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Abstract

In this paper we present a detailed study of the phase structure in the 3—m plane for
Compact Lattice QED. We analyse the scaling properties of the distribution of the
partition function zeros in the complex fermion mass plane on 44, 64, 8% and 104
lattices. The partition function is numerically evaluated by using two independent
methods, based respectively on a standard HMC (Hybrid Monte Carlo and on an
alternative approach derived from the MFA (Microcanonical Fermionic Average). The
finite s1ze scaling behaviour gives strong indications for a first order phase transition at

any value of the fermion mass. The reliability of the result follows from the remarkable
agreement between the two independent methods.
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1 Introduction

The lattice approach to quantum field theories is a mathematically well defined way
to extract results in the non perturbative regime; being a regularization scheme, the
lattice formulation has to be connected with the continuum limit, which is supposed
to describe the real theory, through a renormalization procedure. The equivalence
can be meaningful only when the effects of the discretisation of space-time become
negligible, i.e. when the system is scale invariant. This is known to happen in the
case of a second order phase transition. The knowledge of the phase diagram of the
corresponding statistical mechanical system is therefore crucial in order to establish
the existence of the theory in the continuum and to make predictions about its
physical properties.

The critical behaviour of a statistical system can be investigated using several
different approaches; one of the most direct is the study of the Lee-Yang zeros [1], i.e.
the zeros of the analytical continuation of the partition function for complex values
of the critical parameter. The thermodynamical functions can be reconstructed
from Lee-Yang zeros and the critical properties of the theory in the continuum can
be inferred from the dependence of the thermodynamical functions on the volume.

The Lee-Yang method has been used to investigate the critical properties of sev-
eral statistical models, both analytically and numerically. Recently the numerical
approach has been extended to lattice gauge theories with and without dynamical
fermions [2], [3]: several results have been obtained in small lattices for QED and
QCD in 4 dimensions [4], [5], [6]. In particular great interest has been devoted to the
Abelian model; indeed the existence of a continuum limit for this model is very in-
teresting because it would provide an example of a 4-dimensional non asympotically
free quantum field theory. From this point of view the two possible formulations for
the Abelian model on a lattice seem to present very different features.

For Non Compact Lattice QED there are strong evidences of the system un-
dergoing a continuous transition while it has not been clarified yet if the theory is
interacting in the continuum limit [7].

The situation for the Compact formulation is different: in the quenched hrmt it
has been almost established [8] that the model presents a first order phase transition
at a finite value of the coupling constant. For the theory to exist in the continuum,
the introduction of light fermions has to modify the character of the transition,
making it second order. The problem has not been clarified yet, even if there
are indications of a strengthening [9] of the quenched phase transition after the
introduction of light fermions. On the other hand, previous calculations have not
shown the expected scaling behaviour for Lee-Yang zeros [10]. A deeper study of
the situation is therefore of great interest.

In this paper we present a comprehensive analysis of Lee-Yang zeros for Compact
Lattice QED in order to give a definitive answer to the problem.

To this purpose we use two independent methods for the reconstruction of the
partition function and we analyse data for 4 different volumes, from 4% to 10* in
order to have an accurate estimation of the scaling exponents. Moreover, one of the
two approaches (namely MFA [11]), does not require a separate fermionic simulation
for each f, thus allowing to extend the analysis to the whole relevant § range.



The main result of our analysis is a strong evidence of the persistence of a
discontinuous transition down tom = 0.

The paper is organized as follows: in section 2 we review the theoretical frame-
work for the computation of the partition function as a polynomial in the mass;
in section 3 we describe the numerical methods used for the generation of the con-
figurations and for the root finder; in section 4 we compare the results obtained
at 4* and 6* with both methods; in section 5 we study the phase diagram of the
model and the scaling exponents from the MFA data. Finally, section 6 contains
our conclusions.

2 The model and the Lee-Yang zeros

The discretization on a 4-dimensional lattice of Compact QED leads to the following
action:

§ = 5 3 mu(@)(@HUM)x(z + 1) - Uiz = m)x(= = m)}+
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and x(z) are the Kogut-Susskind fermion fields, describing 4 degenerate flavours,
and Up(a:) represents the compact link variable. The introduction of the Kogut-
Susskind formulation for the fermion fields is here justified by the fact that we are
interested in the chiral properties of the model. The lattice theory described by
(1) can be regarded as a statistical model, whose partition function depends on two
external parameters, namely the inverse coupling constant g = ;15 and the bare
fermion mass m:

2(8,m) = [ [dx)ldxdUu(2)]e (3)

The integration over the Grassmann variables can be explicitly taken and gives
2(8,m) = [(dU, (2] det M{m, Uy (z)]e™ (4)

where M is the fermionic matrix:

M(n,m) = mb, m+
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The fermionic matrix M can thus be decomposed as:

M=m-I+A ' (6)



where A is an antihermitian matrix. The characteristic form of M implies that for

every gauge fleld configuration the determinant can be written as a polynormal in
the mass m [5]:

det M = Zc U, ]m" _ (7)-

At fixed S, the partition function is then, formally, proportional to the expectation
value of the fermionic determinant taken over pure gauge fields configurations and
can be written as a polynomial in the fermion mass:

Zg(m) = f [dUH(z: ﬁSGZc U, }m Zc (8)m (8)

In this formulation, the polynomial (7) has degree equal to the volume of the system.
Its even coefficients are positive and the odd ones are identically zero.

Equation (8) is the starting point for the Lee-Yang approach to the study of
the chiral phase transition, which requires the determination of the zeros of the:
partition function in the complex mass plane.

Here one expects the standard scenario for the zeros of the partition function of
a general statistical system. The complex zeros are expected to arrange themselves
in regular structures, for example lines, which separate regions of the parameter
space where the partition function has different properties [12]. |

- The complete set is needed in order to reconstruct the thermodynamical func-
tions of the model but the critical properties of the system are only determined by
the zeros lying closest to the real axis {1], which are directly-related to the singular
part of the partition function. Indeed the system presents a discontinuity in some
derivatives of the free energy when one of these regular patterns cuts the positive
real axis in the thermodynamical limit. In particular the critical points of the model
- coincide with the zeros lying on the real axis.

At finite volume the partition function {8) has a finite number of complex zeros
lying outside a region surrounding the real axis: this guarantees the analyticity of
“the partition functions (8). At increasing finite volume the sequence of the real parts
of the zero lying nearest to the real axis (critical zeros) converges to the critical point.
Several conjectures have been suggested relating the order of the phase transition
with the geometrical distribution of the zeros {3} and with the scaling behaviour of
the imaginary parts of the critical zeros with increasing volumes [4], although no
rigorous proof has been given yet.

Compact QED is known to undergo a phase transition at a finite value of the
coupling constant for every value of the mass [13], [9]. In particular the critical
value of 8 is always non zero and it decreases with decreasing mass (Fig.la). At
fixed beta the zeros are distributed in three different types of patterns {14]: for
B < B.(m = 0) all the zeros are pure imaginary and they cut the real axis at m =0
(Fig.1b); for 8 > B.(m = oo) the situation is similar but the zeros do not cut the
real axis anymore (Fig.lc); in the intermediate region the zeros are pure imaginary
down to a given value of the imaginary part and then they migrate into the complex
plane forming a curve that cuts the real axis at m = m; > 0 (Fig.1d).

- In the 8 — m plane the critical points form a line that join the quenched critical
point (m — o0), where the transition is known to be first order [8], to the chiral



limit (rn = 0) where a real physical theory should be defined. The existence of the
theory in the continuum limit would then require a change in the order of the phase
transition along the critical line.

There are several interesting quantities related to the order of the transition [4].
For a continuous phase transition, from general finite size scaling arguments, the
position of the critical zero in the complex plane is ruled by the scaling law:

2.(L) — z.(c0) = AL, (9)

where 4 is a complex number. This means that the real and the imaginary part
of the zero scale independetely with the same exponent. Namely:

Re z.(L) — z.(oc0) ~ L™+ | (10)

and

Tm z(L) ~ L. (11)

The scaling law (11) can be extended to the case of a first order phase transition,
where the shift is determined only by the actual size of the system, due to the fact
that there is no divergent correlation lenght. In this case, for a 4-dimensional model
we expect ;1,- = 4. On the other hand the exponent of the real part of the critical
zero is not supposed to present an universal behaviour [4].

Another interesting relation for a second order phase transition is the scaling
law for the linear density of the zeros near to the real axis as a function of the linear
size of the lattice: |

p(L) ~ L7. - (12)

- Again this scaling law can be expected to hold also for a first order transition
with v = 4.

3 'The numerical approaches

The lattice approach to the computation of the mass dependence of the partition
function amounts to the determination of the coefficients in (8). In general, the
functional integration over the gauge fields in (4) can be performed numerically
using a Monte Carlo scheme for the generation of statistically independent gauge
configuration from the correct probability distribution.
- One of the main problems arising in the measurement of the expectation value
of the fermion determinant is that there may be no overlap between the probability
distribution of the pure gauge fields with the effective support of the operator (7)
and this spoils the convergence of the averaging procedure. The problem can be
faced using different approaches related to different numerical algorithm. Here we
will discuss in details two of them: the Hybrid Monte Carlo method (HMC) [15]
and the Microcanonical Fermionic Average (MFA) {11] .-
In the HMC approach the problem is solved shifting the probability distribu-
tion of the gauge fields by introducing an updating mass mg [5]. This procedure
corresponds to measure a new operator that can be analytically related to the old



fermionic determinant. The support of new operator overlaps with the shifted prob-
ability distribution, at least for m belonging to a neighborhood of mg.

We briefly recall the main steps leading to this modification of the operator:
at fixed £, using the irrelevance of overall multiplicative factors in the partition
function, we can write:

Zg(m) ~ [{dU,) det M (m)e=P"¢

Zﬁ(m) ~ Zﬁ(mo) - f[de] detM(mg)e“ﬁsG

rr 1 detA(m) 1 ., _
f[dU“] detﬁ‘nff((rng)) detM(mo)e BSq

fldU,] det M (mg)e—P5¢c

detM(m
f (13)
detM(mO) P(mg,B)
Therefore the partition function can be éxPressed as the vacuum expectation

value of the determinant ratio det M(m)/ det M(my), averaged over configurations
generated with probability weight

|

det M|my, U]e“ﬁsa[U] | (14
[ [dU") det M[mq, U'je~8SclU'}"

P[Uﬁamﬂaﬁ] —

Using the fact that det M (m) is a polynomial in the mass we can write

det M(m) 2 m?" *
det ]\/I(TTLQ) - ,;Cﬂ (ﬂ) detM(mg) . (15)

This procedure obviously does not change the zeros of the partition function.

At every (8 value the configurations for the gauge fields are generated, following
the new distribution (14), with a standard HMC code. For a single configuration a
modified Lanczos algorithm [16] gives the eigenvalues A; of the massless fermionic
matrix A (6), which are pure imaginary. The coeflicients are then computed from
the eigenvalues and then averaged over the configurations: they are the fundamental
quantities for the determination of the zeros of the polynomial.

The coefficients of the partition function can be computed in a completely inde-
pendent way in the MFA framework [11]. _

The basic idea in MFA is the exploitation of the physical equivalence between
the canonical and the microcanonical formalism, in our case the introduction of

an explicit dependence on the energy in the computation of the partition function.
Indeed (4) can be written as follows:

Z(8,m) = f dEn(E)e SV PETM(E, m) ' (16)
where
n(E) = f [dUJ8(6VE — S6[U.)) (17)
is the density of state at fixed energy £ and

J[dU,J8(6VE - iz;gpl) det M[m, U,] (18)

detM(E,m) =



is the fermionic determinant averaged over field configurations of fixed energy FE.

Note that (18) does not depend on (. As stated before, the fermionic determinant
for a single configuration is a polynomial in the mass:

det M{U,, m] = ZC U,)m" (19)

and therefore also (18) can be rewritten as a polynomial in the mass:

det M(E ,m) = Zc (E)m (20)

with coefficient depending on the energy:

[[dU)6(6VE — Sg[U.)Ch[U.]

Ca(E) = n(E) . | e

Substituting (20) in the partition function (16) we obtain the key relation between
the coefficients, as defined in the previous formalism, and the microcanonial quan-
tities:

CalB) = [ dBn(E)e=*VEC, (B) O (22)

The explicit computation of the coefficients then requires the knowledge of both

the coefficients C,,(E) and the density of states n(E): here the latter quantity is
obtained numerically.

| This is done evaluating Pg,, the pure gauge probablhty distribution of the pla-

quette S at some fixed By (i.e. the histogram of the plaquette) {9]. In a finite range

of energies, depending on the selected value of By, Pg, can be related to n(E) :

n(E) ~ Pg,(E)e® " (23)

In general, for the evaluation of the integral in (22) n(F) must be evaluated in
a wider range of energies, therefore one can repeat this calculation, using a series
of values of By and then reconstructing the density of state by normalizing the
overlapping distributions at adjacent values of By. The number of different values
of Bo, near a phase transition, increases with the volume of the system, varying, in
our lattices, from 5 ( in the 4% ) to 20 (in the 10* ).

For the calculation of C,,(F) we proceed as follows: first we chose a set of values
of energy, in the range selected to cover the support of the weight function in (22),
for the values of B we are interested in. Then for every value of E in the set
we generate gauge fields configuration using a microcanonical code ( in this case
standard overrelaxation [17}); the generation of gauge fields at fixed energy is not
the costly part of the whole procedure, so we can well decorrelate the configurations
used for measuring the fermionic operator. Again a modified Lanczos algorithm is
used in order to obtain the complete set of eigenvalues of the massless fermion matrix
A, and the coefficients C,(E) are reconstructed recursively and then averaged over
decorrelated conﬁguratwns The scheme is essentially the same used in a typical
MFA calculation {11}, [9]. '

At the end we have the coefficients C,,( F') evaluated at discrete energy values: a
polynomial interpolation alJlows the reconstruction at arbitrary values of the energy




E, in order to perform the numerical integration in (22) and obtain the coefficients
Cn(B3), that can be regarded, as in the HMC apporach, the final product of this part
of the numerical procedure for the determination of the Lee Yang zeros. Note that
enters only at this final point, therefore it is possible to determine the coefficients at
every [ value in an interval defined by the range in energy in which the microcanon-
ical quantities are known, without repeating the costly part of the computation, i.e.
the determination of the eigenvalues of the fermionic determinant. Therefore the
MFA approach is particularly well suited for a global study of a critical line, like
the one existing in Compact Lattice QED.

In this approach the problem of the mismatch between the pure gauge probability
distribution and the effective support of the fermionic determinant does not arise.

In fact for an accurate evaluation of the integral (22) one has only to guaran-
tee that the coeflicients C,,(F) are computed on the relevant energy values; then
the knowledge of the density of states n(E) allows an a posteriort reconstruction
of the weight function in the integrand. In addition, the microcanonical part of
the procedure, i.e. the determination of C,,(FE), is completely independent on the
subsequent operations, so that one can add some points in energy ( if it turns be
necessary for the evaluation of the integral in (22) ) without having to repeat the
complete microcanonical calculation. All these features allows a complete control
on the various step in the procedures without any external parameter to be tuned.

As stated before the coefficients C,(3) are the final product of the generation
part of our procedure; indipendently from the scheme used for their calculation, they
are the input to the final part, i.e. the determination of the'roots of the polynomial
(8). - _

Let us briefly recall the main features of the polynomial: in a volume V, the
partition function i1s a polynomial of order N = V in m and the typical range of
the coefficients is of order e¢*/2. With this kind of data the main problem is the
efliciency of standard root finders in the determination of the zeros. Here we will use
an alternative method [14] developed in order to analyse the partition function. This
algorithm 1s based on well known properties of analytic functions on the complex
plane that, in particular, allows the determination of the number of zeros for a
given function inside a region of the complex plane, provided the function has no
singularities inside this region. In particular, chosing a region R in the complex
plane where the function F(z) is differentiable, the number of zeros and poles of

F(z) in R is given by:

1 F'(z)
Eﬁsz(z)—fY"P (24)

where the integral is performed on the boundary L of R, N is the number of
zeros of the function F(z) in the region R, P is the number of poles, each with its
multiplicity. Relation (24) is valid if F'(z) has no poles or zeros on L.

In our case, after determining the number of zeros of the partition function
In a given region R, we obtain the exact position of the complex zeros by using
a minimization procedure on the partition function. A verification is made by
calculating the integral on a small circle around the minimum itself and a standard



method (for example Laguerre) reﬁnes the numerlcal value of the zero and increases
the precision [14].

‘This procedure does not present typical problems caused by deﬂatlon and slow
convergence. Some problems still arise from systematic and statistical errors in the
coefficients. However, these errors mainly affect the general distribution of the zeros
and do not change the position of the roots lying mearest to the real axis [14].

4 Lee-Yang zeros from HMC and MFA

We now present the results from numerical simulations obtained using the two dif-
ferent methods presented in section (3). In Table 1 we summarize the parameters of
the simulations for HMC method and in Table 2 we give the corresponding descrip-
tion for the MFA runs. Note that different boundary conditions for the fermion fields
have been used in the two approaches, namely periodic for MFA and antiperiodic for
HMC. However some simulations using antiperiodic (periodic) boundary condition
were performed in MFA (HMC) to check the influence of boundary conditions on
the results.

For every V and 8 value the coefficients of the partition function have been
computed and used to obtain the corresponding zeros in the complex mass plane.

In Fig.2 we present the critical zeros on 4% lattice at # = 0.85 and 8 = 0.865
obtained from HMC and MFA. It is evident that the two approaches give consistent
results. The absence of significant effects of the boundary conditions on the critical
zeros at this volume had been previously checked on HMC [5]. In Fig.3 we show
the zeros obtained on 6 lattice at B = 0.885. Here periodic and antiperiodic zeros
are presented for MFA while only antiperiodic zeros are shown for HMC. A clear
consistency of the whole picture is evident. Antiperiodic zeros obtained from the two
methods coincide; a small shift is present between periodic and antiperiodic zeros
but this is of the same order of the statistical errors (not present in the figure).

A well defined procedure to obtain statistical errors on Lee-Yang zeros has not
been developed and this problem is not discussed in the literature. Here we opted for
the following procedure: a standard jacknife method is used to produce n averaged
partition functions and n estimations of a given zero. The largest error on the
critical zeros is of order 10% on both imaginary and real part. The procedure has
been applied to different volumes and the estimate of the error is almost stable.

In Fig.4 we show the phase diagram in the 8 — m plane obtained from 4% and
6 lattices with MFA and HMC. The estimation of the critical mass is here the real
part of the zero lying nearest to the real axis. The consistency of the two approaches
at different # values is remarkable, making unnecessary further checks. Note that
the critical line is shifted to the right in the # — m plane with increasing volume.
This strong dependence of the critical 8 (at fixed mass) on the volume had already
been shown in the infinite mass limit [8].

This comparative analysis evidences the complete consistency of the two ap-
proaches in the description of the critical properties of the theory. We again em-
phasize that this agreement on the physical quantities is very remarkable because the
two methods use completely different procedures to evaluate the partition function. -
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From the technical point of view MFA and HMC show different features. In
Table 3 we summarize the computer time required to generate the coefficients at
different volumes. Due to the use of Lanczos algorithm for the diagonalization of
the fermionic matrix both methods have a cost at least of order V2. However the
influence of the parameters and the decorrelation between subsequent measurements
are different. In particular the HMC method requires the introduction and the
tuning of an additional parameter, the updating mass my. The tuning becomes
more important with increasing volumes, expecially in the case of a strong first
order phase transition. In Fig.5 we show the critical zeros at 8 = 0.885 obtained
on 6% lattice with three different values of mg and the same statistics. By a direct
comparison with the MFA zeros shown in Fig.3 it is evident that.only for mg close
to m. it is possible to obtain the correct zero pattern. In particular the estimate for
the critical mass is almost correct but there is a significant shift in the imaginary
part. The reliable interval for the tuning of my becomes smaller with increasing
volume: on a 4* lattice the effects of the change in mg are negligible [18].

The estimation for the critical zero on a 8% lattice at # = 0.885 is influenced
by this effect. Indeed the critical mass is found to be in agreement with the MFA
results but the imaginary part is strongly altered [18].

Because of these problems a direct comparison of the computer cost of the two
approaches is not easy. An estimation of the effective computer time for a typical
run is given in Table 3. '

5 Scaling exponents and the order of the transition

We will now present a detailed analysis of the scaling behavior for the Lee-Yang
zeros at 4 different volumes, namely 4%, 6%, 81 and 10%. In view of the coincidence
of the relevant results of the two approaches, and of the possibility in the MFA
approach to move in the theory parameter space at relatively small computer cost,
the analysis is carried out using only the MFA data in a wide 8 range.

In Fig.6 we show the phase diagrams in the § — m plane obtained at 4 different
volumes. It is evident that the critical line keeps on moving towards the right also
at larger volumes, presumably converging to a limit curve at infinite volume. Here
we suppose that the real part of the zero lying next to the real axis is an estimation
for the critical mass. The hypothesis that the imaginary part of the critical zero
vanishes in the infinite volume limit has been explicitely checked by introducing a
constant term in the scaling relation (11) and fitting the data to determine its value.
In the interesting (3 region the value of the constant is compatible with zero.

The scaling analysis at this point is made using relations (10) and (11).

The strong dependence on the volume of the critical line implies that the scaling
of the imaginary part of the critical zero should be checked at i) fixed 8. and ii)
fixed critical mass. The latter case requires the knowledge of the critical zero at any
B: this is done by interpolating the results obtained from a sufficiently dense set of
B values. This is done here for a wide range of 8. and m.. \

In Fig.7 and Fig.8 we show the typical scaling behavior as a function of the
volume for the imaginary part of the critical zero, at fixed 8. = 0.885 and fixed



— 11—

m. = 0.05 respectively. Similar results have been obtained at different 8. and m,
values.

From the slopes of the fitting lines we determine the scaling exponent ;l, as a
function of 8 and m respectively. These are shown in Fig.9 and Fig.10. The results
are compatible with the transition remaining first order down to m = 0.

In the large m region the situation is similar to the one observed at these volumes
for the quenched theory [8]. We recall that in'the quenched case the scaling expo-
nents reach the first order value only for volumes larger that 104. At the moment-
is not clear why the introduction of dynamical fermions allows a faster convergence
to the infinite volume regime.

We now turn to the scaling features on the real part on the critical zeros.

In Fig.11 we show the scaling behavior of the real part of the critical zero at
Bc = 0.885; the infinite volume critical mass can be inferred using the Finite Size
Scaling in Eq. 10. In principle this analysis, carried out for several values of 8 in
the intermediate region, gives an estimation of the infinite volume critical mass as
a function of the coupling constant. The corresponding analysis can be carried out
also by fixing m, and extracting the limiting value of the coupling constant. The
critical points obtained with this method are reported in Fig.12. The superposition
of the two sets gives us a clear signal of the reliability of our results.

We now discuss the scaling behavior of the linear density of the zeros lying
next to the real axis. In Fig.13 we show these zeros at § = 0.885 for 6%, 8% and
10" lattices. The interesting feature of these patterns is that the zeros are exactly
equispaced and the spacing is twice the distance of the critical zero from the real
axis. Therefore the linear density has the same scaling properties as the imaginary
part of the critical zero and this is exactly what one expects in the case of a first
order phase transition. The situation holds also for different 4. This property
allows an unambiguous evaluation of the scaling exponent, independently from the
different suitable definitions of the linear density.

6 Conclusions

We have presented in this paper an extensive analysis of the phase structure of the
four-dimensional compact abelian model with fermionic degrees of freedom. This
analysis has been made possible by the application of the powerful tool of the Lee-
Yang zeros to the partition function obtained with two different methods, namely
the Hybrid MonteCarlo method and the Microcanonical Fermionic Average method.

While the effectiveness and the problems of the HMC method are already well
established, the application of the MFA method to the analysis of the critical prop-
erties of the L-Y zeros is new and powerful. In particular this approach makes
possible to explore the coupling constants space at relatively small computer cost.

It is important to stress the fact that the two methods are completely indepen-
dent, using totally different strategies and computational ai)proaches. Given the
structure of the fermionic determinant on the lattice, i.e. a huge polynomial with
terms varying over an exponential range of order of magnitude, even tiny systematic
effect are likely to manifest themselves in huge differences.
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Still, the two methods give essentially equal results in the important critical
regions. Systematic effects, where present, are well understood and completely
under control.

From a technical point of view, it might be interesting to remark that the MFA
approach allows a natural factorization of the generational and analysis steps: this
is exemplified by the fact that of the simulations quoted in the paper, the 84 lattice
uses the same configurations generated for the analysis reported in [9], only the
analysis of the data being obviously different. Only those concerning the 44, 64,104
have been repeated or performed ex novo.

From a physical point of view, all the results we present are strongly supporting
the picture of the phase transition of the theory beeing first order down to m = 0.
In particular, we do not find any sign of softening of the transition due to the
inclusion of fermionic degrees of freedom. Thus, the theory has no continuum limit.
Even though these results have been obtained on small lattices, use of Finite Size
Scaling analysis gives predictions of the infinite volume behaviour totally consistent
with this picture. It has to be added that these results are consistent with the ones
obtained in different approaches, so giving a consistent picture of the model.

We expect a totally different behaviour in the (possibly more interesting physi-
cally) case of the non compact model[7]. Here, the phase transition is entirely due
to the presence of fermionic degrees of freedom; it is of second (or higher) order,
so possibly defining a continuum theory. The important issue here is the (non)
triviality of the theory at the critical point: a precise determination of the critical
B is essential to6 assess the (non)triviality of the model. An analysis of the non
compact QED (in dimensions ranging from 3 to 5) under the lines depicted above
is underway and will be presented elsewhere.
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Table 1: Parameters of the simulations for HMC method. Simula-
tions have been performed on a CRAY YMP at the CINECA.

L Je) Cmy # Iterations for # Measurements

thermalisation
4 0.0 0.05 600 3200
0.5 0.05 : ; 600 3200
0.8 0.05 600 3200
0.85 0.05 600 3200
0.865 0.05 600 3200
0.885 0.05 600 3200
0.16 i 400 300
0.28 400 300 -
0.92 0.05 600 3200
0.95 0.05 600 3200
1.0 0.05 600 3200
1.5 0.05 600 3200
6 0.885 0.03 600 300
0.10 600 400
0.16 600 . 400
8 0.885 0.08 600 300

Table 2: Parameters of the simulations for MFA method. Simula-
tions have been performed on the Transputer Networks of the Theory
Group of the INFN Frascati National Laboratories.

L #Energies # Configurations 7## pc Iterations
per Energy between measurements
4 32 1000 100
6(ap) 12 300 200
6(p) 12 300 200
8 i 12 100 : 600
10 12 30 1500

Table 3: Typical computer times required to generate the coeffi-
cients at different volumes for HMC and MFA.

HMC | L | CRAY YMP hours (1 8)
4 1.4
6 21.4
8 97.8
MFA L T800 hours CRAY YMP equiv.
(whole run) hours (whole run)
4 500 2.2
6(p) 1440 6.4
6(ap) 1440 6.4
8 4800 21.3
10 8640 38.4
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Fig. 1: Schematic phase diagram in the m — § plane (a). Typical zero
patterns at strong (b), weak (c) and intermediate coupling (d).
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HMC and MFA methods.
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