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1 – INTRODUCTION
The experimental information about gravitational waves is practically nonexistent. The

only available experimental information comes from the binary pulsar PSR 1913+16 by J.H.
Taylor and J.M. Weisberg(1), which shows indirect evidence for gravitational waves emitted
by a continuous source and their quadrupole nature.

We believe it is likely that the direct observation of gravitational waves will show
phenomena at present unpredictable, as most of the times have happened in science for new
discoveries.

In designing the experiment we must certainly take into consideration the present
theories of gravity , but we must be careful not rely on them too much. We must try to keep
our mind open. Our search for gravitational waves will be based on experimental data
obtained by applying the technique of coincidences among two or more detectors and by the
statistical treatment of the data. We believe that this is one of the most delicate problems.

In the following we shall discuss an experimental method to estimate the probabilities,
already used by Joe Weber and by the gravitational waves hunters who had operating
detectors. The outcome of this method we call experimental probability. We shall indicate the
care needed when applying to the raw data filtering procedures for detecting small signals
embedded into noise and finally we shall discuss the importance that the probability be
estimated only on "a priori" bases.
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2. THE EXPERIMENTAL PROBABILITY
When measuring a physical quantity x the final result is its value with instrumental and

statistical errors. Actually, even when the calculation of the error is possible, it is by far
always preferable to determine it experimentally. For determining the instrumental errors one
must repeat the experiment with different techniques. For the statistical errors the
measurement of the quantity x is repeated N times, with an instrument so sensitive that the N
measurements do not always give the same value, because of the unavoidable accidental
errors due to several unknown causes. As well known, the statistical error is given by the
standard deviation σ and the final result is written as <x> ± nσ/√N n being a chosen number,
with the well-known probabilities, if the measurement distribution is of the gaussian type,
that the true value of x be in the above interval, for a given n.

In physics, very often, n is required to be large. If we take, for example n=3, the
gaussian probability that the true value lies outside the interval <x> ± 3σ/√N is of the order of
0.54 %, and one would think that is small enough to ensure that the true value be inside the
above interval. However, it has happened several times in science that new measurements of
the same physical quantity made with different instrumentation have given values outside the
interval. For this reason most physicists feel (we have had several discussions on this point
with colleagues working in high energy physics) that one is safer if he takes an interval with a
larger n value, say n=7. This value gives a probability of 10-12 that the true value be outside
the interval. The reasons why one might find values different from each other more than
allowed by the error are clearly the following ones: i) wrong evaluation of the standard
deviation σ; ii) systematic errors; iii) use of the gaussian law without having fully tested its
applicability.

A similar situation happens when considering measurements leading to the detection of
a physical event. In this case one determines the probability that the detected event not be due
to noise, and this probability can be also given in terms of standard deviations. Again the
problem on the number of standard deviations needed for being confident in the validity of
the result arises. We shall show, in the following of this note, that this problem can be solved
and the difficulties overcame in the cases when the physical quantities of interest are detected
by means of the technique of coincidences between two or more different detectors.

Let us consider two detectors located at large distance one from the other. They measure
the same physical quantity, say gravitational waves, or different quantities, say: gravitational
waves and neutrinos. They detect "events" that, in the simplest case, are characterized by an
amplitude ( i.e. the energy of the neutrino or the energy innovation in the g.w. detector) and
the time of occurrence: x(t). The definition of event may depend on the chosen threshold and
other parameters. The experiment consists in the detection of a phenomenon occurring
simultaneously, or with a given delay, in the two detectors. In this case the signal is the
number nc of coincidences in a given time window ∆t, at a delay  established before starting
the data analysis (the delay is zero for real coincidences), subtracting the background. This is
given by the number of coincidences found by pure chance. As well known, the accidental
coincidences can be calculated for the stationary cases with the formula

<n> = N1 N2 ∆t / tm
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where N1 and N2 are, respectively the number of events for each of the two detectors in the
period tm of data taking. The probability to have nc or more coincidences while expecting
<n> on the average can be estimated with the Poisson statistics (which becomes the gaussian
statistics for large <n> values) using well-known formulas.

This procedure is correct, of course, if the statistics is really poissonian, that is not
always true. It is possible to solve the problem in the general case by introducing the
experimental probability (Professor Joe Weber made large use of this procedure) as follows.
We consider the shifted coincidences nc(∂t), that is we look for coincidences after having
changed the time of occurrence of the events of one of the two detectors by ∂t  (for the real
coincidences ∂t=0). We repeat this for N different values of ∂t, obtaining N numbers nc(∂t).
We count how many times m the following unequally is verified

nc(∂t ≠0) ≥ nc(∂t=0) = nc

If nc is due to chance we expect on the average that the above inequality be verified N/2
times. In general, the quantity

p=m/N

estimates the probability that the nc or more coincidences occurred by chance.
We want to stress that this probability is determined experimentally and it does not

depend on any model. This is very different from the case of one single detector, when the
noise cannot be taken usefully into consideration without a convenient modeling. The
different behavior of the coincidence background with respect to the one detector noise makes
the coincidence technique very powerful for the search of new phenomena. In the writers'
opinion this point is not yet fully understood by a large part of the scientific community.

We now go back to the case of one detector only, to better understand the enormous
difference with the case of two detectors. We do this with an example. During the Supernova
SN1987A the Kamiokande neutrino detector revealed a burst of 11 neutrinos in 13 seconds. It
has been stated that the chance to have such a clustering of neutrinos by accident is of the
order of once in 100 million years. This is based on the assumption that the neutrino
background follows the Poisson distribution. In the paper published by the Kamiokande
group(2) they show that data were recorded for 42.9 days. During this period the distribution
was poissonian with the exception of the 11-neutrino event. In our opinion the Kamiokande
detector alone cannot prove the existence of a new phenomenon, because the observed burst,
in spite of the calculated probability of once in 100 million years, could have been produced
by unknown noise. The correct way to treat the problem is to consider all the recorded data as
the measured background and to compare them with data taken with another detector. For the
SN1987A the burst occurred within a few hours from the visual detection of the Supernova.
Thus, taking a reasonable window of 6 hours, the probability that such a coincidence may
have occurred by chance during the 42.9 days is

p ≈ 6 hours / (24 hours x 42.9) ≈ 0.006
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This probability is equal to that corresponding to 2.8 σ. The probability improves if we
consider the coincidence with the IMB burst of 8 neutrinos in 6 seconds. Since the
Kamiokande uncertainty on the time is ±1 minute, we calculate the probability

p ≈ 2 min / (1440 min x 42.9) ≈ 3 10-5 (about 4 σ)

to have the coincidence with IMB by chance. (In the IMB case, however, "a posteriori"
considerations on the IMB neutrinos have been made).This is much larger than once in 100
million years.

For completeness we calculate the probability to have the triple coincidence: SN light,
Kamiokande, IMB. We have

p ≈ 6 hours x 2 min / ( 1440 min x 42.9 )2 ≈  2 10-7 ( about 5 σ).

In all cases the number of standard deviations related to the probabilities is not so large
as required by the physicist working in other fields. In our opinion, however, the probability is
small enough to support the hypothesis that supernova neutrino might have been detected.
This is because the above probability estimation is, in this case, just the experimental
probability, as it can be understood by considering that, with two detectors, for instance,
having just one event each we get n(∂t)=0 at all delays with ∂t ≠0 .

3 – EXTRACTING SMALL SIGNALS FROM NOISE
We discuss here the application of two different filtering procedures for pulse detection

to the data of our two mode resonant gravitational wave antenna EXPLORER installed at the
CERN in Geneva.

The EXPLORER detector of the Rome group(3) is a 3 meter long aluminum bar,
weighting 2270 kg and cooled to 2 K. When hit by a gravitational wave the bar starts to
vibrate at those resonance modes that are coupled to the g.w. The vibration at the bar's end
face is converted into an electrical signal by an electromechanical capacitive transducer. Since
we use a resonant transducer we have two resonance modes at 904.7 Hz and 921.3 Hz. The
electrical signal from the transducer is amplified with a wide band very low noise SQUID
preamplifier. The output signal from the SQUID instrumentation is processed by means of
two different procedures:

1) it is sent to four lock-in amplifiers (a lock-in amplifier extracts the Fourier
components of the input signal at a chosen frequency) that demodulate the signal at the
frequencies of the two modes, at the frequency of the calibration signal used to monitor the
gain of the SQUID, and at a frequency of 909 Hz that provides information on the wide band
noise in the region between the two modes. The data of the channels processed by the lock-in
amplifiers are sampled at a rate of 3.44 Hz (sampling time of 0.2908 s), about equal to the
integration time (0.3 s) of the lockin's.

2) it is first filtered with a bandpass filter with flat response in the frequency range (902-
927.5) Hz, that includes the resonance frequencies of the two modes, and strong attenuation
outside, and then it is directly sampled at the rate of 220 Hz (sampling time of 4.54 ms). As a
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result, the signals in the frequency region of our interest between 900 and 927.5 Hz are
transposed in the range 20-47.5 Hz (as obtained subtracting 880 Hz from the above values).

In the following  we will refer to the two different data processing as the "slow'' and
"fast'' data taking(4).

One of the most important goals in the gravitational wave research is to detect the very
short bursts due to gravitational collapses. A short burst is a signal that we may model as a
delta function as regards its effect on the detector and the instrumentation. This is possible if
its time duration is very small compared with all the time constants of the apparatus, including
the sampling time which is different in the "slow'' and in the "fast'' data.

The noise of the detector is due to the brownian Nyquist noise of the mechanical
oscillators, related to the thermal bath of the antenna environment, and to the SQUID and
associated instrumentation, that contributes a flat (ideally) noise spectrum with spectral
density So. This flat spectrum also heats the antenna with a backaction force which adds up to
the Nyquist force and increases the brownian noise to an equivalent temperature level Te
giving a narrow-band spectrum with spectral density Suu.

In addition to the fundamental noise that we model, there may exist some excess noise
usually of non stationary nature, which shows up as pulses or as spurious resonance peaks.

We consider the optimal filtering of both the "fast'' (FF) and the "slow'' (SF) data. The
best estimation of an input short signal, modeled as a delta function, whose effect is to modify
the vibration status of the observed modes, may be obtained by using a Wiener filter or by
using a matched filter.

It is possible to show that the actual bandwidth of the detection system, including the
filter, near each one of the two modes, is

∆ν= ωο / (2 π Q √Γ)  ,   Γ  = So/Suu

where Q is the merit factor of the oscillator. In the EXPLORER detector Γ it is of the order of
10-7 and ∆ν ≈ 1 Hz.

This bandwidth is much larger than the mechanical bandwidth of the antenna oscillator,
as can be  understood simply by noting that the bar responds in the same way to an excitation
due to a burst of g.w. and to the brownian noise and, therefore, its bandwidth is limited only
by the noise of the electronic amplifier. It is necessary to point out that using the "slow'' data
we process the two modes separately and then we combine properly the information that they
both provide. We usually combine the two mode outputs in a single stream by selecting, at
each sampling time, the minimum of the two outputs. For short bursts of the incoming
gravitational radiation we expect the energy in both the modes be approximately (because of
the noise) the same.

The information provided by the "fast'' data is quite different, because it is equivalent to
averaging the contribution of both modes. In absence of noise and of time discretization
effects, for a very short input signal, we expect both the "fast'' and "slow'' filtered data to have
exactly the same energy.
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We have applied both the filtering procedures to the EXPLORER data from 19 June to
16 December, 1991. The effective number of days is 122 days, corresponding to a duty cycle
of 67 %. The best sensitivity with the optimal filters is:

"slow'' data @ 290.8 ms : Teff ≈ 8 mK, that is h ≈ 7.1 10-19.
"fast'' data @ 4.54 ms :Teff ≈ 4 mK, that is h ≈ 5.1 10-19

We define "events''  the filtered signals larger then a certain threshold which we choose
Et=80 mK. We found Nslow = 25098 and Nfast=19440 events. If the events were only of
thermal and electronic origin we would have expected in 122 days of the order of 1600 (above
80 mK) for the slow data and less for the fast data. Thus most of the events were produced by
external forces acting on the detector.

We have searched for coincidences between the SF and the FF events. Since they
originate from the same experimental data using two optimum filters both aiming at detecting
short  bursts of g.w. radiation we expected a very large number of coincidences.

Indicating with <n>  the average number of the accidental coincidences obtained by
shifting all the occurrence times of one of the two data series by given amounts of time δt and
with nc the real coincidences, that is the coincidences we have with δt =0, we found nc=187
with an expected number of accidentals <n>=8.3 for a window ±0.15 s, as shown in Fig. 1.
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FIG.1 – Coincidences between FF and SF for EXPLORER
Coincidence window ± 0.15 s

The fact that only 187 coincidences are found using two algorithms which are supposed
to do the same thing appeared, at a first sight, very strange.

For studying the problem we have used a simulation procedure, that is we simulated the
bar brownian noise and the wideband noise and then we have processed and analyzed these
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data with both algorithms. The result of 14 hours of simulation (selecting events larger than
80 mK and using a window of ± 0.15 s) are the following:

Nslow =273, Nfast = 476, nc = 16 , <n> = 0.59

The calculated accidental coincidences are 0.77 ± 0.9 (one standard deviation).
Only 5 % of the events due to the noise processes coincides. This is a very small

percentage although it is greater than the 1 % that we have found on the real data, where we
should consider that added up the coincidences due to the noise and those due to the action of
external forces. The difference between 1 % and 5 % must be due to the fact that in the real
case the events are not only due to the modeled noise fluctuations or to delta excitations due
to external forces but also to other unknown non modeled noise that produce non appreciable
coincidence excess. The events due to noise fluctuations and/or those due to spurious signals
may be different in the two cases. Only those events due to input delta forces, with very large
SNR, are expected to be seen at the same time by both the filters.

We have checked this last point by adding to the above noise 40 delta-events with SNR
of the order of 1000. All 40 events were seen with the two filters, all of them with equal
amplitudes.

We have performed a simplified theoretical analysis of the problem by studying the bar
motion when the applied force is constant ≠ 0 for a duration τg. This is not a realistic
waveform for a gravitational wave signal, but it is useful to understand, roughly,  how
different the response to the same input signal may be for the "slow'' and "fast'' filters. The
force was applied at the exact time of a sampling.

We calculated the displacements of the bar and the transducer for three different values
of τg, very close one to each other:

τg=179.05 ms, τg =179.12 ms, τg=179.25 ms.

When the force terminates, the bar oscillation can remain small or large, depending on
the energy delivered by the force at the exact time of its termination (Fig.2).

It turns out that the remaining oscillation is very small in the first case, larger in the
second case and maximum, equal to the oscillation during the action of the force, in the third
case. In all these cases the "fast'' and "slow'' optimum filters give very different results.

The fast filter gives always the same result, as expected, since, because of the fast
sampling of 4.5 ms, in all the three cases the oscillations are identical during the time, longer
than 4.5 ms, the force was applied.

The "slow'' filter is sensitive, roughly, to the difference between the average energy in
the bar at two successive samplings, 0.2908 s apart. The first sampling is the average during
0.2908 s (the averaging begins at the initial time the force was applied), partially covered by
the applied force. The next sampling instead gives values due only from what energy was left
in the bar. This left energy depends very strongly on the exact time the force terminated.
Clearly, in the considered three cases, the differences between two successive samplings
differ one from each other.
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FIG. 2   – Oscillations of the bar ends due to the action of a rectangular force of duration
τg=179.05 ms, τg =179.12 ms, τg=179.25 ms, from above.
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Thus we realize how much care we must put when considering coincidences between
events determined with different filtering procedures, in particular if the filters are based on
different sampling times.

Another interesting case is obtained by running a coincidence program for the Louisiana
State University data obtained in 1991 during the same period of time of EXPLORER (5). For
LSU two different filters (WF and ZF) were applied to the experimental data, giving
respectively, for a threshold of ≈ 100 mK, N1=18606 and N2=19112 events. One filter (ZF)
had a sampling time of 8 ms, the other one (WF) a sampling time of 80 ms. The coincidences
that were found within a window of ± 0.15  were only 20 % as shown in Fig.3.
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Fig. 3 Coincidence between WF and ZF for ALLEGRO
Coincidence window ± 0.15 s

In conclusion we have learned that, in order to compare data of various antennas, it is
necessary to be extremely careful in using different data analysis algorithms. As a matter of
facts the actual sensitivity of the coincidence experiments may be considerably reduced if
different filters are employed. For instance, the null result of the first coincidence experiment
(5) between the LSU and Rome cryogenic antennas should be reconsidered, in the sense that
the energy threshold for the null result is certainly rather larger than  claimed.

4 –  THE "A PRIORI" PROBABILITY
Each one of us has certainly experimented in his life several facts that, by a simple

probability estimation,  one thinks they should not have occurred. Similar thinking brings
some people to worry about what Universe and what Mankind it would had been if the
electrical charge of the electron would had been a little bit different from what actually is. The
crucial point of this paradox is that the word probability must not even be used for a fact that
has already occurred.

We wish now to show an example of misuse of the probability concept.
The gravitational wave antennas ALLEGRO and EXPLORER have collected data

during the period 19 June 1991 through 16 December 1991 as already indicated in section 3.
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Coincidences were searched(5) for events with energy greater than 200 mK
corresponding to h = 4 10-18 and none were found. The coincidence window was taken ∆t=±
1 s on the following bases.

As already indicated in section 3, both the ALLEGRO and EXPLORER data were
processed each one with two different optimal filters. For ALLEGRO, one filter was
developed by Warren Johnson ( WF ) and the other one by Zhu Ning ( ZF ). For EXPLORER
we developed the "slow" ( SF ) and the "fast" ( FF ) filters as described in section 3. For
ALLEGRO we looked for coincidences between WF and ZF and for EXPLORER between
SF and FF using  different windows. The result is shown in Fig. 4.
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FIG. 4 –  Coincidences for ALLEGRO and EXPLORER for various coincidence windows.

In Fig. 5 we show the coincidence excess (coincidences - accidentals) both for
ALLEGRO and EXPLORER.

We deduce that if we want to obtain as most coincidences as possible we must employ,
for these two detectors, a window of the order of at least ± 1 s, perhaps a little more..
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Lowering the threshold to the minimum energy possible with our detectors we find the result
shown in Fig. 6 for the window ± 1 s(5) indicating a small, statistically insignificant,
coincidence excess.
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Fig. 5. Coincidence excess for ALLEGRO and EXPLORER.
We notice that a window of at least ± 1 s is needed
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FIG. 6 – Coincidences between ALLEGRO-WF and EXPLORER-SF with a window of ± 1 s,
versus the event energy.

(However on the basis of section 3 this result should be reconsidered in the sense that
we know, now, that even if gravitational wave with amplitude h = 4 10-18 existed only a
small fraction (perhaps a few %) of them would had given coincidences in the two detectors.
Only for higher amplitudes,  h ≈ 10-17, all possible coincidences would had been detected).

Because of the large uncertainty in the window to be used, we decided to look for
coincidences with window ∆t = ± 0.1 s scanning the range -5 s through +5 s. We obtain the
result of Fig.7, which shows no particular coincidence excess at any delay.
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FIG. 7  – Coincidence delay histogram with window ± 0.1 s.

We know that during the period of time under study (19 June-16 December 1991) there
were periods of higher disturbances for the EXPLORER antenna. In order to eliminate these
periods we can decide to eliminate all the hours of the antenna data taking having a number of
events Nh larger than a given number, provided that this data elimination does not reduce to
much the observation time.

This criterion has been already used in the preparation of the Explorer event list, as only
those hours with less than 60 events were taken. In order to improve the SNR we have applied
again this procedure, choosing only those hours with less that 10 events. In doing this we
found that while the background decreases by a factor of 5 we loose only about 26% of the
total observation time.

The result of such a selection is shown in Fig.8.
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FIG. 8 – Coincidences with data selection Nh≤10 event/hour.
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We notice that we have a large peak at a delay of 1.1 s, with a poissonian probability to
be accidental of 3.2 10-4, , since <n>= 1.25.

If we take this result seriously we might try to imagine where the sources for the events
detected by the antennas could be located. An obvious place is the Galactic Center.

In this case we expect an improvement in the signal to noise ratio by selecting the
events recorded when the resonant g.w. bars were favorably oriented with respect to the
Galactic Center. Considering the angle δ between the bar axes (ALLEGRO and EXPLORER
were oriented such to be nearly parallel one to each other) and the direction to the GC we
selected only the events recorded when sin4(δ) ≥ 0.5 (we recall that the gw cross-section
behaves as sin4(δ)).

The result of this additional data selection is shown in Fig.9.
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FIG. 9  – Coincidences after data selection with Nh≤10 event/hour and sin4(δ)≥0.5.
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and for a window of ±1.5s.
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The accidentals reduced to <n>=0.69, and the coincidences to 6, for a poissonian
probability of 8.3 10-5. The experimental probability is also found to be of the same order.

Finally it is interesting  to search again for coincidences at zero delay by making use of
the last selection criteria, Nh≤10 event/hour, and with a window of ± 1.5 s , as it appears more
reasonable from Fig. 5. We obtain the result of Fig. 10, where the coincidence excess is more
pronounced than that reported in Fig.  6.

5 –  CONCLUSIONS
From the above analysis one is tempted to conclude that a coincidence excess was

found. The probability for the excess to be accidental is small, even considering a worsening
because the delay of 1.1 s was found "a posteriori" (but within the coincidence window
uncertainty). This result could also indicate that a time error of the order of 1 s was made
either by EXPLORER or ALLEGRO, but to check it now it is not possible.

In our opinion the above conclusion is absolutely wrong.
In a statistical data analysis only "a priori" considerations are valid. The reason we

brought to discussion the above example was simply to show the danger hidden in certain
kind of reasoning.

The only result we can use from our analysis is having found a procedure to be applied
to new experimental data, when they will be available.

Sometimes a blind procedure has been suggested, as exchanging many sets of data (say
1000 sets) only one of which be the true one. This would bring the probability, if one finds the
true set, to 10-3, "only 3 σ" and, if the result is very striking, as expected for new physics,
nobody would believe it, any way, and the work done would result just in a waist of human
resources.

It is difficult to accept a result that does not find its location in the known physical
theories and we agree with what we have learned on the textbooks: a new experimental result
must be obtained also by another group with different instrumentation.

We must keep our mind open but if a result occurred just once, it is of no use in science.
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