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Abstract

The common probabilistic roots of the geometrical models of hadron diffraction and
of the Bloch-Nordsieck theory of soft Bremsstrahlung are discussed. Their close rela-
tionship is best visible in the Chou-Yang model generalized to four dimensions. An
interesting complementarity of the two descriptions in reproducing elastic scattering
of high energy hadrons is pointed out.
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High-energy collisions of hadrons are supposedly characterized by the two features:
(1) the incident hadron is way out of the target before the effects which it induces

in the latter take place; (ii) in its encounter with a target, an incident high energy
hadron suffers very little deflection of its path.

The first assumption means that the incident hadron sees the target, essentially
as a geometrical obstacle of given shape. The approximation is taken so much for
granted that it is often non stated explicitly. It gives rise to a geometrical picture [1,2]
of scattering where colliding hadrons are drawn as spatially extended objects of finite
size. The geometrical models impose thus on themselves the condition that their
S-matrix should tend to scattering by a black disc at large distances. In consequence,
according to typical optical diffraction patterns, all these models predict multiple dips
and peaks in elastic scattering of hadrons.

The second assumption allows to adopt the eikonal approximation borrowed from
geometrical optics. It implies that single scattering events produce only very small
momentum transfers. In other words, large momentum transfer |/|t| is obtained as
the sum of small momentum transfers accumulated in a large number n of multiple
scatterings. Hadron scattering is therefore similar to the process of energy loss by
a charged particle through the emission of soft radiation. This analogy has long
been noted and has given rise to the Bremsstrahlung picture of hadron scattering [3].
But there is more to it than a phenomenologically useful analogy. It will be shown
in this paper that the two processes are exactly related. They are both probabilistic
point processes governed by the Poisson distribution. In consequence, the geometrical
models may be formulated exactly as the Bloch-Nordsieck theory [4] which describes
the emission of low energy photons by a fast moving charged source.

The basic ingredient of geometrical models is the real, dimensionless opacity func-
tion §2(b) which depends on a relative impact parameter b of interacting hadrons

and appears in the eikonalized scattering amplitude , written as the integral over the
impact plane:

T(g) = gy 5 [ #4971 - corl-0(8), (1)

q= \Atl being the momentum transfer in the centre-of-mass system.

The dynamical conjecture is that the opacity can be expressed in terms of had-
ronic shapes known from other experiments, e.g. in the Chou-Yang model [2] it is
assumed that the Fourier transform of (b) is proportional to the product of the
electromagnetic form factors of the colliding hadrons:

AE) = agiels E) = [ dae TR Fa(e) (2)

where g is a dimensionless coupling parameter. It is equal to the value of opacity
€(0) which corresponds to head-on collisions.



Rather than from experiment, for simplicity of illustration, we take these form
factors from the quark model :
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where vy is the number of valence quarks in the hadron H. For the pion (vg = 2) this
gives a single pole form factor and for the proton (vy = 3), a dipole. For simplicity,
the mass scale parameter m will be taken the same in the two hadronic form factors.
The opacity function then reads

() = gh(mb); hu(u) = 2

m( 3 )’ K, _3(u) (4)

where v = v4 + vg , u = mb and K, (u) is the modified Bessel function. For proton-

(anti)proton scattering when v = 6 one obtains the familiar K3-behaviour of opacity
in the Chou-Yang model [2].

The coupling parameter g governs the decomposition of scattering process into
a series of multiple scatterings. To see how this comes about consider the S-matrix
S = 1 +1T corresponding to the scattering amplitude (1):

 (2n)

S(q) [ dbeitbeas[-a(b)) (5)

Expanding the exponential and making use of (2) one obtains upon integration over
the impact plane:

0
S(g) = €™ Y (-1)"Paé®(q - an). (6)
n=0
This formula describes the distribution of all possible partitions of the momentum
transfer q. The partition of the momentum q, and of the number n is inte cells
labelled by the index j, with momentum k; and number n;:

Qn = Y _nikj; n=3 n; (7
J j
and the partitions are governed by the Poisson distribution :

P, = e'<")%)!—n (8)

with the mean value < n >= g = Q(0).

It is instructive to consider the opacity (U(b}, associated to the given opacity
through the relation:

Q(b) = Q(0) — (). (9)



Since the physical opacity (2(b) attains its maximum value at b = 0, the associ-
ated opacity (}(b) is a real, positive function. Its peculiarity is that at large impact
parameters {)(b) approaches a constant value # 0. The corresponding S-matrix is :

5(9) = 3 Pas®(q - qn) (10)
n=0
which is precisely, adopted to the two-dimensional space, the famous Bloch-Nordsieck
theorem [4], describing the probability density of registering a total momentum q
carried by all photons emitted by a moving charged source. Therefore the opacity
Q(b) can be referred to as the Bloch-Nordsieck opacity in two dimensions.

With this analogy in mind Eq.(10) can be interpreted as describing the distri-
bution g(k.) = S(g = k) of transverse momentum k; acquired in a process of
’hadronic Bremsstrahlung’ [3]. Though the integrals like (5) are Cauchy divergent,
the distributions (6) and (10) may be regularized by means of Cesiro summability [5].
A numerical verification then yields a convenient expression (for k; # 0) of o(k.) in
terms of the summable Cauchy integral:

olks) = 5-eap(~0(0)] [ dsbo(k.B)(ezp(+A(B)] ~ 1). (11)

In Fig.1 we give the plot of g(k.) in the case of proton-proton scattering (v = 6) for
various values of the coupling g and the fixed value of m? = 0.71 GeV2.

The analogy with Bremsstrahlung can be pursued even further by reformulating
the Chou-Yang model with the form factors (3) in 4 dimensions. To this aim introduce
the 4-dimensional coordinate vector z, = (¢,x), where x = (2,x. = b), and the

4-momentum vector k, = (w, k), where k = (k,k.) ,w = \/(kz + m?). Next we use
the identity:

“ 1 _ I'(v —3/2) /‘+°°é¢m 1 (12)
1+ ;’ql,_?)u—Z I'(1/2)M(v - 2)J-o m (14 qz_+2qlzl)u—3/2.
to rewrite Eq.(2) as
Qb) = Qt = zy=0,x, = b) (13)
where ho(2) Pk
— wZ), —_ ® M) N2 ik
0z) = 93507 Mule) = [ Sl (RIPe™, (14)

j‘(“’) being the four-dimensional current:

v 1/2
H6) = (o) (ml) DRy du(k) = 2,

where p,, is a fixed four-momentum which may be attributed to a charged emitting
source of mass M coupled to a vector field of mass m and four-momentum k,. j,(k)

(15)



has the form of the classical (i.e. non quantised) current describing the motion of this
source. The coupling constant is \/g. In the p, rest frame, with |j,(k)|* = 1/w?, one
re-obtains Eqs (2) and (4).

It should be pointed out that in passing to 4 dimensions the form factors of the
Chou-Yang model are replaced by the current-current interaction. Now introducing
a scale operator L,(m?) which is expressible in terms of the operator m2d/dm? and

serves to increase the index v of the current (above the value v = 3 for which the two
currents in (15) coincide) through the relation:

dk T
Luea(m®) [ SEl0 = [ SRi0000 = 2 (16)
one rewrites Eq.(14) as

Q(z;m) = g - z—;—ELu_s(mz)QBN(m;m) (17)

where the function

Qon(zim) = g [ TEL (k)1 - ) (18)

is the classical Bloch-Nordsieck opacity. It gives rise to the following momentum
distribution:

S(8) = 3 Pa (g, — sk (19)

Equations (17) and (19) , formulated in 4 dimensions, are to be compared with
Eqs (9) and (10) which are their two-dimensional analogues.

The probability assumptions underlying the treatment of Bremsstrahlung are,
essentially, the same as those which go into the construction of geometrical models.
But there is an important difference. In the Bloch-Nordsieck theory each term of the
perturbative expansion is positive - see Eqs. (10) and (19). This fact guarantees, via
Béchner’s theorem of probability theory [6], that for all values of the coupling corstant
g there are no zeros in the scattering amplitude corresponding to the Bremsstrahlurg-
like opacity {2(b) defined in (9). Bdchner’s theorem rules out the possibility of such
zeros if certain conditions of positive-definitness are satisfied. On the contrary, the
corresponding perturbative expansion in geometrical models is the multiple scattering
series (6) , the terins of which alternate in sign. Consequently, the multiple scattering
expansion satisfies the condition of B3chner’s theorem only for very small values of
the coupling constant g < 1. Thus in geometrical models for values of ¢ close to
unity and larger, the scattering amplitude being no longer a positive function of

the momentum transfer /¢, necessarily has zeros which give rise to the dips in the
differential cross-section.

This is illustrated in Fig.2 by comparing the elastic p-p differential cross-section
of the Chou-Yang model with the corresponding cross-section in the Bremsstrahlung



picture. The confrontation with the experimental data at 52.8 GeV [7] reveals an
astonishing complimentarity of the two models. The geometrical model reproduces
perfectly the forward diffraction peak but fails in predicting two dips while only one
shallow minimum is observed experimentally. On the other hand, the Bremsstrahlung
model satisfactorily approximates the elastic differential cross-section outside the min-
imum, being especially correct at large momentum transfers.
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Fig. 1. The distribution of transverse momentum in the hadronic Bremsstrahlung,
with the coupling parameters g = 1.05, 0.2 and 5.0 for the solid, dotted and dashed

curves, respectively.
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Fig. 2. The elastic differential cross-section corresponding to geometrical diffrac-
tion (solid curve) and to hadronic Rcemsstrahlung (dotted curve) with the value of
the total cross-section oy, = 42.7 mio and g = 1.05.



