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Abstract

We reexamine the radiative corrections to 7, and Kj; decays. We perform a
matching calculation, using a specific model with vector meson dominance in the
long distance part and the parton model in the short distance part. By considering
the dependence on the matching scale and on the hadronic parameters, and by
comparing with model independent estimates, we scrutinize the model dependence
of the results. For the pseudoscalar meson decay constants, we extract the values
fr = (92.1+£0.1) MeV and fx = (112.4£ 0.9) MeV. For the ratios R, and Rx of
the electronic and muonic decay modes, we predict R, = (1.2354 =+ 0.0002) - 104
and Rx = (2.472+0.001) - 107°.

PACS.: 13.40.Ks; 13.20.Cz, 13.20.Eb



1 Introduction

The study of m; decays has long history, but it is still a current subject both from the
theoretical and from the experimental point of view. Historically, these decays played an
important role in understanding the structure of the weak interaction. The strong dynamical
suppression of the electronic decay mode with respect to the muonic one [1],

['(m — ev.(7))
R(erp) :: : . . . "_'4
P = T o (o] = (1230%0.004) 10 (1)

proves that the interaction is (at least very predominantly) of the (V, A) type.

Radiative corrections to R, are rather large, O(—4%), and so. their understanding is im-
portant. They have first been considered by Berman and by Kinoshita [2, 3], using a model
with an effective point pion. Later, there have been numerous attempts to improve the simple
point meson calculation using various models and leading to a range of predictions, see for
example (4, 3]. |

From a modern point of view, it is important to understand which of these calculations
give reasonable approximations to the standard model. In a recent analysis, Marciano and
Sirlin [6] have pointed out that some of the models used can not be considered as realistic and
that the ratio R, can in fact be predicted with a precision of the order of O(10~*). Therefore
measurements of m;, decays offer an important possibility of a low energy.precision test of the
standard model.

The aim of the present paper is twofold: On the one hand, we scrutinize the issue of model
dependent corrections, and on the other hand, we extend the analysis to K, decays.

In [6], the authors separate the loop integration into a long and a short distance part, which
they crudely match at a scale y.,, = m,. In the long distance part, there are the effective point
pion contribution and hadronic structure dependent corrections. For the hadronic structure
dependent corrections, the authors use the calculation by Terent’ev [4], who determined the
the leading logarithms in m,. These leading terms are model independent. For the remaining
model dependent terms they only give rough order of magnitude estimates. In the short
distance correction, they consider the leading logarithm 2a/7In(mz/ucy:), sum up leading
terms of O(a") by using the renormalization group and add a leading QCD correction. These
leading (model independent) short distance corrections are independent of the lepton mass
and so cancel in the ratio R,.

In this paper we will explicitely calculate the model dependent terms using a realistic
phenomenological model. Firstly, this allows us to predict an improved central value, which
includes terms which have been missing before. Secondly, we estimate the uncertainty of
the model dependent terms by considering the dependence on the matching scale and on the
hadronic parameters. Thirdly, we find that the. relative size of the model dependent terms is
very small. Therefore the uncertainty of the theorectical prediction due to model dependence
is in fact extremely smalli.

Essentially we use the approach developed in [7] to calculate radiative corrections to tau
decays. For the long distance part, we use a phenomenological model which has pseudoscalar
mesons (7, K), vector (p, p', K*, ...) and axial vector (a,, K;) resonances as explicit degrees
of freedom. This allows us to push the matching scale up to gy = (1...2) GeV, rendering
the calculation of the short distance part more reliable. In the short distance corrections,
we include lepton mass dependent corrections, which do not cancel in R,. Itsis obvious
that these terms are very small, as they are suppressed by m,/pu.... However, in view of the



high precision of the theorectical prediction one would like to know exactely how small they
are. We show that there is a small leading model independent contribution. The remaining
contribution, which depends on the pion wave function and therefore is model dependent, is
neglibigly small for any choice of the pion wave function.

Regarding K, decays, the experimental precision tends to be less good than in pion decays.
However, because of the larger mass of the kaon, effects of non standard model physics might
be enhanced by a factor mg/m,. Therefore the consideration of Kj, decays is also very
interesting.

Although we use essentially the model of [7], there are two differences in the analysis.
Firstly, in this paper we consider SU(3) flavour symmetry breaking effects which have been
neglected in [7]. In the calculation of the tau decay 7 — Kwv,(7), these could savely be
neglected in view of the large overall hadronic uncertainties, but this is not obvious in the case
of Ky, decays. Secondly, the analysis of the uncertainty of the theoretical predictions differs.
In 7, and K|, decays, hadronic and matching uncertainties cancel in the ratios of electronic
and mucnic decay modes to a very large extent. The resulting precison of the order O(a)
prediction is such that leading and next-to-leading O(o?) corrections have to be considered.

The decay rates ©# — uv, and K — uv, are also being used to extract the pion and kaon
decay constants f, and fg, which play an important réle in chiral perturbation theory (8].
Therefore we will also reconsider these parameters within our framework.

This paper is organized as follows: In the next section we will describe the structure of
the radiative corrections. In Sec. 3 we will describe the general approach and the specific
parametriztions we use. In Sec. 4, we will then give the numerical results and our predictions.
A short summary is given in Sec. 5.

2 Structure of the Radiative Corrections

The decay rate for the semileptonic decay of a pseudoscalar meson M (M = m, K) is given by

GtV p 2 m? ’ or
F(M - (lV( + ll/17+ lV{’)”Y+ ‘e )) = o meMm, ( - E) [1 + Fo-] . (2)

where G is the Fermi coupling constant extracted from muon decay, Vs denotes the respective
CKM matrix element,

Vo = Vud
Ve = Vs - (3)

and fy is the meson decay constant (our convention is such that at the lowest order, fp =

93 MeV). The radiative correction g- starts at the order O(a) (I'y denotes the Born ampli-
0
tude).

Because of the infrared divergences, in a calculation of the order a”, inclusive decay rates
into final states with up to n additional photons have to be considered. As we will perform
the calculation to the order O(a), we will have to consider one loop corrections to M — Iy,
and the radiative decays M — lyv at tree level. At this point one can either chose to include
only soft photons, using some upper photon energy cut, or to include all photons, soft and
hard ones.



The amplitude of the radiative decays can be separated into internal bremsstrahlung (IB)
and hadronic structure dependent radiation (SD) [9, 10]

M(M = lvy) = Mg+ Msp (4)

The IB contribution, which consists of photon radiation off the lepton, the pion pole contri-
bution and a seagull required by gauge invariance, corresponds to the lowest order O(P?) in
chiral perturbation theory. It is identical to what is obtained assuming a pointlike structure-
.less meson. Thus is completely determined by QED and contains no free parameters beyond
fum. The SD amplitude, on the other hand, involves two form factors Fy and F4, which
parametrize the effects of non perturbative strong interactions and which start at the order
O(P*) in chiral perturbation theory.

As regards the question of hard photons in the inclusive decays rates, we adopt the fol-
lowing convention, which is essentially in accord with the one used by experiments. In the
case of pion decays, we include all photons in the corrections. However, we will quote sepa-
rately the contribution arising from hadronic structure dependent radiation ['sp./nr (Where
SD is the structure dependent amplitude squared and INT denotes the interference of internal
bremsstrahlung and structure dependent radiation). This SD + INT part is mainly respon-
sible for the radiation of hard photons. In the case of kaon decays, we include the full IB
contribution, which is strongly dominated by very soft photons, but we exclude completely
the structure dependent ['sp,rn7 contribution, which is strongly dominated by hard photons.

Note that for K — pv,v this structure dependent contribution is completely negligible, but
for the electronic mode it is extremely large, 'spyrnr (K — evey) = [ (K — ev.). This is due
to the fact that the IB radiation amplitude is strongly helicity suppressed, being proportional
to the Born amplitude. The SD radiation, however, does not vanish for m, — 0. Therefore it
is usefull to consider the SD radiation as a separate decay mode and not to included it in the
radiative corrections to K — ev,.

Thus we will calculate

Sl (r = n(y)) = Oluirtwa +Tia+Tint +Tsp
6F(K — IVI(7)) = 6Fvirtual + FIB (5)

where 8T,;rcuas denotes the virtual corrections, and the rates I'yp, I'/nr and I'sp for the
radiative decay are integrated over the full phase space.

Of course it is not possible to tell definitely whether a radiated photon is due to internal
bremsstrahlung or to structure dependent radiation. However, if suitable experimental cuts are
used, which put a small upper limit onto the photon energy, the measured rate of K — ev.(7)
will include only a very small SD + INT background, and only very little of the IB part
will have been discarded. Using the predicted differential distributions [9, 10}, the SD +INT
background can be subtracted and the missing IB part added. Because of the smallness of
this correction, it does not give rise to any important uncertainties.

While for the pion decay rates, the particle data book [1] states very clearly that all photons
are included, its statements are not so clear for the kaon decays. Still, from reading the original
papers such as [11], we believe that our convention for kaon decays comes close to the one
used in the extraction of the experimental data. With increasing experimental precision, it
will become important that experimentalists state very clearly how cuts and corrections have
been performed.



Note that beyond the order O(a’), the definition of the pseudoscalar decay constants fy,
is no longer unambigous. One could decide to include certain parts of the radiative correction
8T /T, into far by definition.

However, we decide to factor out all O(a) effects from fjs, no matter whether they are
process dependent or process independent, or whether they are long or short distance correc-
tions. Note that this definition differs from the one used by Holstein [12], who includes process
dependent terms proportional to In(m,/m,) in the defintion of f, (cf. the discussion in [6]).
However, our definition is identical to the one used in [6].

All theses ambiguities are of course due to the fact that f, and fx are not observables.
Theses ambiguities cancel in the ratios Ry

2
_ DM = eve(v)) _ mi [m} —mi
By = T(M = pv,(y))  m2 \mj —m? (1+5RM) (6)

of electronic and muonic decay modes, which can be predicted very precisely. These radiative
corrections R, and § Rx will be the main subject of interest in this paper.

3 Parametrization of the Amplitudes

We will be brief here and refer to [7] for details.

In the case of the radiative decays = — lv;, we use the following parameterizations of the
hadronic structure dependent form factors Fy" and F,(,K):

F(0)
(") ._,____.__V 1 1
FyU(t) T+ AT [BW,(t) + ABW,(t) + uBW ,(2)]
FO@t) = F{7(0)BW,,(t) (7)

where

FM0) = — _ —0.0270

v (0) WoRTS

F"(0) = 0.0116+0.0016 \ (8)

F$7(0) has been obtained from the ABJ anomaly [13] and F{”(0) from the measurement of
T — ev,y decays..

BWx (t) denotes a Breit-Wigner propagator amplitude, normalized such that BWx (t =
0) = 1, either with energy dependent widths calculated from the relevant phase space

mx
m§( -t - imxrx(t)

BWx(t) = 9)

or alternatively using a form with fixed width (for details see [7]).
The relative contributions of the higher radial exitations in the vector form factor have
been determined in [14] by using four experimental and theoretical constraints:

A =0.136; p = —0.051 (10)

In order to estimate the model dependence we vary A and p around these central values.



In the case of the radiative kaon decays K — [y~, we use the following form factor
parametrizations:

Fy(t) = Fy (0)BWk- (t)
Fi9(t) = F{F(0)BW, (t) (11)

where

FY0) = 0.0955
FU0) = 0.0525+0.010 (12)

Here F*)(0) has been obtained from flavour symmetry and the anomaly and F{*’(0) from
this value for F"*’(0) and the measurement of the sum [1].

[n order to estimate the model dependence we also compare with a parametrization of
F*) which includes small admixtures of K*(1410) and K*(1680).

In order to calculate the virtual corrections we separate the loop integration into a long
and a short distance part by splitting the photon propagator

1 1 /J’gut 1
L2 — \2 k2 _ )2 0l X + k2 — 12 (13)
cu cut
“long distance” “short distance”

using a matching scale p.ye = (1...2) GeV.

The long distance part, involving a regulated photon propagator, is calculated using a
phenomenological model where mesons are the relevant degrees of freedom. The short distance
part, involving a massive photon propagator, is calculated using the parton model.

To calculate the long distance corrections, we start from the amplitudes obtained with an
effective pointlike meson. These amplitudes are good approximations for very small momen-
tum transfers only. Consider for example the amplitude V* for the coupling of a photon to
two pions. In the point meson (P.M.) approximation it is given by

VARt (p)r~(p) = 7)) = ie(p - p)* (14)
However, this coupling defines the electromagnetic form factor F; of the pion via
VE(rt (p)r~ (p) = 7) =t ieFx[(p+P')"](p - P)* (15)

Therefore we modify the effective point pion diagrams by multiplying this coupling by F5.
This modification in turn determines by gauge invariance the appropriate modification of the
weak-electromagnetic seagull coupling myW.

The form factor F,(Q?) is quite well known experimentally in the relevant VQ? region
below (1...2) GeV. We use a parametrization obtained in [15]

1

— "l—m‘_p [Bwp(t) T+ UBWp‘ (t) + PBWP”(t)] (16)

Fr(t)

with
o = —0.1; p= -0.04 (17)

We also vary these parameters o and p around these central values.



Analogously in the kaonic case, we modify the point kaon coupling by multiplying by it
FKZ

VHE*(p)K~(p') = ) — ieFx[(p+ P)*](p - P)* (18)
In [7] a parametrization of Fx with a simple p dominance
Fx(t) = BW,(¢) (19)

was used. However, this assumes exact SU(3) flavour symmetry, m, = m, = mg. We will
now drop this assumption. Thus we have to consider the relative contributions of the p, the
w and the ® to the form factor Fx. Assuming ideal mixing, ® = (s3), we obtain

Fie(t) = 5BW, () + £BWL (1) + s BWa (1) (20)
which we will use in the present paper.

In additon to the modified effective point meson diagrams, there are loop diagrams which
are obtained from the hadronic structure dependent radiation (SD) by contracting the emitted
photon with the lepton. If k* is small, where k is the momentum of the virtual photon, the
relevant form factors Hy and H, in these hadronic structure dependent loops will obviously
be identical to Iy and F, determining the radiative decay. However, they can additionally
depend on k°. In the case of the pion decay, we adopt the following ansatz with double vector
meson dominance:

H{ (k, p) = BW,, (k*) F{"[(k - p)?]
HY (k,p) = BW, (k) F[(k - p)?) (21

where p is the momentum of the decaying pion. There is no experimental information on these
form factors for k* # 0, and certainly not on the contribution of higher radial exitations in the
vector meson dominance of the k? dependence. Therefore our standard choice here is to use
only use the lowest resonances p and w. However, we also compare with the results obtained
using small admixtures of the next two higher radials. Furthermore, we compare with the
results obtained using a single vector meson dominance version:

HY (k,p) = " ((k ~ p)’]
H (k,p) = F[(k - p)?] (22)
However, we find that this leads to an unacceptably large dependence of the radiative correc-

tion on the matching scale p.,; and therefore can be excluded.
We will use the corresponding ansatz for the kaonic case:

HY (k, p) = BWy () FS[(k - p)?]
H) (k, p) = BWy () F{O[(k - p)?] (23)

where we assume my = m, = m, = ms. We do not calculate SU(3) flavour symmetry
breaking effects here. This will be justified below by the observation that the dependence of
the result on my is very small.

In order to obtain the short distance corrections, we calculate the one-loop corrections 6.4
to the operator A = [#,7*y-u)] [Za7,7-us) (and similarly for d — s in the case of the kaon).
Neglecting all masses except for m; and p.,:, we obtain the correction

1
(5—11) ~ 23—2'—7' (mf ln =2 — 2, In == ) (24)
FO short dist. T My — Heye my Heut




which has to be compared to Sirlin’s logarithm 2a/7 In(mz/pcy:) [16]. Of course, if we do not
neglect m,, we should also take the meson mass ms into account. However, the contributions
depending on my cancel in the ratios Rj)s, whereas in the radiative correction to the decay
rates themselves, u.,. dominates anyway.

Note that for this leading logarithm, the correction to the quark level short distance
amplitude 6.4 is proportional to the Born amplitude .4;. Thus the same logarithm is involved
in the corrections to the hadronic amplitude without any model dependence resulting from
hadronization.

While in the correction to the individual decay rates M — ly;(v) this leading logarithm
dominates the short distance correction, it depends only very little on the lepton mass and
thus cancels almost completely in the ratios § Rys. Therefore in the case of these ratios we go
beyond the leading logarithm and calculate the full one-loop short distance correction.

The complete result for 4 is no longer proportional to the Born amplitude Ao, and
furthermore it depends on the relative momentum of the two quarks. Therefore we project
onto the J¥ = 0~ component and integrate over the relative momentum u X p of the quarks

in the infinite momentum frame (u = —1...+ 1). The result can be written in the form
3 [+l
(cSR;\,f)MWt s = 30 ), du ®pr(u)rar(u) (25)

Here ®p(u) is an unknown parton distribution function (pion or kaon wave function), whereas
ra(u) is calculated from the short distance diagrams. We find that rr(u) and rg(u) depend
only very little on u, and we can approximate them by their values at u = 0, where the
wavefunction is presumably peaked: |

3 +1

2fm J-1

where the last equation follows from a sum rule [17].

(JRM)JMH o N ry(u = 0) du ®pr(u) = rp(0) (26)

4 Numerical Results

Adding up long and short distance corrections, we obtain the full radiative correction. This
depends on the choice of the matching scale ... and on the hadronic parameters.

In Fig. 1 we display the correction to the decay rate I'(m — pv,(y)) in variation with
lieut, using three different choices for the hadronic parameters. The solid line (I) corresponds
to the central values given above. The dashed (II) and the dotted (III) lines are obtained
by varying the hadronic parameters, viz. F4(0), the relative contributions of higher radial
exitations in Fy, F, and Hy and the width of the a,. For the dotted curve (III), we have
furthermore used the single vector dominance form of Hy and H,4 according to (22) instead
of the double domincance form of (21). It can be seen clearly that the single dominance form
(II1) leads to an unacceptably large dependence of the result on the matching scale p.,: and
therefore can be excluded. With the double dominance form, however, the dependence 1s
rather moderate, indicating that our phenomenological model for the long distance part is
indeed rather reasonable.

We choose a relatively high value of ., = 1.5 GeV as a central value for the matching
scale, because we have included not only the lightest resonances (p, @), but also the radial
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Figure 1: Radiative correction to I'(x — uwv,, using different choices for the hadronic param-
eters: Standard choice (I, solid) and variations (II, dashed and III, dotted)

excitations p(1450) and p(1700) as explicit degrees of freedom in our model. Thus we find
from Fig. 1 the following O(a) correction to the decay rate

(;—F(n' —uv,(y)) = (1.88+0.04+0.08)%+ O(a®) +O(ca,)
o]

= (1.88%0.09)%+--- (27)

The first error given (0.04%) is the matching uncertainty, obtained by varying pc.. by a
factor of two (0.75...3 GeV), the second one (0.08%) is the uncertainty from the hadronic
parameters.

A few comments are in order:

1. As we have already states above, this radiative correction is not a physical observable
and therefore is not defined unambigously. The definition we have adopted is to include
all O(a) corrections in the number 1.88% given. Part of this might be absorbed into fr
by definition, but we choose not to do so.

2. We employ mz as an ultra-violet cut-off for the short distance corrections, accord-
ing to the general theorems by Sirlin [18] on short-distance electroweak corrections to
semileptonic processes. But this implies that there is an arbitrariness of the order of
a/(27) x O(1) = 0.1% in the definition of the radiative correction, because a change of
the cut-off scheme would induce a change of the result of this order. Note that the error
of the O(a) correction which we have determined is of the same order of magnitude as
this inherent ambiguity.
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3. The error 20.09% quoted above is the uncertainty of the O(«) correction only. In [6] the
authors have summed up the leading O(a") corrections for the dominant contribution
2a/mIn(mz/peue) in the short distance part, using the renormalization group. This
leads to an enhancement of the short distance correction of 0.13%. Furthermore they
considered the leading QCD short distance correction, which decreases the short distance
part by —0.03%. Similar O{a") effects should be considered in the long distance part.

Taking into account these higher order short distance corrections, and considering the uncer-
tainties discussed above, we will use the following value in order to extract f,:

or .
F—O(Tr = pr, (7)) = (2.0+£0.2)% (28)

We use the following input parameters [1] to extract fy:

L(r = pv,(v)) = (2.528440.0023) - 1071*MeV
Gr = (1.16639+ 0.00002) - 103 GeV~?
|Vudl = 0.9744 +0.0010 (29)

With the radiative correction given in (28), we find
fr =(92.14£0.09 £ 0.09) MeV = (92.1 £ 0.1) MeV (30)

(The first error, +0.09, is due to V4, and the second one due to the radiative correction.)
This is to be compared to the result obtained in [6]. They used a value for V4 of |V,4| =
0.9750 £ 0.0007 instead of |V,4| = 0.9744 +0.0010, which we use. Transscribing their value for
our V.4, and dividing by V2 to translate into our convention for f,, their results becomes:

fr = (9247 £ 0.09 + 0.11C}) MeV (31)
(the first error £0.09 is again due to V,4), where they estimate C; to be in the range
C,=00£24 (32)

Our result in (30) implies C; = —3.0 £ 0.8, which agrees with the estimate in [6] within the
error bars.

Let us now come to the prediction for the ratio R, of the electronic and muonic decay
modes of the pion. In contrast to f, this is a physical observable and therefore free from
ambiguities in its definition. In Fig. 2 we display the radiative correction §R, of the ratio
using the same standard parameter set (I) and variations (II) and (II) we used above for
[(r = pv,(v)). From this, we obtain the O(a) correction

§Ry = ~(3.794 £ 0.019 £ 0.007)% + O(c?) = —(3.794 £ 0.020)% + O(e?) (33)

where the first error (0.019%) gives the matching uncertainty, estimated by varying pcu from
0.75 up to 3GeV, and the second error (0.007%) arises from the uncertainties in the hadronic
parameters.

However, comparing Figs. 1 and 2, the question arises if we underestimate the true model
dependence by considering by considering the matching scale dependence of the ratio instead
of that of the individual decay rates. From Fig. 1 it is obvious that the single vector meson
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Figure 2: Radiative correction to the ratio R,, using different choices for the hadronic param-
eters: Standard choice (I, solid) and variations (II, dashed and III, dotted)

dominance model corresponding to the dotted curve, is not a good approximation. Disregard-
ing this model, the remaining scale uncertainty in the individual decay rates is of the order
of £0.05%. In the ratio R, these scale dependence cancels to a large extend, but this is even
true for the paraemetrization of (III), which is certainly unrealistic.

Therefore we will now scrutinize the model dependence further in two ways: Firstly we
examine from which scales the contributions to 0 R, actually come. Secondly we compare the
results from our model with the leading model independent contributions.

Consider Tab. 1. We display the contribution to the radiative corrections from photons
with given Euklidean momenta |kg|. We find that the contributions to the individual decay
rates at large |k%| are quite sizeable. However, the contributions to the electronic and the
muonic mode approach each other for large momenta, such that the contribution to the cor-
rection to the ratio R, comes predominantly from very small scales. Uncertainties from the
hadronics in the long distance regime and from QCD and wave function corrections in the short
distance regime are large in the intermediate energy range of about |kg| = 500...3000 MeV
only. The total contribution within this range is given by 0.026%, where we have added the

absolute values in order to take care of cancelations. So by far the largest part of the radiative
‘correction comes from the region below 500 MeV, where the model dependence is very small,
see Figs. 1 and 2.

Next we will compare our model with model independent estimates. In [4] the author
calculates the leading logarithmic corrections to the ratio R,, which arise from hadronic
structure dependend effects. He proves that this leading contribution is model independent,
viz. independent on the form of the hadronic form factors. The only assumption needed is
that the scale over which the form factor vary is given by a large hadronic scale of the order
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Table 1: Contributions from photons with momenta within a given range to the various
radiative corrections

Contribution from photons Radiative correction to: )
with |kg| in the range [MeV]: (all numbers in units of %)

[T —>eve Ty, R, | K—ev. K—puv, Ry
0...125 ~-3.893 —-0.325 -3.569| -3.926 -0.515 3.411
125...250 —-0.228 -0.077 -0.151| -0.450 —0.246 -0.204
250...500 —0.033 0.028 -0.061 -0.201 = -0.115 -0.086
500...750 0.074 0.087 -0.013| -0.000 0.020 -0.020
750...1000 0.087 0.092 -0.005 0.047 0.055 -0.008
1000...1500 0.165 0.168 —0.003 0.121 0.126 -0.005
1500...3000 0.322 0.318 0.005 0.322 0.318 0.004
~3000...mz | 1.586 1.584  0.002 1.586 1.584  0.002

of m,. The leading correction § R{** can be seperated into three contributions
SR = §RYMD) L R + §R® (34)

where RYY¥P) is due to the vector meson dominance of the pion electroma.gﬁetic form factor,

and R{"/%) correspond to virtual corrections proportional to the form factors Fy;4(0). They
are given by

2 2
srywo = Bamd, m
T mp m“
2 2
v — @ FvO) | oy M2 ™
R 67 Jom. [ Iim..,r In - + 4m;; In m2
2 2
@ — _@ Fal0) | 20 T o o2y ™
R = 67 Vam. f. [mﬂr In mg+7m#ln 2 (35)

Note that §R*) and 6 R{*) consist of two parts. The first one, being proportional to In(mg/m32),
modifies the coefficient Cj,,, of the lepton mass singularities (Ims). The term Cj,,a/7 In(m,/m.),
which in the effective point meson model comes with C,,s = —3, strongly dominates the total
radiative correction. According to a theorem by Sirlin, the modificationsof Cj,,,, by hadronic
structure dependent effects in the virtual corrections is exactly canceled by hadronic struc-
ture dependent effects in the real radiative decay (viz. by the interference contribution INT
between internal bremsstrahlung and structure dependent radiation), if all real photons are
included in the decay rate. So in [6], where only m; decays are discussed, these terms are
not considered at all. For K| decays, however, we do not count hard photons, and therefore
this cancelation of the hadronic structure dependent corrections to the lepton mass singularity
coefficient does not take place (see below).

Numerically, the leading hadronic structure effects in m;; decays are

§RVVMD) = 52.107*
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Table 2: The different contributions adding up to the total radiative corrections (the numbers
in brackets are obtained assuming exact SU(3) flavour symmetry

contribution SR, (%] &Rk (%)
(1) effective point meson -3.930 -3.786
(2) vector meson dominance 0.048
in the point meson loops 0.053 (0.055)

(3) hadronic structure depen-
dent loops proportional to ()18 0.135
Fy(0)

(4) hadronic structure depen-
dent loops proportional to _g g9 -0.134
F4(0)

(5) cutting off the long dis-
tance part at pc.: = 1.5GeV 0.000 0.003

(6) short distance corrections o7 '0.006

(7) SD + INT: pure structure

dependent (SD) radiation and

its interference (INT) with the 0.066 —
internal bremsstrahlung

8 tota.l _ ’ ‘3.729
(8) 3794 3703)
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§RY = (1.241.0)-107*=22-10"*

SR® = —(0.5+08)-10"*=-1.3.10"* (36)

Now let us compare these numbers with the corresponding results from our model, see Tab. 2.
In the first row (1) we give the results obtained with an effective point meson. In the second
row (2) we display the change of the result, when switching on the vector meson dominance
in the meson electromagnetic form factor. In rows (3) and (4) we give the contributions from
those loop diagrams which correspond to the SD part in the real radiation. In (2)-(4), we
have extended the loop integration up to mz, and so in row (5) we display the change when
cutting off the long distance correction at p.,, = 1.5GeV, and in row (6) we give the short
distance correction.

Now comparing the model independent numbers 5.2, 2.2 and —1.3 with our numbers 5.3,
1.8 and —0.9 (hadronic structure dependent corrections in units of 10™*), we find that the
model dependent contribution in the long distance correction is extremely small, giving rise
to an uncertainty which is certainly below 0.7 - 107%.

Let us now consider our result for the short distance correction, 0.7 - 10™%, which includes
contributions which depend on the pion wave function. However, we find (compare Eqns. (25~
26)

re(u=0) = 0.7-107*
re(fu=1) = 0.9-107* (37)

So for any choice of the pion wave function, the resulting short distance correction will be
within the range (0.7 ---0.9) - 10~*. This should also be compared with contribution from the
leading lepton mass dependent logarithm,

20 m? m

— In—==10.6-10"* 38
T mf‘ - /‘zut Heut ( )

Thus in the short distance part, the model dependent contribution is of the order of (0.1 ---0.3)-
107%

Finaly the uncertainty of the hadronic structure dependent contribution SD + INT in the
radiative decay can also be neglected. From a variation of the form factors, we estimate an
uncertainty of +0.4 - 1074,

And so by adding up linearly the moduli of the model dependent corrections, we obtain an
uncertainty due to model dependence of +0.014%. In view of this size of the model dependent
corrections, we are convinced that our error estimate for the O(a) correction to R, of £0.020%
given above in (33) is conservative and reliable.

However, we have to worry about corrections of higher order, O(a"). Given the fact

that the O(a) correction is dominated by the contribution from the lepton mass singularity,

_3e In —nl‘i, in [6] the leading higher order corrections are estimated by summing up all such
T m

logs via the renormalization group, yielding a correction to R, of

=5.5-10"* (39)
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Figure 3: Radiative correction to I'(K — uv,), using different choices for the hadronic pa-
rameters: Standard choice (I, solid) and variations (II, dashed and III, dotted)

And so our final prediction for éR, is
SR, = (—3.794 + 0.020 + 0.055 £ 0.01)% = (—3.74 £ 0.02)% (40)

In the sum, the first number (—3.794) is the central value and the second number the uncer-
tainty of the O(a) correction. The third number (+0.055) is the leading higher order correction
and +0.01 our estimate of the next-to-leading correction.

For the ratio R, this implies

R, = R® (1 + 53,) =1.2834-10"% x (1 —-0.0374 & 0.0002) = (1.2354 + 0.0002) - 10~* (41)

This agrees with the prediction R, = (1.235240.0005)-10™*in [6] within their error estimate,
but we have been able to further reduce the uncertainty.

Now we will consider K, decays. In Fig. 3 we show the radiative correction to I'( K — pv,)
in variation with the matching scale, using central values for the hadronic parameters (I, solid)
and reasonable variations (II and III, dashed and dash-dotted, respectively). From this we
obtain 5T

(K = pr, (7)) = (1.23£0.13 0.02)% + O(e?) + O(aay) (42)

The first error given is the matching uncertainty and the second one is the uncertainty from
the hadronic parameters.

Taking into account an additional +0.10% short distance correction, and uncertainties from
higher order long distance corrections and from the very definition of the radiative correction
as we did in the case of the pion decay, we use

or

7 (K = pru(1) = (13:£0.2)% (43)
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Figure 4: Radiative correction to the ratio Rk, using different choices for the hadronic pa-
rameters: Standard choice (I, solid) and variations (II, dashed and III, dotted)

to extract fx from the exerimental decay rate. Using

(K = pr,(v)) = (3.38+£0.01)-10"*MeV
Vs 0.2205 £ 0.0018 (44)

Il

we obtain
fx =(112.4+£0.9 £ 0.1) MeV = (112.4 £+ 0.9) MeV (45)

where the first error is due to V,,, and the second one to the radiative correction.
This implies
fx

F=122£001 (46)

which agrees with the conventional value [19]. Note, however, that our error is entirely domi-
nated by the uncertainty of V,,.

Finally we consider the ratio Rx. In Fig. 4 we display the radiative correction § Rg in
variation with the matching scale, using the three parameter sets for the hadronics. We obtain

SRy = —(3.729 £ 0.023 + 0.025)% + O(o?) (47)

where the first error is the matching uncertainty and the second one the uncertainty from the
hadronic parameters. In the case of Rk, the model independent logarithms are given by

SRYMD) Samu My o 04
™ mi  m?
FV (0) m2 m2
JR(") = o vl mi In —& +4m2in —£
K 6m \/§me1( K mg # mz
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(148+1.0)-107*=15.8-10"*

F (0) m2 m2"r
5R(a) _ Q A 2 M 2 1n P
K 67 \/§me}{ _mK ' mg +7m“ " mﬁ;

= —(81+4+1.0)-10"*=—9.1-10"* (48)

to be compared with our numbers (see Tab. 2) 4.8, 13.5 and —13.4. Adding up the model
dependent contributions quadratically, we obtain an error estimate of +3.9-107*.
Remember that we have included the SU(3) flavour symmetry breaking in the electromag-
netic form factor of the kaon, i.e. in row (2) of Tab. 2. But in the vector meson dominance
of the photon coupling in the hadronic structure dependent loops, row (3) and (4), we used
m, = m, = mg = my = 768 MeV. However, as can be seen from (48), the contribution
which depends on the vector meson mass my is very small, O(1-107%), in both cases, and the
correction is strongly dominated by the modification of the ratio of lepton mass singularities.
In fact we have checked that the result from our model in rows (3) and (4) changes only by

0.001% if we use increase my up to 1 GeV. So this approximation of flavour symmetry does
not induce a significant uncertainty.

Thus we quote our final result for Rk

SRx = —(3.729 £ 0.039 + 0.055 £ 0.01)% = (3.78 + 0.04)% (49)

where in the sum, as for R,, the first number is the O(a) correction, the second number is the
uncertainty of the O(a) correction, the third number is the leading higher order correction
and the last one is our estimate of the next-to-leading order corrections.

And so for Rx we predict

Rx = RY (1 + 6RK) = 2.569 - 1075 x (1 - 0.0378 + 0.0004) = (2.472 £ 0.001) - 10~%  (50)

5 Summary and Conclusions

We have extracted the pseudoscalar decay constants f, and fx, and have predicted the ra-
tios R, and Ry of the electronic and muonic decay modes of the pion and the kaon, re-
spectively. To this aim we have performed a matching calculation using a matching scale
Uoys = (0.75...3.0) GeV. In the long distance part we have used a specific model which
complies with the low energy theorems of QCD and which includes vector and axial vector
resonances as explicit degrees of freedom. Regarding the hadronic structure dependent effects,
we discussed both leading model independent effects and model dependent contributions. In
the short distance part we used the parton model, resulting in a dominating model indepen-
dent logarithm and a small additional contribution which depends on the parton distribution
functions of the mesons. For the meson decay constants we have obtained

fe = (92.1+0.1)MeV
fk = (112.4£0.9) MeV - (51)

where we have by definition factored out all O(a) effects from the decay constants. This
definition does not agree with the one used by Holstein [12], but it is identical to the one used
by Marciano and Sirlin [6]. |
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The errors given include the errors from the CKM matrix elements and an estimate of
the model dependence, which is based on the dependence on the matching scale and on the
hadronic parameters. Taking the full size of the mode dependent contribution as uncertainty,
a very conservative error estimate would be f, = (92.1 £ 0.3) MeV, whereas the error on fx
is dominated completeley by the uncertainty in V,, and not by model dependence.

For the ratios of the electronic and muonic decay modes, we predict

R, = L2 eveln)  _ (g 9354 4 0.0002) - 10~
L(r — pvu(v))
T(K — e
Ry = > e) - (94724 0.001) - 103 (52)

DK — pvu(v))

In the case of the pion decays, we have included all radiative decays m — ly7y, without any
cut on the photon energy. In the case of the kaon decays, on the other hand, we have included
only the internal bremsstrahlung part of the radiative decays and excluded completely the
structure dependent radiation.

The central values include model dependent contributions, but the error bars given are
based on the full size of these model dependent contributions, and therefore our final pre-
dictions for the ratios R, and Ry are in fact model independent. Thus both m; and K,
decays allow for low energy precision tests of the standard model, viz. of the electron-muon
universality and of the (V, A) structure of the weak currents.
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