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Bilinear composites of anticommuting constituents are even elements of a Grassmann algebra, which
are nilpotent commuting (NC) variables. We study a (;64 theory where the ¢ field has NC Fourier com-

ponents and we find that it is asymptotically free.
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In this paper we investigate the perturbative properties
of a ¢* theory where the Fourier components of the ¢
field are even elements of a Grassmann algebra, which
are nilpotent commuting (NC) variables. We find that for
attractive self-coupling such a theory is asymptotically
free, as 1s the ordinary theory [1]. But while the latter
has a Euclidean action unbounded from below, with NC
variables the partition function is well defined irrespective
of the attractive or repulsive character of the coupling.

Even elements of a Grassmann algebra are products of
odd elements. Since the latter describe fermions, from
the physical point of view NC variables describe compos-
ites of fermions. We think that such variables can be
used for two distinct purposes:

(1) To construct phenomenological models, dlsregard-
ing the way they can be related to fermionic constituents.
One such application would be to use a NC (therefore
composite) Higgs field to avoid triviality [2] in the scalar
section of the standard model of electroweak interactions.

(11) To study bosonization in fermionic systems. NC
fields have in fact been introduced by a change of vari-
ables (in the sense specified below) in the Berezin integral
defining the partition function of a model of composite
gauge fields [3]. It is conceivable, for instance, that by a
change of variables of this kind one could derive an
effective action for superconductivity similar to the
Ginzburg-Landau one, but with NC Fourier components
of the field. The model we are going to discuss might be
a prototype of such an effective theory.

The use of NC variables finds in the theory of super-
conductivity a paradigmatic example, and we will men-
tion later a result relevant to the present work. But they
should be useful in the study of all bilinear composites of
fermions, of which other well-known examples are densi-
ty fluctuations in the Tomonaga model of the electron
gas, spin waves in ferroantiferromagnetic metals, and nu-
cleon Cooper pairs in the interacting boson model of nu-
clear physics. Finally we are also considering the possi-
bility of using NC variables in bound state problems.
Among these, quark bound states seem to be the most in-
teresting case to investigate, in the hope that because of
confinement one could get rid of the constituents odd
variables altogether.

In any case when one 1s interested in correlation func-
tions which do not involve the constituent fields but only
those combinations which define the composites, one
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would like to be able to treat the composites themselves
as independent variables. To do this we need a definttion
of the integral over the composites such as to give, when
the composites are expressed in terms of the constituent
fields, the same results as the Berezin integral over the
latters. When the integration variables are trilinear com-
posites (baryons), which are odd elements of the
Grassmann algebra, the integral must still be the Berezin
integral. When the integration variables are bilinear
composites, which are even elements of the Grassmann
algebra, we need a new definition. Notice that by adding
to the action irrelevant terms which are quadratic in the
trilinear or bilinear composites, we can perform a new
type of perturbative expansion.

Let us start by reporting the definition of the integral
over even elements. For a single complex NC variable

a: a“=0, aa*=a%a , (1)

it 1s defined according to

fda *daa*a=1, (2)
all other integrals vanishing. If
a=cic,, a*=cjci , (3)

the ¢.’s being odd Grassmann variables, the definition (1)
gives the same result as the Berezin integral on the ¢;’s:

fdc’fdcldc{dcchc’l"clc2=l . (4)
Notice that, according to such a definition,
fda*da expla*a)=1 (5)

with a plus sign in the exponent. The generalization to
more degrees of freedom,

a,: af=0, a,a,=aza,, ara,=aa; (6)
1s obvious:
f Il da;da,a)a, =1, (7)
h
all other integrals vanishing. It is then easy to see that
f[da*da]exp > ay Ay a, | =per(A4) (8)
h, k
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where
[da*da]= [|] da, da, (9)
h

and per( 4) 1s the permanent of the matrix 4.

Let us now explain in which sense relations such as Eq.
(3) can be considered a change of variables. They cannot
obviously be inverted, and therefore an action defined in
terms of the ¢*’s and ¢’s cannot in general be expressed
through the a *’s and a’s. But in any nonvanishing Berez-
in integral all the ¢ *’s and ¢’s must appear, so that we can
always rearrange them into products of the a *’s and a’s.
We can therefore perform the change of variables (3) at
any nonvanishing order of perturbation theory, or more
generally in the evaluation of any nonvanishing quantity.

Before proceeding further we must introduce the no-
tion of order of nilpotency of a NC variable a. This is the
smallest integer n* for which a"=0 for n >n*. We have
discussed so far complex NC variables of order 1. Now
the sum of two NC variables of order 1 is of order 2: The
order of nilpotency is changed by a change of variables.
Changing variables, one has to change accordingly the
rule of integration. This can be done in simple cases, but
it might turn out to be too difficult in general, and in par-
ticular for a Fourier transformation. We will therefore
confine ourselves to those manipulations which do not al-
ter the order of nilpotency, and we will distinguish
whether the field itself or its Fourier components are NC
variables of given order. We will refer to these fields as
nilpotent in configuration or momentum space, respec-
tively. They need to be treated in a quite different way.
The reason is that the propagator for ordinary fields is
evaluated by diagonalizing the wave operator, namely by
a Fourier transformation which we have excluded. The
propagator of a NC field in configuration space, there-
fore, must be determined by a hopping expansion. It can
thus be shown that such a field behaves as an ordinary
field 1n space-time dimensions where the self-avoiding
random walk 1s a free theory [4]. This happens in more
than four dimensions, and conjecturally also in four di-
mensions. For NC fields in momentum space the evalua-
tion of the propagator does not instead present any
difficulty because the wave operator is diagonal in
momentum space.

The restriction to a given order of nilpotency is not too
severe a limitation, as it might appear at first sight. It is
in fact compatible with many relevant symmetries. One
example 1s provided by the quoted model of composite
gauge fields {3]. Another example is the following [4].
Consider a NC scalar field of order 1 in configuration
space:

d(x): [Hx)]P=0, ¢*(x)d(y)=0(y)d*(x) . (10)

It 1s easy to see that the integration measure is invariant
under the local gauge transformations

d(x)—e'Tp(x) . (11)

Moreover these transformations do not change the order
of nilpotency, so that this field can be coupled to a gauge
field [4). Another symmetry compatible with a given or-
der of nilpotency is Lorenz invariance. This is trivial for
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nilpotency in configuration space, but not in momentum
space. Under the Lorenz transformation

x—Ax +d (12)

the Fourier components a (p) of the ¢ field transform ac-
cording to

a(p)—e g (Ap) . (13)

Also these transformations do not alter the order of nil-
potency.

Let us now define the model to be studied. We will
work in Euclidean space. To take into account nilpoten-
cy it is convenient that the arguments of the nilpotent
variables be discrete. Therefore we consider our system
in a box.

The Fourier transform of a function f is

flx)=—= F(ple® (14)
L P

where L is the side of the box and the sum is over the
discrete momenta:

2T :
p,(n) T My, integer . (15)
For a scalar field,
~ 1
(p)= *(p)ta(—p)], (16)
¢(p) m(p)[a p p)]
where
1 —(pz—l—mz)"l/zexp _PZ (17)
w(p) i A2

1s the regulated propagator. We are going to investigate
the case where a*(p),a(p) are NC variables of order 1.
Note that, with the regularization (17), the ¢ field is of
infinite order of nilpotency, but it can be made of finite
order by, for instance, a lattice regularization.

We assume the free action to be

So= [d*x¢(x)[—O+m?),é(x) , (18)

the wave operator being regulated in such a way as to
have the propagator (17). Note that S, differs from the
action of ordinary scalars by a factor 1.

Free propagators are defined by

~ - 1 . -
($p)B(p2) o=~ [ [da*dalfip,)

P

X ¢(p,)exp(S,) (19)

where
Z,= [ [da*da]exp(S,) . (20)

This definition is analogous to that of the propagators
of ordinary scalars i terms of holomorphic variables,
apart from the plus sign in the exponent. As we will see
this sign is necessary, as a consequence of Eq. (5), to get
the right propagator. It is worthwhile mentioning that
we get a positive sign for the action also in two fermionic
models where the NC field is obtained by a change of
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variables from an ordinary partition function. One of
these models concerns a many-fermion system with a
pairing interaction [4]. This confirms the interpretation
that NC fields describe composites of fermions.

It is convenient to introduce the variables
A(p)=a*(p)+a(—p), B(p)=A(p)A(—p) (21)
which simplify the expression of

= > B(p) (22)
P

and

exp(So)=[1+B(0)] J] [1+2B(p)+2B*p)]. (23)
P

The star means that the product must be taken over all
directions and absolute values of p70, but not over its
orientations.

In order to evaluate correlation functions we must ar-

range the products of ¢(p) into products of B(p)’s and
use the relations

[ [da*da]B (p)exp(Sy)=Z, , (24)
f[da*da]Bz(p)exp(SO)=%Zo, p#0 . (25)

In such a way we get, for the free propagator,

F. PALUMBO 30

——

the expression valid for ordinary scalars. Many-point
correlation functions, however, are different from the
corresponding ones of ordinary scalars, due to the ex-
clusion principle obeyed by ¢(p).

Let us now introduce the interaction

A(p;)

1 1 4
> 5(P1+P2+P3+P4)H

P PysP3:Py =1

(27)

and study the correlation functions

_ _ 1 .y T _
($ip))- - Glp,))=— [[da*dald(p,) - - §(p,)

X exp(Sy+S;) . (28)
In the above equation,

Z = [[da*da)exp(Sy+S)) . (29)

We will perform the standard loop expansion, assuming
that, as usual, the disconnected contributions cancel out.
This cancellation is such a general property that it would
be surprising if it were not true in the present case, the
more so since it has been proved for a NC field in
configuration space [4].

($(p,)d(p,))e=8(p,+p,) 21 (26) Thfa two-point connected correlation function to one
@ (p,) loop is
|
_ _ 1 . (pl) A(pg)
d
(B0 8P 1= 8 [ 1da*da) - 22o =2
1 A(q;)
L™ 414395 olg;)
1°92:93:44

where the subscript C means that only connected contributions should be included. To get one of such contributions

we must pair p, to one of the ¢g; and p, to one of the remaining g;.

after rearranging the A’s into B’s we get

There are 12 ways to do that. For each such way,

L 1 11 1 B(g)
($(p,)d(py)),=8(p,+p,) da*da]2BXp,)— '9) xp(S,) (31)
#p)8(p2) )= +p) 5 Al 12B%p,) 4§q‘,m ) PSo

so that finally integrating over the a *(p),a (p) we find
L 1 1 1 1
(d(py)b(p,y)) =8(p,+p,) . (32)
¢(py)d(p,y) 1, Py P, w4(p1) 28L4 s, 0X(q)

The restriction g7 1p has been kept to give an example of a consequence of nilpotency which is irrelevant in the termo-

dynamic limit.

Let us now evaluate to one loop the four-point connected correlation function:

1 g°

(‘3(}?1 )55(192 )5(}73 )‘S(Pat)

l l

Xo(t,+ty+ey+1,) I

1 *
)1 ZO o) (4')2 Lg 2 f[da da]S(q,+q2+q3+q4)

4 A(p)A(g,)A(t)

: (33)
i=1 olp;o(q;)o(t;) exp(S, )IC

The above equation holds for momenta p; different from one another. Proceeding as above we find that its divergent

contribution is
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(Bp BB PB )1 4 =8p, +py+pytpe) [T —— L 2 g21n A 34)
1 2 3 4/71 div 1 2 3 4 b 602(}71) L4 1617'2 m ‘ |

This result is the same as in the ordinary ¢:4 theory. Be-
cause of the positive sign of the action, however, the
counterterm has opposite sign with respect to that of the
ordinary theory with the same sign of g, so that the S

function

Blg)=— —>— g2

1617Zg

is negative and the theory is asymptotically free. Note
that, because of the positive sign of the action, the four-
point function at the tree level is proportional to g, while
in the ordinary theory it is proportional to —g. In the
present model for g positive the coupling is therefore at-
tractive.

In conclusion we have seen that by means of NC vari-
ables we can construct models with properties otherwise

(35)

unattainable. Moreover these variables are not just
abstract mathematical entities devoid of any physical in-
terpretation, but describe composites of fermions, so that
such models can be of phenomenological relevance.

We have also argued that NC variables are potentially
useful in a variety of problems in particle and many-body
physics. We think that the present example makes this
possibility more likely, showing how they can be used in
actual calculations.

This work was carried out in the framework of the Eu-
ropean Community Research Program “Gauge theories,
apphied supersymmetry and quantum gravity” with a
financial contribution under Contract No. SC1-CT92-
0789.

[1] K. Symanzik, Lett. Nuovo Cimento 6, 77 (1973); S. Cole-
man (unpublished). Coleman’s argument is given by J.
Iliopoulos, C. Itzykson, and A. Martin, Rev. Mod. Phys.
47, 165 (1975); R. A. Brandt, Phys. Rev. D 14, 3381 (1976);
K. Gawedzki and A. Kupiainen, Nucl. Phys. B257, 474
(1985).

[2] N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio, Nucl.
Phys. B158, 295 (1979); R. Dashen and H. Neuberger,
Phys. Rev. Lett. 50, 1897 (1983); M. A. Beg, C. Pana-
giotakopoulos, and A. Sirlin, ibid. 52, 883 (1984); M. M.
Tsypin, P. N. Lebedev, Physical Institute Report No. 280,
1985 (unpublished); D. Callaway, Phys. Rep. 167, 241

(1988); M. Luscher and P. Weisz, Phys. Lett. B 212, 472
(1988); J. Kuti, L. Lin, and Y. Shen, Phys. Rev. Lett. 61,
678 (1988); A. Hasenfratz, K. Jansen, J. Jersak, C. B.
Lang, T. Neuhaus, and H. Yoneyama, Nucl. Phys. B317,
81 (1989); G. Bhanot, K. Bitar, U. M. Heller, and H. Neu-
berger, ibid. B353, 551 (1991).

[3] F. Palumbo, Phys. Rev. D 48, R1917 (1993).

[4] F. Palumbo, in Lattice ’93, Proceedings of the Internation-
al Symposium, Dallas, Texas, 1993, edited by T. Draper
et al. [Nucl. Phys. B (Proc. Suppl.) 34 (1994)]; Phys. Lett.
B 328, 79 (1994); A. Molinari and F. Palumbo (in prepara-

tion).



	LNF-94/064
	F.Palumbo


