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Abstract

An approach to inelastic diffraction based on the concept of equivalence of diffractive
states is developed. In the classical description of Good and Walker, the inelas-
tic diffraction originates from the diversity of elastic scatterings in the initial and
final state At. We cosider a multi-channel correction, accounting for intermediate
transitions inside the equivalence class. This correction can be factorized yielding
the diffraction amplitude in the form NAf{, to be taken in the ’diffractive limit’:
N — oco,At — 0 such that VAt is finite. We analyse elastic scattering and the
inclusive inelastic diffraction cross-sections for p — p and p — p collisions, in the range
of c.m. energy /s= 20 - 1800 GeV . We claim that the angular distribution of the
inclusive inelastic diffraction at small momentum transfers is determined by elastic -
scattering in the transition region between the forward peak and the minimum. This
is successfully verified in experiment. The detailed comparison with the Good-Walker
description, with emphasis on advantages of our approach, is presented.
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1 Introduction

In describing nuclear and hadronic collisions one often encounters the term ’diffrac-
tion’-which originates from classical optics. Its use is motivated by striking analogies
between light scattering in optics and particle scattering in wave mechanics. Histori-
cally [1], diffraction was synonymous to scattering in general. Nowadays [2], 'diffrac-
tion scattering’ customarily refers to a limited class of phenomena which occur in
medium-energy nuclear and high-energy hadron collisions. The sufficient energy of
collision allows there an opening of a variety of inelastic channels which in turn implies
strong absorption since the presence of competing reactions results in a considerable
depletion of the particle flux in the elastic channel. Such conditions are analogous to
those for diffraction of light by opaque or partially transparent objects in optics.

The diffraction of light on an obstacle leads to a structured penumbra (instead
of the darkness expected in geometrical optics) resulting from the alternating con-
structive and destructive interference of deflected waves. The diffractive analogy in
nuclear and hadron physics consists in a substantial presence of elastic scattering
(and other two-body channels) where very little would naively be expected in vio-
lent collisions. It also refers to the behaviour of the differential cross-section which
is strongly peaked in the forward direction and often appears as a series of maxima
and minima. Another 'diffractive’ phenomenon is a slow variation with energy of
the integrated cross-sections which means that the geometry of absorption dominates
details of intrinsic dynamics.

In the Fraunhofer theory of light diffraction the limitation of a wave front by the
diffracting object leads to the scattering amplitude in the form of the two-dimensional
Fourier transform of a function describing the geometry of scattering. In quantum-
mechanical scattering the geometrical limitation may be transposed into a reduction
or truncation of a band of orbital angular momenta consisting of a huge number
of partial waves which participate coherently in the interaction. In either case one
can establish a simple relation between the geometrical properties of the scatterer
and those of the diffraction pattern. The great success of the Glauber model [3] in
nuclear scattering and of the Chou-Yang model [4] in hadron collisions represents
an astonishing evidence that using optical concepts, reflecting merely the fact that
nuclei and. hadrons have finite sizes, one can achieve a succesful description of the
basic features of their scattering.

Obviously, still many problems, related to the more detailed structure of hadrons,
remain. E.g. the hadronic analogy of 'diffractive structure’ of the differential cross-
section is often obscured since multiple dips and reinforcements may not be present.
In fact, numerous dips arising in geometrical models of hadron scattering may be
washed out when including the unitarity contributions from multi-particle intermedi-
ate states [5]. Thus the optical resemblances of high-energy hadron diffraction should
not be overemphasized. There is certainly much more dynamics in this process that
could be explained simply in terms of geometrical shapes of absorbing obstacles. The



geometrical picture of diffraction on a grey disc may still be useful for modelling the
dominant long-range part of scattering. However, it would be highly desirable to

disentangle from the vagueness of geometrical diffraction also phenomena of shorter
range related to intrinsic dynamics of colliding particles.

The way in this direction goes through a better understanding of the process of
'diffractive excitation’ or ’diffraction dissociation’ {6, 7] which involves quasi-elastic
transitions with no exchange of quantum numbers. The qualifier ’diffractive’ refers
here merely to the condition of coherence which must (like in elastic diffraction) be
satisfied to assure that the interacting particles do not change their character. In
elastic scattering where the intrinsic dynamics is hidden inside geometrical shapes,
the analogy between optical and particle diffraction seemed to be complete. On the
contrary, the ’inelastic diffraction’ has no classical analogy; it appears as a peculiar
quantum phenomenon connected with the existence of internal degrees of freedom.
Phenomenologically [8], the inelastic diffractive channels are characterized by a slow
variation with energy of their cross-sections, i.e. by the energy dependence typical
of elastic scattering. Indeed, the states produced in these channels have dominant
quantum numbers corresponding to the ground state. All other channels where cross-
sections drop rapidly with increasing energy are referred to as non-diffractive.

The requirement of quasi-elasticity or 'diffractiveness’ of an inelastic transition can
be incorporated into a theoretical formalism in either of two ways. In the t-channel
approach, inelastic diffraction is described in terms of the exchange of Pomeron, an
hypothetical object carrying vacuum quantum numbers. Most papers, inspired by
great successes of Regge theory, follow this method {9]. Another approach which is
used in this paper, is that of the s-channel. It is based on the presumed relation of
equivalence [5] between the initial (ground) state and the states involved in diffractive
channels. This means that the Hilbert space of physical states is decomposable into
subspaces of diffractive and non-diffractive states. This assumption is taken so much
for granted that it is often not stated explicitly.

In order to reveal the equivalence of states one must depart from the representation
of physical states as eigenstates of the hadronic Hamiltonian, in which each state is an
equivalence class for itself. One is thus looking for a suitable unitary transformation
which allows to expand the physical states in terms of the transposed states. The best
known transformation, aimed for the description of diffraction, is that of Good and
Walker [10] who imposed on the new base states to be eigenstates of the scattering
operator. Their approach,referred to as the method of ’diffractive eigenstates’, is
remainded in Section 2. It should be pointed out that this approach constitutes
the ground for the geometrical models of diffraction (e. g. those of Chou-Yang
and Glauber), diffractive eigenstates being there identified as the states describing

configurations of hadronic (or nuclear) constituents with definite impact parameters.

The natural base for describing ’inelastic diffraction’ is obtained through a unitary
transformation of physical states such that the transforming operator is reducible in
the Hilbert space. As discussed in Section 3, we do not additionally require that the



base states diagonalize the scattering operator. An obvious advantage of rejecting
this restriction consists 1n accounting for intermediate virtual transitions inside the
set of diffractive states. Apparently the resulting expressions are quite complicated.
However, we were able to show that if the diffractive subspace contains a huge number
of states IV, the effect of non-diagonal transitions can be factorized: the diffractive
transition amplitude has the form NAt where At represents a diversity of diagonal
matrix elements of the scattering operator over the set of equivalent diffractive states.
Such expressions are to be considered in the ’diffractive limit’[5]: N — oo, At — 0
under requirement that NA? is finite. Diffraction thus arises as infinite sum of the

infinitesimal contributions from all intermediate states belonging to the diffractive
equivalence class.

The general formulae derived in Section 3 are further elaborated in Section 4. We
consider there a simple model of diffractive states. They are imagined as built of a
hadron bulk (representing the ground state) and of some quanta (’diffractons’) corre-
sponding to diffractive excitations. The collisions of hadrons is treated in an analogue
model as the scattering of a plane wave off a scatterer composed of two excited had-
ronic cores. The two-hadron bulk and the density distribution of diffractons inside
the core are assumed to have Gaussian shapes. Their radii B > R; are to be de-
termined from fitting to experimental data. This semiphenomenological model thus
explicitly includes the two sources of diffraction: the geometrical diffraction on an
absorbing hadronic bulk and the dynamical diffraction corresponding to intermediate
transitions (modelled with the aid of diffractons) between equvalent states.

The aim of our calculations was two-fold: to confront theory with experiment and
to compare various theoretical approaches between each other. We analyse elastic
scattering and the inclusive inelastic diffraction cross-sections for p — p and p — p
collisions, in the range of c.m. energy /s= 20 - 1800 GeV , covered by the measure-
ments carried out at the ISR, SPS and Tevatron colliders [11] - [16]. In all cases,
the application of our two-component model is very successful. In elastic scattering,
the single minimum observed experimentally is explained as a multichannel interfer-
ence effect due to scattering off 'diffractons’ in the presence of the hadronic bulk. The
same effect determines the angular distribution of inclusive inelastic diffraction at low
momentum transfers. The detailed discussion of these results ,with emphasis on ad-
vantage of our description of diffraction with respect to the traditional Good-Walker
approach, is presented in Section 3.



2 Method of diffractive eigenstates
Consider a unitary transformation of the physical states

|3) =1 U3) (1)

and of the scattering operator

T - To=UlTU. )

Any state can be expanded in terms of the new base states, e.g. for the initial

state one has:
|9y =2 U5 | UJ) (3)
1)
where
Ui =@ |UlJ) (4)
is the matrix element of the unitary transformation operator.

The transition amplitude can be written in terms of the matrix elements of the
scattering operator in the new base:

Ti=(f|T|i)= Y UnUsts (5)
13}, 1K)
where
tei =(Uk | T |Uj) =(k|To | J) (6)

Notice that the summations in the above equations extend over all physical states.

2.1 Transformation of Good and Walker

The general transition amplitude (5) can be simplified by considering the unitary
transformation which diagonalizes the scattering operator:

T|Ujs)=t; |Uj) (7)

which is equivalent to
Ll =tls (8)
i.e. the transformed scattering operator is diagonal in physical states. Such a unitary
transformation U = Ugw, first considered by Good and Walker [10], exists since the
scattering operator is normal. Indeed the unitarity of the collision operator § = 1+:T
implies:
rrt =Tir =i(tt - 1)



and

TO'TO-I. = TJT(] = Z(TOT — TO) (9)

The base states | Ugwj) were named ’eigenstates inside nuclear matter’(10]. They
are also referred to as 'diffractive states’ or better 'diffractive eigenstates’. Using this
base Eq. (5) is simplified to the single sum over states:

Tft' = ZUfj U:; tj (10)
F);

and, in particular, the elastic scattering amplitude appears in the form of an average
of the eigenvalues t; over the set of physical states:

Ti = |Us 't (11)

17) j
with the weigth |U;;|* which satisfies 2 15) Ui;|* = 1.

From Eq.(10) one can see that if the eigenvalues ¢; were the same for all states
then the inelastic amplitude would vanish because of unitarity of U. Thus the inelastic
scattering arises from the diversity of the eigenvalues ¢t; which corresponds to various
absorptions of diffractive eigenstates as the components of the initial state. However,

this mechanism of inelasticity is very general; it applies to any inelastic scattering
and not exclusively to inelastic diffraction.

The diagonalization (8) was replaced by Bialas, Czyz and Kotanski [18] with
a weaker assumption of diagonalization of the scattering operator in- a particular
class of states only. Denoting the chosen subset of states by [D] and its orthogonal
complement by [~D] one has for any state | ) € [D] :

To li)=tli)+ Y, ¢t |k). (12)
|k) €[~ D]

The states belonging to [D] will be called diffractive states and those from|[~ D] are

referred to as non-diffractive. Eq. (12) can be interpreted as the requirement that
the base states of the diffractive sector are subject only to elastic scattering which
arises from absorption related to the production of non-diffractive states.

If the transition takes place between two diffractive states, i.e. when | i) € [D]
and | f) € [D], one has then:

Tf,' = Z Ufj Ufj t; (13)
|7}€[D]
and
Ti= Y |Usl*t; (14)
17)€(D]



which only seemingly is the same as Egs. (10) and (11) since the summation over
states 1s now restricted to the class {D] of diffractive states.

From Eq. (13) one may easily obtain the inclusive inelastic cross-section of diffrac-
tive transitions:

S Tul = Y UG IGP = 1Tal> = Y Uyl T — t5) (15)

|f)#l) l7)€(D] l7)€[D]

Thus while the elastic scattering amplitude is an average value of the absorption

coefficients t;, the inclusive cross-section of inelastic diffraction appears as their dis-
persion.

The approach of Good and Walker constitutes the ground for the geometrical
models of diffraction. In these models one takes for granted that the interaction of
high-energy composite hadrons depends on the distribution of their constituents in
the impact parameter plane only. There i1s an implicit assumption that a very fast
projectile passing through hadronic medium is outside of the target long before the
changes it induces in the medium take place. Thus when the projectile interacts
with any of the target constituents, the others are fixed in their positions and can
be considered inactive spectators. This means that it is just the states | By, ..., bn) :
describing the configurations of hadron constituents with definite impact parameters,
which are eigenstates of diffraction. Eq. (12) reads then :

—

T | b1y by =t(B,8y,...,00) | byl + Y.ty | Uk), (16)
|k)€[~D]
b being the impact parameter which describes the trajectory of the projectile hadron.

The transition amplitude can thus be written in a more familiar form:

T:(0) =3 P, /dzbl,  d?b, % t(5, by, ..., 5n) @, (17)

n=1

where ®;, ®; are the wave functions, e.g. @,‘(gl,... b, ) = (bl, *n | 2), and P, is
the probability to find the configuration of n constituents. Assummg the celebrated
cluster form of the hadronic profile |3, 7]:

t(b, bla oo 3bn) = ?'[1 o ﬁ[l il 7(3_ gk)” (18)

k=1

one obtains then the nuclear Glauber model [3] with P, = 6,4 and the Chou-Yang
model [4] with the Poissonian P,.

2.2 Normal part of the unitary transformation

It is convenient to extract from the unitary operator U the identity transforma-
tion:

U=1-A. (19)



The operator A satisfies the relation of normality:

AAT = ATA = A + AT, (20)

In terms of the matrix elements the two last equations read:

Ukj = bkj — Akj,

[Uk;1* = |Ak;1? + (1 = 2ReA ;)8 (21)
and

Akj + A% =Y AuAj. (22)
i

Using the Ansatz (19) the diffractive transition amplitude (13) is
Tf,' = t,'(gf," — Af,' t; — Aff ty + Z Afj tjAfj
15)e(D]

or equivalently

1 . . 1
Tri = tidsi +5(An— Al (b=t + Y A At — 5+ (23)
2 li)€[D} 2

In particular, the elastic scattering amplitude reads

Ty =t + E |Aij|2(tj - t). (24)
|7)€(D]

If all Ay; were small then retaining only the terms linear in A (breaking thus unitar-
ity) one would yield the elastic scattering amplitude trivially equal to the eigenvalue
of Ty in the initial state. Instead, the inelastic diffraction amplitude would be propor-
tional to the difference of these eigenvalues in the initial and final state , which is the
classical result of Ref.[18]. The last terms of Eqs. (23) and (24) can be considered as
the unitarity corrections from the intermediate diffractive states.

For completness we also write down the inclusive cross-section of inelastic diffrac-
tion (15) in terms of the operator A:

S Tul= X Al 1t -l - |Ts — il (25)
£)#l6) |7)€(D]

Although the three last equations are equivalent to Eqs.(13),(14) and (15), there
can be important differences when the two kinds of expressions are applied to phe-
nomenological analyses. The structure of the A-type formulae leaves more room for

8



suitable choices of the theoretical ingredients. While in the approach using the oper-
ator U all the eigenvalues ¢; are treated on the same footing, in the A-description the

ground state eigenvalue {; is distinguished. One can thus make a particular choice of
t; irrespectively of the form of ¢;4;.

The phenomenological form of the density |U;;|* is constrained only by the nor-

malization to unity. However the density |A£j|2 1s yet not normalized, yielding thus
an additional parameter at disposal. In fact, from Eq. (22) one has:

Z |A,‘j|2 = QRG(A,',*) = g;. (26)
l7)€lD]
From Eq.(21) one gets:
(ReA;; — ].)2 + Im®A;; = |U£,‘|2. (27)

Because |U;;| < 1, this implies the constraint:
0 S g: S 4. (28)

Rather a small value of g; would be expected to reflect the experimental fact that
the cross-sections for inelastic diffractive processes are about one order of magnitude

smaller than elastic ones. It should also be observed that when ¢g; = 1 the two
approaches yield the identical expressions.



'3 New approach to diffraction

We will present a new approach to inelastic diffraction which differs essentially
from the classical works reminded in Section 2.1 . One emphasized there the properties

of the transformed scattering operator 7j (i.e. its complete or partial diagonalization)
rather than the structure of the transforming operator U. A convenient tool in this

new direction is Eq.(19) since by splitting the unitary operator in the two parts one
arrives to the following decomposition of the scattering operator [5]:

T =T, — ATy — ToAl + ATAT. (29)

We envisage that i1t 1s just the three last terms in this expression which de-
scribe diffractive processes. All they do contain the operator A which i1s the es-

sential part of the unitary transtormation aimed to distinguish between diffractive
and non-diffractive channels. We will consider A to be a ’soft’ operator which induces

a 'smooth’ transformation of the physical states |7) in the diffractive sector so the
transformed states |Uj) are very ’'close’ to each other. We have seen earlier that
the 'strength’ of the operator A can be controlled with the aid of the parameter g;.
On the other hand, we consider Tp to be a 'hard’ operator which has nothing to do
with diffractive processes. It does essentially contribute to a geometrical (long-range)
part of elastic scattering which arises as the shadow of a huge number of inelastic

(mostly non-diffractive) processes. However, it cannot directly contribute to inelastic
diffraction.

In our approach we reject the condition (12) of Section 2 regarding the diagonal-
ization of the scattering operator. First, we consider 1t as a redundant assumption
since the required division of channels into the two classes may be formulated other-

wise. Secondly, it screens a part of dynamics. In fact, considering the most general

expression:
Toliy= D tsilk) + D telk) (30)
k) €[ D] |k)€[~D]

one reveals there, besides the absorption of non-diffractive origin, also another source
of absorption implied by transitions inside the set of diffractive states.

3.1 Equivalence of diffractive states

The fundamental point in the description of diffraction is the presumed existence
of two orthogonal subspaces of diffractive and non-diffractive states. This requirement

can be rephrased by saying that there exist unitary operators U and U I which are
reducible in the Hilbert space of physical states. This implies the existence of a non-

trivial subspace [D] such that for any |j) € [D] also |Uj) and |U T 7) belong to [D].

10



In consequence, for any state |k) belonging to the orthogonal complement [~ D] also
|Uk) and |U ]Lk') will belong to [~ DJ]. In terms of the matrix elements this reads:

(k|1Uj) = Gl1UTE) =0,
k1UTS) = (G|Uk*=0 (31)

for any |7) € [D] and |k) € [~ D] . A careful inspection of the passage from Eqs. (10)

and (11) to Egs. (13) and (14) indeed reveals that the above relations of orthogonality
were implicitly assumed. |

Alternatively one may say that the operator U can be decomposed into the direct

sum of operators which act on orthogonal subspaces (classes of equivalence) of the
physical Hilbert space:

U=Up®U.p = Upp. (32)

Such an operator will be referred to as the unitary diffractive filter Upp. In the

base of physical states the matrix Uy; representing Upr has a ’diagonal box’ form.
Assuming that the initial state belongs to [D] one has then:

Ui #0 — j) € [D],
U; =0 —|j)¢[~ D (33)

The complementary subspace [~ D] of states which are non-diffractive with respect to
the set [ D] may eventually further be decomposed into smaller classes of equivalence.
The matrix Uy; would then be made of more than two 'boxes’.

Obviouly the reducibility of Upg implies that the corresponding operators A and

AT will also be reducible in the space of physical states, i.e. the matrix A; is block-

diagonal. The property of normality (20) allows their diagonalization. Writing the
operator Upr in a manifestly unitary form:

eM, M =M (34)

Ubr

we have also at disposal the hermitian operator M. There exist the common eigen-
states |u) for which

Mp) = 2mp|p), (35)
M) = (1—e™|u) (36)

where
p=A+nn=0,£1,£2,...;0< A< 1. (37)

The states |u) = |A + n) are infinitely degenerated with respect to the eigenvalue
) . Thus with each value of ) one can associate a subspace (class of equivalence) and

the projector operator
. o0

P.= ) |X+n)A+n] (38)

N=-—00

11



which projects onto this subspace [P,] .
For each A one has :
AP = (AT, P =0 (39)
and
AP, = (1-e™) P, AT Py = (1 = ") By, (40)

These relations prompt us a possible connection between the eigenspaces [Py] of
the operator A and the equivalence of physical states. The states will be said to be
equivalent modulo A if they belong to one of the direct sums:

A =[P e [R] (41)
for each A # 0 . Thus for any |j) € [A] one has

13) = Pal3) + FolJ) (42)
or more explicitly
)= 3 ouln) 1A+ + 3 euln) [n) (43)

where y;(n) = (A + n | 7). The structure of (43) implies that the set of equiva-
lent (diffractive) states will generally be very numerous which may be related to the
compositness of the colliding hadrons.

Since .
Alj) = 1= P ) , (44)

for any |j) € [A] , the operator A is indeed reducible and its matrix elements between
non-equivalent states will vanish:

A = (1= (k| Pr]|j)oan
= (1= 3 @huln) @ai(n) S (45)

n=-=0oo

for any |7) € [A], |k) € [X] .

3.2 Diffractive limit

The states |Uprj) obtained through the unitary transformation wheach reveals
the decomposition of the Hilbert space of states into classes of equivalence constitute a
natural base for the description of diffraction. The amplitude of diffractive transitions
follows then directly from Eq. (5) by restricting the summation over states to the
class [D] of diffractive states. Alternatively from Eq. (29) one obtains :

Tf,' = tf,~6f,- - Z Afktk,' - Z tfjA};- + Z Afktkjl\;}-. (46)
[k)Ye[D] l7)elD] 7).1k)€lD]

12



The three last terms of (46) can be rewritten as follows:

Y, Apetei = Np(To)Ayit;
|kye[D]
2. trhG = AN (Tot)
17)€[D]
2. AptghG = 3 Np(To)AsitiAy;
7)1k} €[D] l7Y€[D]
= Y Apt;A5NZ(TY) (47)
17)€[D]

where ¢; are the diagonal matrix elements of Tj :

ti=ti;=(|To|J) (48)

and
1

Ni;(Ty) = — Al | T 49
kJ( 0) Ak3<]|T0|]>“)€Z[D] kl | 0|J> ( )

In order to estimate the undimensional quantities Ni; we rewrite (49) in the form:

1 ~1 -
_N_-' =1 — Z Ak;tgj[ Z: Akltlj] : (50)
ks )#15)€(D] ye[D]

Since A is a ’soft’ operator its matrix elements A, in the diffractive sector change
smoothly under changes of states. Thus if the equivalence class of diffractive states

[ D] is very rich, i.e. it contains an infinite number of states, then the second term in
(50) will approach unity. This means

N ki = N —> (51)
for any pair of states |k) and |{7) and leads to an enormous simplification of Eq.(46) :

Tri = tidpi — N(Agiti + Aty — Y AgjtiAL). (52)
|7)€[D]

The presence of the infinite factor N will not cause any problem since the equation
can be put in the following form:

1 ; tr 4 t;
Tpi=tiogi + N[5(Api = Aip)(ty —t:) + (A + A7 (LY — fz )] (83)

where
$(f3) — 2ep) Ariijts

(54)
Z:|.1)€[D] AfJAtJ ‘

13



represents an average value of the diagonal matrix elements t; weighted with the
products of the matrix elements of A between the initial (or final) state and the
intermediate diffractive states.

We observe that the infinite value N is always accompanied by a deviation At
which is either the difference of diagonal matrix elements between the initial and
final state or the deviation of the two former from the average value over the whole
set [D]. In the equivalence class of diffractive states which are supposed to be ’close’
to each other these deviations should be very small. Therefore we require to consider
the equation (53) in the following Bjorken-type limit:

N —>o00, At—0
suchthat  NAt s finite. (55)

This can be referred to as the diffractive limit [5].

It should be noticed that in the above equations appear the Tp-diagonal matrix
elements of the diffractive states only. On the other hand, the unitarity of So = 1+1iT,
implies the relation:

2Im(t;) = 1t1° + 3 (k| Tol i) (56)
lk)%15)

where to the ’inelastic shadow’ term in the RHS contribute both the states which are

diffractive and non-diffractive. The diffractive intermediate states appear manifestly
in the average value and their importance is hidden in the infinite value of N. Instead,
the non-diffractive intermediate states occur only implicitly through the unitarity
properties of the matrix elements t; which are assumed to be given.

3.3 Elastic scattering and inclusive inelastic diffraction

In the case of elastic scattering Eq.(53) becomes:

Ti =t + G —t) (57)
where
G = Ng;,
g = > |A;> =2Re(Ay) (58)
l5)ye(D}

are the coupling constants while

t = 3wl (59)

l/)e[D]

14



is another average value of ¢; with the weigth

|2 lAijlz

= (60)
Y imeo) 1Al

|w;;

The elastic scattering amplitude (57) is to be considered in the limit where the
coupling constant G — oo and

to) —ti = 3 hwy(t; —t:) -0 (61)
7)#1%)

such that the second term in (57) remains finite. We refer to this term as the
diffractive contribution to elastic scattering since it originates from the action of the
operator A which filters as intermediate states only those equivalent to the initial
state. By contrast, the first term in (57) to which, as the unitarity equation (56)
shows, contribute intermediate states from all possible equivalence classes, may be
referred to as the non-diffractive contribution to elastic scattering. This classification
of the contributions with respect to the nature of intermediate states is an approxi-
mation. In fact, in the non-diffractive term there is also a small presence of diffrac-
tive shadow and the diffractive contribution is affected by non-diffractive transitions
through the properties of the diagonal elements t;. However, the essential point is
that while the non-diffractive term in elastic scattering is mostly feed by the shadow
of non-diffractive transitions, in the diffractive term it is the shadow of diffractive
transitions which is dominant.

It can easily be checked that the elastic diffractive contributions in the whole
equivalence class [D] effectively cancel each other:

Yo -ty = > (A=A =0 (62)
[¥)e[D] li),17) €[D]

Although generally |A;j|*> # |A;|® the cancellation in (62) is exact. Thus the pas-
sage from the diffractive amplitude (46) to its simplified form (53) does not destroy
invariance of the trace of T in the diffractive sector:

o T = Yt (63)

li)elD] l5ye(D]

The mechanism of the diffractive limit allows us to interpret the diffractive term
in elastic scattering as infinite sum of infinitesimal contributions from all interme-
diate states belonging to the given equivalence class of diffraction. An analogous
interpretation applies to the diffractive terms in the general diffraction amplitude

(53).

15



Making use of completness of diffractive states in the equivalence subspace one
may obtain from (53) the inclusive cross-section of inelastic diffraction:

STATHPE = NS |Ais? 1ts1® —2( Re(Ai)? — Re(Ay) + |Aal®) |t

£Y#1) )
2
= 12;)' Aty T =2(1 —238(1\1‘5))36(&% Aif|*t5)]. (64)
/

Applying now the identity :
IA,‘,; ‘2 <+ RG(A,',')2 = Q[RE(A,',')]Z
and using the definitions (58) and (60), Eq.(64) can be written in the form:

ST = = 3 w9 — " + —ZG |0 -t (63)

|£)#li) 9i \fyelD] 9

Thus the inclusive cross-section of inelastic diffraction is built of the two contribu-

tions: one which is proportional to a dispersion of the Tj-diagonal matrix elements
and another which equals (up to a constant) the diffractive contribution to elastic
scattering. Another way of writing this cross-section is that similar to Eq.(25):

2 2
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4 Phenomenological analysis of elastic and inclu-
sive inelastic diffraction

In this Section the general theoretical formulae will be converted into calculable ex-
pressions. Our aim is two-fold: to confront theory with experiment and to compare
various theoretical approaches between each other. This will be done on the example
of elastic and inclusive inelastic differential cross-sections, evaluated both in the mo-

mentum space, where the releavant variable is the momentum transfer g = \/Itl, and
in the impact parameter b-space.

4.1 Phenomenology of diffractons

The formulae considered so far have to be supplemented with a specification of their
basic ingredients: the states |j) and the matrix elements ¢;. The inelastic diffractive
states will be imagined [5, 19] as built of a hadron bulk (representing the ground state
7)) and of some quanta corresponding to diffractive excitations. The configurations
of these quasi-particles (which can be called 'diffractons’) are specified by a number

n of constituents and their impact parameters :|37) = |n; by, - .. l_;n) For simplicity, we
assume that the diffractons are independent of each other which means that the func-

tion |w;;|* which is weighing the occurence of multi-particle configurations appears
as a product of one-particle densities. Thus we write:

S fwsl* = 30 P [ by, -, T] (B0 (67)

5)€LD] n=1 k=1

where |1(bx)|* is the density distribution in the impact plane. P, denotes the prob-
ability to find the configuration of n diffractons and will be approximated by the
Poisson distribution

P = 2 eap(~(n) (68)

where(n) is the mean value of n. In the calculations we assume Py << 1 and begin

the summation from n = 0. The above Ansatz follows a similar analysis of Miettinen
and Pumplin [20], based on the standard form of Good-Walker formalism (g; = 1).
However, their multiparticle states |j) referred to configurations of constituent partons
rather than to configurations of quasi-particles as we do.

The diagonal matrix elements of Tp will be specified (in b-space) as follows:
t:(b) = tLo(b) (69)

and

n

t;(8) = i(1 = (1 - To) [T(L = (6= &:))) (70)

k=1
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where I'g represents the profile of the hadronic bulk and 4’s correspond to diffractons.
In the diffractive limit (55) only the single-particle term will be retained:

N(t;—t)=(1=To)_ lim NS v(E—5). (71)

Our analysis, though based on the well-founded framework of Section 3, has a
semi-phenomenological character. Therefore the shapes of the profiles I'g , v and of
the density |(b)|* are to be assumed. For simplicity, we take them as Gaussians:

ob) = —2%-eap(— =) ®
0 “47ch2,emP 2R%7’ (72)
o, b?
v(b) = 4WR3'€~TP(“2R3), (73)
1 b?

[ (5)[° (74)

= erp|—————|-

BB AR~ R
The parameters of these Gaussians, as well as the parameters g; and (n), will be
determined from comparison of the theory with experiment.

4.2 Analysis of elastic scattering

- The application of our phenomenological recipes to the formula (57) yields the imag-
inary scattering amplitude (in b-space):

ImT,,(b) = [g + Ng,(n)S(b)(l — Fo) (75)
where the function S(b), describing the average density of diffractons, is:

O, b?

S@) = [ dslw(s)Pr(b-3) = 1 mrep(=55) (76)

The inspection of this expression leads to the conclusion that for description of elastic
scattering 4 parameters are needed: Rp, 0o, R, and

o= lim Ngin)o.. . (77)

N""*O0,0";"’O

The imaginary scattering amplitude in momentum g¢-space is obtained by the
Fourier-Bessel transform:

ImT;;(q) = -é-l';./dzbeﬁfglmTﬁ(b) = '/(;m dbbJo(Qb)ImT“(b) (78)
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elastic cross-section o, and the forward logarithmic slope of elastic differential cross-
section J.

The Table 1 includes the case of proton-proton elastic scattering at c.m. energy
Vs = 4.4 GeV [17]. Although the fit is quite good its property oo = o, and Ry = R;
says that this relatively low energy is yet outside the range of application of our
approach. In fact, for higher energies we always had: o9 >> o1 and Ry > R;. This is
reasonable since the non-diffractive effects dominate a long-range part of scattering
and are characterised by large values of the effective coupling strength. The diffractive

scattering, on the other hand, i1s governed by short distance dynamics and small values
of the coupling strength.

4.3 Analysis of inclusive inelastic diffraction

The application of the prescription (67) to Eq. (66), written in terms of the Fourier-
Bessel transforms of ¢,’s, yields the differential cross-section of inelastic diffraction in
g-space as the sum of two contributions:

1 dO‘d,'f (t) T 2 docon (Q) daincoh(Q)
2T d|t| |f§e:|,') l ! (q)l d*q d?q ( )

Such a structure has already been noticed in Eq. (65). The coherent cross-section
O.oh 18 proportional to the square of diffractive term in the elastic scattering amplitude:

dacoh(Q) _ 1 3 _ 2
D) = (= - DIT@) - (@) (83)
which, upon making use of Eq. (75), becomes:
docon(q) . 1 L 2
o= (=) / dbbJo(gb)(1 — To)S(b; 7. = o1)2. (84)

The name of incoherent contribution is justified by its proportionality, in a leading

order, to the mean value (n). It appears in the form of the double Fourier-Bessel
transform:

dOincon(q) _ 1
d*q (2m)?

where the function

] &b, d%b,e B8 _ To(b)][1 — To(b)| (B, B)  (85)

I(81,b2) = N2gi(n)U (b1, b2) (86)
depends on the correlation function of diffractons
U8 = [ dslp(s)P1(E - 1B - 9 (87)

- (_f'_f_ ” 1 b? 1 b'?

oR: — g2 P\ o _ g/ e ST\ 88
4 2R§_Rgexp( 2R§—R3)Rge"’p( 433) (88)
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where b = %(El + gg),gl = gl - 52.

This choice of variables which factorizes the function U(by,5,,), facilitates also the
evaluation of the integral (85). Since the major contribution to the integrand function
comes from small values of ¥/, one may approximate: [g(b;) = [o(by) = To(b), and

S(b1) = S(bz) = S(b). This allows to convert the integral (85) into a sum of products
of single integrals.

From the inspection of the above formulae it results that for the description of
inclusive inelastic diffraction only 3 parameters g;, (n) and R, are required since the
remaining parameters are to be determined from elastic scattering.

The coherent and incoherent contributions to inclusive inelastic diffraction are
shown in Fig.6. At small momentum transfers the coherent contribution (dotted
curve) is dominant. At the momentum transfer which corresponds to the position of
the dip in elastic differential cross-section the coherent contribution becomes negligible
and the incoherent term (dashed curve) dominates the inelastic diffraction at large
momentum transfers. The solid curve is the sum of the two contributions. It was

fitted to 30 experimental points of the data on proton-proton inelastic diffraction at
the c.m. energy v/s= 53 GeV [12].

In Fig.7 we present the analogous fit to the experimental data on proton-antiproton
inelastic diffraction at c.m.energy /s= 546 GeV [15] (23 points). Both fits are excel-
lent in the whole range of momentum transfer. Their parameters, together with the
values of x?, are collected in Table 2. We give there also the values of the integrated
cross-section of inelastic diffraction og4;5. It is defined as twice the measured inelastic
cross-section to account for diffractive dissociation of both colliding hadrons.

Although elastic and inelastic diffraction was illustrated on the examples involving
protons and antiprotons, we did not discuss the connection between p —p and p — p
scattering [23]. A careful inspection of the experimental data in Figs 1 and 2 would
reveal, in the vicinity of the dip, a significant difference between the two differen-
tial cross-sections which implies a presence of the odd charge conjugation exchange
(C=-1). The corresponding amplitude contributes with opposite signs to p — p and
p — p scattering and differs in phase from the even-under-crossing amplitude which
is dominant beyond the dip region. Since we are mainly interested in the connection
between the elastic scattering and inclusive inelastic diffraction we did not touch the
delicate problem of charge conjugation symmetry. However, a joint analysis of elastic
and inelastic diffraction in both p — p and p — p collisions might be very illuminating .
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5 Discussion and conclusions

The numerical results presented in Section 4 will be discussed again with em-
phasis on the comparison of our approach based on the diffractive limit N — oo
with the classical description of Good and Walker as given in Section 2.2. We aim to
convince the reader about the advantages of our method.

In order to understand better the relationship of the two approaches we rewrite

their basic formulae using a unified notation. Thus for the elastic scattering ampli-
tudes (57) and (24) one has:

Tii=t;+Ng > |w;(t; —t), (89)

li)e(D)
T =ti+ g 3 lwil’(t; - ta); (90)

liYe(D]

while the inclusive inelastic cross-sections (66) and (25) read :
> T =N Y ol It = il = (T~ %, (91)
1£)#li) liYe(D]
2
ST =0 ¥ gl i - 4~ 1T -l (92)
|£)#1i) l7)€lD]

where the weigth |w;;|? is normalized to unity. The two sets of formulae are almost

identical except for the factor N which in the Good-Walker approach is absent. But
this difference turns out to be essential. It should also be reminded that when g; = 1
the Good-Walker approach re-appears in its standard form of Section 2.1.

In the Good-Walker approach we apply, instead of the diffractive limit (71), the
complete multiple expansion (70) which yields the following elastic scattering imagi-
nary amplitude:

ImTE?)(b) = To + gi(1 — exp[—(n)S(®)])(1 — To), (93)

to be compared with Eq.(75). By inspection we conclude that the Good-Walker ap-
proach requires for description of elastic scattering one parameter more: Ro, 00, R1,01 =
(n)o, and additionally g; which cannot any longer be absorbed in the definition of o;.

In Fig.8 we compare three curves corresponding to various theoretical descriptions.
They were all fitted to the experimental data on proton-proton elastic scattering at
the c.m. energy /5=52.8 GeV [11]. All the parameters are collected in Table 3. The
solid curve corresponds to the approach based on the diffractive limit. The dashed
curve was obtained in the Good-Walker formalism discussed above. Here it should
be pointed out that the choice of the fifth parameter g; is very ambigous. Similar
fits can be obtained with very different values of g;, rather the value of the product
g:01 being important - compare the second and third row of Table 3. In particular,
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if g; — oo then 0, — 0 and the dashed curve becomes closer and closer to the solid
one [5]. Thus the condition g; — oo, being at variance with the unitarity constraint
(28), may mimick the diffractive limit N — oo which reflects the numerosity of
the diffractive equivalence class. Seemingly the solid and dashed curves represent
fits of equal quality. But there is an important difference since the dashed curve is
characterized by multiple dips while these are absent in the solid curve, except for
the single one observed experimentally. Finally, the dotted curve corresponds to the
standard version of the Good-Walker approach, with g; = 1 and 'y = 0 as in Ref. [20].
It fits only the forward scattering part of the data and also shows multiple dips.

So far, the arguments put forward in favor of our method does not seem to be
very convincing. E.g. the dotted curve in Fig.8 could be enormously improved by
replacing the Gaussian form of the function S(b) with a more sophisticated shape like
a, dipole opacity of the Chou-Yang model [4]. However, such a choice would prevent
us from calculating the inclusive cross-section of inelastic diffraction. In fact, i1t is a

joint analysis of elastic scattering and inelastic diffraction which decides about the
success of our approach.

Passing to the analysis of the inclusive inelastic diffraction, we include the relea-
vant formulae describing the coherent and incoherent contribution in the Good-Walker
approach. Thus in place of Eq.(84) one has:

do'S(q) 1

b 290 = (=~ 1)g?] [ dbblo(ab)(1 = To)(1 = expl=S(bioe= o)) (91)

while the incoherent function of Eq.(86) is replaced by:

1) (by,b;) = giexp[—(n)S(b1) — (n)S(bs)|(ezp[(n)U (b1, b2)] = 1).  (95)

The measurements of the inclusive inelastic cross-section at the ISR and SPS
colliders [12, 15] are perhaps not sufficiently appreciated. The angular distribution
of inelastic diffraction is, in a wide range of energy, consistently characterised by two
different slopes at small and large momentum transfers. The experimental results
could therefore be well reproduced simply with a sum of two Gaussians described by
4 parameters: two slopes and two other parameters which fix the forward magnitude
of each Gaussian. However, in our phenomenology we need only 3 parameters since
the slope at small momentum transfers is already determined by the diffractive term
in elastic scattering. The strength of this term in inelastic diffraction is set-up by
the coupling constant g;. So far, this constant was hidden in the definition of the
cross-section o, and in inelastic diffraction it appears as a new parameter at disposal.

It should be stressed that the coherent contribution (83) to the inclusive cross-
section is a novelty of our approach [22]. In the standard version of the Good-
Walker description (with g; = 1) the coherent contribution to inelastic diffraction
does not appear at all. Thus in Ref.[20] the forward slope of inelastic diffraction
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was explained in terms of incoherent scattering while our analysis shows that this
scattering dominates in the region of large momentum transfers.

We claim that the shape of inelastic diffraction at small momentum transfers is
determined by elastic scattering in the transition region between the forward peak
and the diffraction minimum. This is successfully verified, as Figs 6 and 7 show,
in experiment [12, 15], being a crucial evidence in favor of our formalism. On the
contrary, the Good - Walker approach, even with g; # 1, is not able to accomodate
this effect. This is so because the coherent contribution to inelastic diffraction is
there completely fixed (including the value of g;) by elastic scattering. The thus
determined coherent contribution,which is proportional to (1/g; — 1)g?, turns out,
both for small and large values of g;, to be too small and does not reproduce the
inelastic cross-section at low momentum transfers as illustrated in Fig. 9.

We end with a brief recapitulation . Inelastic diffraction is a quantum phenomenon
related to the existence of internal degrees of freedom of colliding hadrons. At high
energies diffractive states are infinitely degenerated and are treated on the same
footing as the ground state, all being the members of an equivalence class in the
Hilbert space. In the classical description {10, 18] the inelastic diffraction originates
from the diversity of elastic diffractive absorptions in the initial and final state A¢.But
there is something more : intermediate virtual transitions. We were able to show that
the multi-channel correction can be factorized. The diffraction amplitude appears as
N At to be taken in the ’diffractive limit: N — oo, At — 0 such that NAt is finite.
The resulting expressions were compared at the beginning of this Section. The two
sets of formulae are "almost’ identical except for the factor N — co. We stress again
that this ’petite différence’turns out to be essential for quantitative results.
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Figure captions

Fig. 1. The p-p elastic cross-section at c.m. energy /s = 52.8 GeV in the function
of the squared momentum transfer |t|. The experimental data [11] are compared with
the Tesults of our approach (solid curve). The non-diffractive (dashed curve) and
difiractive (dotted curve) contributions to the cross-section are shown separately.
The parameters are given in the first row of Table 1.

Fig. 2. The p—p elastic cross-section at c.m. energy /s = 53.0 GeV in the function
of the squared momentum transfer |¢|. The experimental data [13] are compared with
the results of our approach with (solid curve) and without (dotted curve) the real part
of the scattering amplitude. The parameters are given in the second row of Table 1.

Fig. 3. The p — p elastic cross-section at c.m. energy /s = 546-630 GeV in
the function of the squared momentum transfer [¢t|. The experimental data [14] are
compared with the results of our approach with (solid curve) and without (dotted
curve) the real part of the scattering amplitude. The parameters are given in the

third row of Table 1.

Fig. 4. The p — p elastic cross-section at c.m. energy /s = 546 GeV at very low
squared momentum transfers |t|. The experimental data [14] are compared with the
results of our approach with (solid curve) and without (dotted curve) the real part of
the scattering amplitude. The parameters are given in the third row of Table 1.

Fig. 5. The p — p elastic cross-section at c.m. energy /s = 1800 GeV in the
function of the squared momentum transfer |¢|. The experimental data [16] are com-

pared with the results of our approach. The parameters are given in the fourth row
of Table 1. |

Fig. 6. The p-p inclusive inelastic cross-section at c.m. energy /s = 53 GeV
in the function of the squared momentum transfer [t|. The experimental data [12]
are compared with the results of our approach (solid curve). The coherent (dotted
curve) and incoherent (dashed curve) contributions to the cross-section are shown
separately. The parameters are given in Table 2.

Fig. 7. The p — p inclusive inelastic cross-section at c.m. energy /s = 546 GeV
in the function of the squared momentum transfer |t|. The experimental data [15] are
compared with the results of our approach (solid curve). The parameters are given

in Table 2.

Fig. 8. The p-p elastic cross-section at c.m. energy /s = 52.8 GeV in the function

of the squared momentum transfer |¢|. The experimental data [11] are compared with
various theoretical results.

Fig. 9. The p-p inclusive inelastic cross-section at c.m. energy /s = 53 GeV in
the function of the squared momentum transfer |¢|. The experimental data [12] are
compared with the results of the Good-Walker approach (solid curve). The coherent
(dotted curve) and incoherent (dashed curve) contributions to the cross-section are
shown separately. The parameters are g; = 0.06, (n)=1.67 and R.=0.254 fm.
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Table 1: The parameters of the fits presented in Figs 1, 2, 3 ,4 and 5.

Energy | 00 | Ro | o1 | Ry p Xldf | O | oa B
(GeV) | (mb) | (fm) | (mb) | (fm) (mbd) | (mbd) | (GeV~?)
P-p
52.8 39.40 | 0.70 | 5.52 | 0.41 | 0.066 | 80.58/39 | 42.29 | 7.74 12.04
P—p
53.0 3937} 0.72 | 6.15 | 0.44 | 0.13 | 39.54/48 | 42.80 | 7.75 12.90
p—p
546 55.78 | 0.76 | 10.71 )} 0.51 | 0.194 | 111.8/115 | 60.79 | 13.44 14.87
P—P
1800 66.75 | 0.82 [ 20.71 { 0.54 | 0.175 7.9/25 76.11 | 17.04 16.97
P-p
4.4 24.71 | 0.50 | 24.71§ 0.50 | -0.36 | 61.21/52 | 39.76 | 11.46 8.07
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Table 2: The parameters of the fits presented in Figs 7 and 8.

Energy gi (n) R, x}df | e dif
(GeV) (fm) (mb)

52.8 | 0.0286 | 8.28 | 0.314 | 52.4/27 | 6.34

546 | 0.0630 { 1.51 | 0.410 | 29.9/20 | 9.32

Table 3: The parameters of the fits given in Fig.6 .

Approach | oo(mb) | Ro(fm) | oo(mb) | RBi(fm)| g | » x*/df

N - 00,0, — 0

(solid) 39.40 0.70 5.52 0.41 0.07 | 80.58/39
N=1g#1

(da.shed) 40.17 0.70 5.44 0.39 0.835 | 0.07 | 582.8/38
N=1g+#1

(not shown) 41.70 0.67 30.45 0.34 | 0.060 | 0.07 | 586.2 /38

N=1g=1
( dotted ) 0 51.41 0.74 1 0.09 | 5628.6/41
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