sin 20 — 5 [Eg(l + cos 4§0t) — & 51114Qt]} (4.4)

Both components are modulated at the two frequencies 2{! and 4Q (¢ = 1): the
former is associated to the circular polarization, the latter to the linear polarization.
The amplitudes of these two harmonics can be measured with a Fourier analysis of
the two photodiode signals and the Stokes parameters can be completely determined.

Let us consider few standard cases:

i

o unpolarized photons : £ =1(0,0,0)

1
2__

| E; I’=| E;|"= 5

o carcularly polarized photons : €= (0,+1,0)

1
2

|E;,|2= (1 £ sin 262 ) |EJ|2= (1 F sin 262t )

1
2
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o [linearly polarized photons :

E=(£1.0,0) | E/|’= < (2Fsin4Qt) | B! |?=

(2 4 sin 40t )

ol M S

1
. / 1 . / P
£=(0,0.+1) |E'|*= -i[(z::l) + cosdt| | E)|*= - [(2F1) F cos4t]

In conclusion, in fig.(14) we present the time behaviour of the intensities | E, | | 2
for an arbitrarily selected Stokes vector. By assuming an angular speed 2 of 12°s~!
(1 turn in 30 seconds), the time scale in fig.(14) spans a time interval of 30 seconds.
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Figure 1: Elliptically polarized plane wave.

Figure 2: Kinematics of the Compton process.
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Figure 3: Stokes parameters of the final photon as function of a = v'/v,, in the
ERF-system: a) s3 for linearly polarized incident photon & () = (0,0,1); b) s for
circularly polarized incident photon 5() = (0,1,0). The electron energy in the LAB-
system is 2.8 GeV (v = 0.1).

15



ERF

o 0.9
0.8
0.7 sV=(0,0,1)
0.6
0.5
0.4
0.3 1) £ =100 Gev
0.2 2) E* =500 GeV
0.1
0 Mool v b by e b P b be ey by gy
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X
~ 1
o 08 |
0.6 2 st = (0,1,0)
0.4
0.2 1
0 |
-0.2
~0.4 1) E,% =100 GeV
~0.6 2) E”® =500 GeV |
-0.8
-1 P Lo b by b by e bn e by v en lua e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 4: The same of fig.(3) for two different values of the energy of the initial
electron in the LAB-system.
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LAB-system.
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longitudinally polarized electrons: 1) ¢ = (0,0,1); 2) ¢ = (0,0, —1).
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Figure 7: The same of fig.(6) in the case of circularly polarized incoming photon
(59 = (0,1,0)), for two different values of the energy of the initial electron 1n the

LAB-system.
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Figure 8: The same of fig.(3) in the LAB system.
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Figure 9: Klein-Nishina differential cross-section d®c/dzdy, in units of r¢, in a plane
transverse to the photon momentum in the LAB-system. The polarization vectors
of the incoming particles are [5()) = (0,0, 1)] and ¢ = 0], respectively. The unit circle
in the (z,y) plane correspond to a cone of half-aperture 2/+.
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Figure 10: The same of fig.(9) for circularly polarized incoming photon [5() =
(0,1,0)].
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Figure 11: The asymmetry of fig.(5) as seen in the LAB-system. A# is the angle of
the scattered photon with respect to the backward direction in units of 1/7.
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Figure 12: The same of fig.(7a) in the LAB-system.
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Figure 13: Experimental set-up for the polarization measurement.
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Figure 14: The intensities of eq.(4.4) as a function of the rotation angle of the plate
in the case £ = (0.5,0.7,0.5) [P* = 0.99].



