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Abstract

Recently, the Thermal Wave Model (TWM) has been proposed for describing the
coherent instabilities in particle accelerators. It has been shown that the coasting
beam stability criterion can be obtained as "modulational stability" occurring in the
propagation of an electromagnetic pulse in a nonlinear medium. Moreover, the
TWM indicates the possible existence of soliton-like solutions. In this paper a
review of the classical and TWM approaches is presented.
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1. - INTRODUCTION

To describe the dynamics of a beam of charged particles in a circular accelerator one
considers the beam as a collection of non—interacting single particles moving in the external
guide magnetic fields of the machine. With these fields the effects of linear and non-linear
dynamics of a single particle can be studied in detail.

Accelerators quite often require beams of high intensities. As the beam intensity is
increased, the electromagnetic fields generated by the interaction of the beam with its
environment must be taken into account. Such self—fields act back on the beam perturbing its
motion. To describe this effect the single—particle model does not suffice and a multiparticle
representation is necessary. The beam, described by a distribution function, can, under
unfavourable conditions, produce an electromagnetic field that leads to instabilities known as
"coherent instabilities".

In this paper we review the mechanism giving rise to these instabilities with the classical
approach, and compare the results with those of the "Thermal Wave Model".

Classically, the study of the instabilities can be divided into three steps. The first one is to
find the stationary distribution of the beam from the properties of the external guide fields.
Assuming then a small perturbation in the equilibrium distribution, one finds the forces acting
back on the beam. Finally one studies the effects of these self—forces on the perturbation itself.

This procedure implies that the behaviour of the beam is mainly determined by the
external guide fields, and the self—field represents a small perturbation. Under this linear
approximation one finds the instability limits due to the coherent effects.

2. - COHERENT INSTABILITIES OF COASTING BEAM WITH THE
CONVENTIONAL APPROACH

A particle with nominal energy E, moves with velocity Bc on a closed orbit, called
reference orbit, of length Lo =2 n R, where Ry, is the average machine radius. A small energy
deviation AE>0, because of the dispertion in the guide fields, makes the charge to travel a

longer distance with a higher speed. The change Aw in its revolution angular frequency is a
combination of the two effects!:
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where o is the momentum compaction and is a property of the guide fields.

We describe the azimuthal position of the particle along its orbit with the longitudinal
coordinate x with respect to a moving frame rotating at angular frequency . The distribution
function of the beam is G(x,p;s), where s is the independent variable and is equal to Bct. The

integration of G(x,p;s) over the whole ring and all the energies gives the total number of
particles N



J.J.G(x,p;S)dxdp =N (3)

Given the distribution function, we define the charge line density

A(x;s)= | G(x,p;s)dp | (4)

and the istantaneous current
I(x;s) = efcA(x;s) (3)

Let us consider the case of coasting beam. The stationary distribution does not depend on
time and on the longitudinal coordinate x, therefore we can write

G(x,p;s) = Ng,(p) (6)
with
1
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We now assume a disturbance in the stationary distribution of the form
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where n 1s the number of waves per turn of the disturbance and
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The line density and the current are
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The interaction of the beam with the surroundings is described? by the "coupling
impedance" Z. The energy lost by a particle due to the coherent disturbance is given by!
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To find the stability criterion we use the continuity equation
d
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that can be written as
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From the equation (14), neglecting the second order terms, one derives the well known
dispertion integral
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2.1 — Monochromatic beam

Let us use the dispertion integral to find the stability of a beam without energy spread. In
this case the stationary distribution is

é(p)
= 17
2%(P) 27R, U7
Substituting equation (17) into equation (16) we obtain
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| It AQ is imaginary we get a perturbation with exponentially growing and decaying
amplitudes (equation (18) has two solutions) that leads to instability. The real part of AQ gives
an angular frequency shift.

When the coupling impedance Z has a real part, that is a resistive component, AQ will
always have an imaginary part and therefore the beam is unstable. For a pure imaginary
impedance, instability or stability depend on the sign of 1. Below transition energy (n<0) if Z;
1s positive (capacitive due to space charge) we have stability. Above transition energy 1

changes its sign leading to the negative mass instability. The contrary happens if Z; is negative.
This behaviour is summarized in Table L

Table 1

In Figure 1 we show the contour plot AQ; = constant of equation (18) on the plane Z;, Z;.
This allows us to read the grow rate for any impedance.



FIG. 1 — Stability diagram relating growth rate and impedance.

Qualitatively the instability can be explained as follows. Let us consider for instance the
cage of capacitive impedance. The electromagnetic force acting on the beam is proportional to
31 . A small perturbation in the form of a wave as shown in Figure 2, will produce a positive
force acting on the front slope of the wave crest and will increase the energy of the particles. On
the other side of the wave the force decreases the energy. If we assume to be above transition
energy, an increase of the energy implies a decrease of the revolution frequency according to
equation (1). Therefore the particles in the front crest will slow down and the particles in the
back crest will speed up. The net result is an increase of the height of the crest. The original
perturbation is thus increased leading to instability, known as negative mass instability. The

analogous reasoning can be used to explain the case below transition energy with an inductive

impedance for which the force is proportional to "

FIG. 2 — Instability in a beam without energy spread.



2.2 ~ Beam with energy spread

The beam has in reality an energy spread of finite width. Let us consider for example the
case of a parabolic <t~tionary distribution given by3
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Substituting equation (19) into equation (16), we obtain
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If the frequency €2 of the perturbation lies within the frequency spread, namely 1S
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within the energy distribution, the dispertion integral has a singularity. In this case the integral

is split in two parts, the principal value and the residual term, and the solution is?
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The equation (21) relates the frequency €2 of the perturbation to the impedance of the
surroundings. The stability condition requires that AQ;j=0. In Figure 3 we show the real and
imaginary impedance versus Q at different values of AQ;. The shaded area is the stable one.

If the impedance Z is inside the stable area, then the beam coherent oscillation energy 1s
transferred to the incoherent kinetic energy of the particles inside the beam, thus stabilising the
perturbation. The damping of the oscillations is known as Landau damping effect?.

The actual shape of the stability limit depends on the distribution edges. Sharp edge
distributions, as the parabolic one, are less stable than the ones with long tail, such as the

Gaussian distribution. When one neglects the effects of the edges, the stable area can be
approximated by a circle obtaining the well-known stability criterion>- |

2
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where the form factor F, of the order of unity, is determined by the radius of the approximating
circle.

(23)
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FIG. 3 — Stability diagram for a parabolic distribution.

3. - THE THERMAL WAVE MODEL APPROACH

The Thermal Wave Model” describes the beam dynamics by means of a complex wave
function ¥(x;s), the so—called beam wave function, satisfying a sort of Schrédinger equation.
The square modulus of W(x;s) gives the longitudinal density profile of the beam. We relate this
beam wave function to the charge line density by

N
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[P (x; ) (24)

We start from the single particle equation of motion (15) with A® given by (1) from
which we get the dimensionless Hamiltonian
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In order to find the Schrdinger equation, in complete analogy with quantum mechanics,
we use the following correspondence rules
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where € is the longitudinal beam emittance.

Substituting equations (26) into equation (25) we obtain the Schrodinger-like equation
for the beam wave function
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For a purely reactive impedance (Z =17,), the energy lost by a particle in one turn 1s

U(x;s) = efcR, —ii- c?/lc(;;s)

Writing U(x;s) as a function of W(x;s) with equation (24), we finally get the cubic
nonlinear Schrdinger equation |
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From the general theory of cubic nonlinear Schrédinger equation, it is possible to
demonstrate that a small perturbation of W(x;s) is stable when (Lighthill criterion)3
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or equivalently

that {s the same stability criterion of unbunched monochromatic beam summarized in Table 1.

3.1 - Solitary waves

Another important property of the cubic nonlinear Schrodinger equation is that even in the
unstable condition nZ; > 0, solitary solutions are possible. They are found by looking for
solutions depending on the moving coordinate (x—3,s) of the relativistic (B, = 1) envelope form

¥(x;5) = G(x - ﬁos)ei(k"x_w‘s) (32)

with kg and wg real numbers.

Solitary waves preserve they shape during propagation through a dispersive medium,
when nonlinear self-modulation occurs. The beam line density, under this condition, is’
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So far there is no experimental proof of the existence of solitary waves. However, some
"anomalous” behaviours of the beam dynamics have not been clearly explained. We mention,
for instance, the early observation of the beam dynamics on the Cosmotron?, where stable
triangular distributions of the beam density develop in the unstable RF phase.



4. -~ CONCLUSIONS

The Thermal Wave Model applied to unbunched particle beams leads to a cubic nonlinear

Schrdinger equation similar to the one governing the propagation of an electromagnetic pulse
through a nonlinear medium (paraxial approximation). From the general properties of the
nonlineay Schridinger equation it is possible to derive the stability condition for monochromatic
beams that reproduces the classical criterion. Furthermore, it indicates the possible existence of
solitons in the unstable regions.
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