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Abstract

We analyze the Chiral Perturbation Theory predictions for vy — #%#° to two
loops. The amplitude to this order depends on three new counterterms which
can be estimated using resonance exchange. The low-energy cross section
is in good agreement with the present data and with calculations based on
dispersion relations. We predict the Compton cross section and the neutral

pion polarizabilities to the two-loop order. The unitarization of the one-loop
cross section is also discussed.
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1 Introduction

The tree-level amplitude for 44 — #%#° in Chiral Perturbation Theory (CHPT) low-
energy expansion [1]-[5] starts only with the O(E®) contribution [6, 7]. Hence the
cross section predicted to the one-loop order is independent of the free parameters
of the chiral lagrangian. It should not come as a big surprise that this prediction
does not agree with the measurements at Crystal Ball [8]. In fact, it is necessary
to include in any CHPT prediction the first correction to the lowest nonvanishing

order, in order to compare successfully with the experiments. As we show below,

this case is no exception.

Indeed, CHPT yields an expansion of the matrix elements in powers of the
momentum squared and the quark mass. One needs the next order, to know how
good is the leading-order prediction. For instance, for 4y — #*x~, whose amplitude
starts at order O(E?), one needs to calculate also 77 rescattering and resonance
exchange, which are contributions of order O(E*). Several transitions, such as
K, — vy, vy — 7°7° K — 7%y, as well as physical quantities such as the =, K,
n polarizabilities, begin to order O(E*). Therefore, to knO\:av how good is the lowest

order cross-section for 4y — 7°7°, one needs to carry out a two-loop calculation of
the amplitude.

The 4y — wtm™ cross section has been calculated to the next-to-leading order in
CHPT [6] and the result agrees with the low-energy experimental data from Mark I1
[9]. The one-loop prediction for vy — #%x° in the low-energy region disagrees also
with calculations based on dispersion relations [10]-[17]. The two-loop amplitude
calculated recently in the framework of CHPT [18] agrees at low energy with the
Crystal Ball data and with the dispersive analysis of yy — 7°x°.

The electromagnetic pion polarizabilities are among the low-energy parameters
describing the inner structure of the pion composite system [19]. The lowest order
prediction of CHPT for the sum of the 7° electric and magnetic polarizabilities is
zero [20]. A sum rule estimate shows that this relation is violated, i.e. the result
is nonvanishing [19]. A vector dominance model preserving the low-energy chiral
symmetry of QCD yields a result compatible with the sum rule [21].

Analyticity and crossing relate the Compton scattering on neutral pions with
the 49 — 7°r® amplitude. Hence, knowing the two-loop amplitude allows us to
evaluate the polarizabilities at next-to-leading order in the quark mass expansion.

The omega resonance exchange, which accounts for a substantial contribution to



the w° sum rule [21], yields the largest correction to the polarizabilities, whereas the
modification due to the chiral logarithms is small [18].

In a generalized approach (GCHPT) {22] CHPT has been reformulated, in order
to include into each order of the effective lagrangian additional terms, which in
the standard expansion are considered as higher order. The GCHPT approach is
described in [23]. Within the framework of GCHPT the cross section for yy — 7%x°
has been calculated up to O(E®) in Ref. [25].

This work is organized as follows. In section 2, we outline the procedure for the
two-loop calculation. In section 3 various determinations of the low-energy constants
which occur in the amplitude for 4y — #%#° to two-loop order are discussed. In sec-
tion 4 we touch briefly upon the pion polarizabilities and the possibility of matching
the chiral expansion with the dispersive calculation by Donoghue and Holstein [14].

Finally, we offer some concluding remarks in section 5.

2 The two-loop calculation

The two-loop calculation of [18] entails the following steps:
1. Drawing of many diagrams.

2. Integrating over the internal momenta in d-dimansions and using Feynman

parameters.
3. Checking Ward identities in d # 4 in the unphysical region.
- 4. Adding the low-energy constants, after letting d — 4.
5. Continuation to the unphysical region.

6. Calculation of the cross section.

Much CPU time was needed at stei) 2, whereas more CPU time is required at
step 4.

3 The low-energy constants to O(p%)

In our calculation we considered the effective lagrangian with two flavours in the

isospin symmetry limit m, = mq4. The Feynman graphs of order O(E®) depend on



three constants hy _, - related to the coefficients of the O( E®) counterterms in the
effective lagrangian - which have been estimated in {18] by considering the exchange

of vector, axial-vector, scalar and spin-2 resonances

Ri(p) =Y RE+h{(k), i=+,-5, R=V,AS f (3.1)
R

Here, following [2, 26], we assume h7(M,) = 0, which works for the O(E*) constants
I7,7 =1,...,6. It has been noted by several authors [27, 28, 29, 31] that the constants

k do not affect the cross section for 4y — n%7® at center of mass energies /s < 0.4

GeV.

In [25, 32] it is shown how to estimate these couplings from sum rules. Here we

follow the presentation offered in [33]. Let us consider the vector-vector two-point
function

i / d*ze'® < O|T(Va(2)VE(0)]0 >= 6(quqy — 90 d®)I%(¢?) , a = 3,8.  (3.2)
Following [1]-[3] and [14] we write a dispersion relation for-I1%(¢?)

m%(q?) = ——/d ImH“(s)

s —q% — e
The high-energy behaviour of the theory is obtained from the perturbative QCD
sum rules

+ subtractions, , a=23,8. (3.3)

1 a
) = L
1
lim,Lopy(s) = gt O( ) , a=3,8. (3.4)

Thus, the following sum rule is readily obtained:
3 _ 8
I13(0) — I1%(0) = / ds”Lsﬂ : (3.5)

Making use of CHPT one can calculate I1*(¢?) for small ¢? values [32]. This
calculation is carried out in SU(3) x SU(3) to the two-loop order, and the result
depends on the O(p*) and O(p?) low-energy constants L; and, respectively, d; [32].
The integral [ dsﬂi%pi can be evaluated using the ete™ data between 0.4 GeV and 2
GeV. The result of [25, 32] can be compared with the Extended Nambu Jona-Lasinio
Model prediction which has become recently available [34]. For all cases'the results
are compatible, within the uncertainties, with the constants estimated by resonance
saturation in [18].



4 Pion polarizabilities

The electric and magnetic pion polarizabilities enter the low-energy limit of the

coupling of the pion with the photon. The charged pion Compton amplitude

(@) (p1) = v(@)x* (p2) (4.1)

admits an expansion near threshold

n

- o a = Vel g - g = %
T¢ = 2 [61 . €9 (M— - a,,wlwg) — Br(q1 X €1) (g2 X &*) + --- (4.2)
with ¢ = (wi, §;). Below we denote

(a£B)° = artpB.,
(@£B)Y = ap+fho, (4.3)
for charged and neutral pions, respectively.
At one-loop in CHPT one has [20, 37]

«a

Ao = —fpo = ———— = —0. . 4.4
% = P = ~gemag, e~ 00 (44)
At order O(p®) it was calculated in Ref. [18]
ayo = —0351+0.10 ,
Bro = 150+ 0.20. (4.5)

The charged pion polarizabilities have been determined in an experiment on the
radiative pion-nucleus scattering 7~ A — 7~ yA [35] and in the pion photoproduction
process 7p — ym*n [36]. In addition, the low-energy vy — n*=x~ data [9] have been
used in [37] to obtain the numerical value for the leading-order a, = 2.7 £ 0.4, plus
systematic uncertainties due to the O(p®) corrections.

In [38] the validity of the errors quoted in a recent estimate of (a + 8)°V by
Kaloshin and collaborators [39] is discussed. Here the polarizabilities appear as
adjustable parameters in the unitarized D-wave amplitudes, hence the values of
(e + B)°¥ can be determined from the data with the result [39)

(a+B8)° = 0224006 [9] ,
(a+B8)Y = 1.00+0.05 [8]. (4.6)



The authors of [38], arguing on the partial wave analysis of the data that shows
large uncertainties even at the f,(1270) mass, concluded that the errors quoted in
(4.6) for (a + B)V are unbelievably small.

It is interesting to match the chiral expansion [18] and the dispersive calcula-
tion of [14]. The two representations of the S-wave amplitude agree very well below
E = 0.4 GeV [18]. In the dispersive method the higher orders are partially summed
up. This agreement therefore indicates that orders higher than O(p®) in the chiral
expansion do not affect much the threshold amplitude. The pion loops in CHPT
generate chiral logarithms in the amplitude calculated in [18] that are not fully taken
into account in the dispersive analysis. This fact is reflected in the difference be-

tween the dispersive result and the corresponding two-loop result (quoted in square
brackets)

(a—-pBYN = —1.76 [twoloop: —1.90] ,
Bro 1.26 [two loop: 1.50]. (4.7)

5 Conclusions

The cross section for vy — w°x° depends, to lowest order, on F,, M, only. This
prediction is as good as any leading order prediction in SU(2)r x SU(2)r. The
two-loop corrections have a reasonable size, i.e. about 30% in the amplitude. The
O(p®) parameters k], k, are unifluent for /s < 0.4 GeV.

There is agreement of the two-loop cross section with both experiments and
dispersion relation calculations, for /s < 0.45 GeV. We need to wait for higher
precision data from DA®NE, the Frascati ®-factory [30, 13, 24], in order to have a

more accurate test of the predicted cross section.

The 7° polarizabilities &, & G, depend on the low-energy constants A%, whose
estimated values are dominated by the w resonance exchange [21]. From precise data
on 7 — w°x° it may become possible to extract the value of h,, since the cross
section in Fig. 9 of [18] shows a sizeable dependence on this low-energy constant for
energies near 600 MeV. It will be useful to carry out a unitarization of the 2-loop
result, using a procedure analogous to [14] and matching the dispersive calculation
for the all-order amplitude with the 2-loop amplitudes for vy — 7°2° and vy —
x+tn~, once the latter will have been calculated. The consideration of this improved,

unitarized amplitude will justify the inclusion in the analysis of experimental data



up to 600 MeV.

Another source of information on k, and hy is the decay n — 7°%yv, whose width
depends in CHPT [40] on these same low-energy constants, just as the process

vy — w°x% A complete treatment for these two transitions is necessary, as it is

described in [34].

Finally we remark that the calculation of [18), which was motivated by noises
on a supposed failure of CHPT in the prediction of the 44 — 7%7% amplitude, not
only proved that there is no chiral mystery in this transition, but opened the way
to a clear understanding of the neutral pion polarizability issue. Having computed
a definite and reliable CHPT prediction yields the possibility to determine in future

experiments for the first time the coeflicient of some O(p®) counterterms in the chiral
expansion.
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