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Abstract We defirre nonlinear changes of variables in Berezin integrals, assuming as new
integration variables multilinear functions of the defining elements of the Grassmann alge-

bra. We apply such a change of variables to QCD by introducing as integration variables
trilinear and bilinear functions of the quark field, with the quantum numbers of the nucleon

and the meson respectively, and we suggest a perturbative scheme using these functions
as free states.
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1-Recently nonlinear changes of variables in Berezin integrals have been considered, in
order to introduce multilinear functions of the defining elements of the Grassmann algebra
as integration variables [1]. Restricting these functions to homogeneous polynomials we
can distinguish them according to the parity of their degree. When this is odd we again
have odd elements of the Grassmann algebra, and in this case the Berezin integral under
the change of variables transforms into the Berezin integral over the new variables. When
the order is even, the new variables are even elements of the Grassmann algebra, which are
nilpotent commuting variables. In this case the Berezin integral transforms in a different
type of integral [1]. One of the purposes of this paper is to define it in full generality.

In the preliminary investigation of such changes of variables the following program was
outlined

1) to define an integral over even elements of a Grassmann algebra, in such a way that
it is consistent with the interpretation of these variables as composites of fermionic con-
stituents. This allows us to construct for phenomenological purposes a field theory in
terms of even elements of a Grassmann algebra, namely nilpotent bosonic fields, disre- .
garding the way they are related to the constituents and exploiting the specific features
related to the nilpotency. Due to this property, for instance, a ¢* theory exists also with -
attractive coupling and it is asymptotically free [1].

ii) to treat bosonization or bound states by performing the change of variables in the
Berezin integral which defines the partition function of a fermionic system. This appli-
cation is relevant to field theory as well as to the theory of many-body systems. In this
paper we will work out it in the context of QCD [2]. The hope is to solve the conceptual
difficulty of perturbation theory whith free quark states, introducing instead as free states
the physical ones.

To actually do some perturbative expansion, the action should contain quadratic terms
in the composites, and we should know the corresponding propagators. Quadratic terms

can be introduced either as irrelevant terms, as we will suggest later, or by appropriate

manipulations. One example of the latter option is reported, although in an exceedingly

schematic model, in the second reference [1]. As far as the propagators are concerned,



their evaluation does not present any difficulty for trilinear composites, but for bilinear
composites the problem is not yet completely solved. The propagator of a nilpotent
commuting scalar field has in fact been evaluated only in the case in which the index of
nilpotency (see below) is 1. We regard as a promising feature of the formalism the fact
that free propagators of composites can be exactely evaluated.

The present paper is devoted to some of the issues of the above program. We will
discuss the change of integration variables from the defining elements of the Grassmann
algebra to trilinear and bilinear functions of them. Then we will apply such change of
variables to QCD introducing composites with the quantum numbers of the nucleon or
the meson. Finally we will sketch how to set up a perturbative expansion for hadrons.

We will assume the action defined in Euclidean space and regularized on a lattice.

2-Let us consider a typical hadronic correlation function -

< V(25 (1) >= 5 [N AU, () (0™ (1)
In the above equation
Zy = / [dA"dA|[dU]e=S>, (2)

S, is the euclidean action of the quark field A coupled to the gauge field, [dU] is the
Haar measure over the gauge group and 3 and ¢ are trilinear and bilinear composites

with hadronic quantum numbers
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A list of the appropriate matrices F and B can be found in [3], and we will give explicit
examples later on. The above equations define nonlinear changes of variables. Of course

they cannot be inverted, and therefore S\ cannot in general be expressed in terms of



the ¥, 9", ¢, ¢*. We will specify below in which sense such equations can be considered a
change of variables. Notice that they involve only fields at the same site, whose indication

will therefore be omitted in the sequel. Analogous transformations can be performed when

the integration variables in the Berezin integral are the Fourier transforms of the A field.

We want to define the integral of a function of the ¥,v¥~, ¢,d" in such a way that its

value be equal to that obtained by expressing these variables in terms of the A, A", and

performing the Berezin integral over the latters. Now there is only one nonvanishing

Berezin integral

. /d,\"{d,\l...dA;;,dAN,\l,\'{,..,\NA;, — (5)

)

N being the number of degrees of freedom of the A-field. It is economic to introduce

the notation

A — Al'--/\N} A' — /\R{/\T (6)

We must first determine all the functions of the ,v~, ¢, ¢™ which, when expressed in
terms of the X\, \*, are proportional to AA" ( with nonzero coefficient ). We call them
relevant. Only when relevant functions can actually be constructed by means of the given

composites, can the latter be introduced as new variables of integration.
The most general function of nilpotent variables is a polynomial. It is therefore sufficient
to determine all the relevant monomials, which are the monomials of maximum degree.

It is easy to see that we can construct only one relevant monomial in terms of trilinear

variables

N
UP" = F"FAA";, ¥ =[] ¢1 = FA, (7)
I=1
where F is a numerical factor which we call the weight of ¥.

In the case of bilinear composites the situation is different. In order to properly explain

this difference we must introduce the notion of order of nilpotency. This is the smallest



integer n* such that

¢" =0, for n>n". (8)

Now trilinear composites necessarily have index of nilpotency 1 ((A1A2A3 + A A5)6)% =
0), while bilinear composites can have different index of nilpotency ((AiA; + A3A;)? # 0).
This is why we can construct only one relevant monomial in terms of trilinear composites,

while we construct many in terms of bilinear

&, = [[ 6} = bnAA". (9)
{

In the above equation the index m is a vector with components m; ( ¥;m; = N) and
bm # 0 is the weight of ®,,. We can now define the integral over the new variables.

Let us start by the bilinear composites. Their most general function can be written

f(,6°) =Y fu®m +irrelevant terms. (10)

m

If we think of f as expressed, via the definition of the ¢, ¢, in terms of the A, A its

Berezin integral is

[1axdNF(800,X),8 (4 X)) = T fmbim: (11)

This result can be directly obtained if we integrate f over the new variables ¢,¢"

provided we give as rule of integration

/[d¢d¢']‘bm = b, (12)

for all the relevant monomials, all other integrals being zero. Note that, although in

general different expansions

f($,87) = fu®m +irr. terms =) f1. B + irr. terms (13)



may exist, the above equality implies

Z fmbm — Z f:nbma . (14)

Tr rm

so that the value of the integral does not depend on the particular expression for f.

In the case of trilinear composites the same criterion leads to the definition

/[dw‘dw]W‘ = F'F (15)
all other integrals vanishing.

It should now be clear in which sense we can talk about a change of variables. Even
though the A, A" cannot be expréssed in terms of the ¥, ¥", ¢, ", any nonvanishing Berezin

integral must contain the product AA", and we can always replace this product by relevant

functions of the composite variables.

3-We now apply the formalism developed so far to introduce trilinear or bilinear func-
tions of the quark field whith the quantum numbers of the nucleon and the meson resp.

as integration variables in the partition function of QCD.

Let us start by trilinear functions whith the quantum numbers of the nucleon. The
quark field A , has 3 quantum numbers corresponding to colour (a=1,...3), spinor index

(a=1,...4) and flavour (f). We will confine ourselves to two flavours. The four components

of A for given colour and flavour will be denoted according to

Al =gy Al = (%), A =d;, A =(4))", s=1,2 (16)

A trilinear function whith the quantum numbers of the proton [3] is

¢p.s = eabc(a'20'h)ij(a'h)sku?ug'dz, s =1, 2, (17)

with the convention of summation over repeated indices. The neutron function ¥, , is

obtained by the replacement u « d. We want to show that these trilinear functions can



be assumed as integration variables. Analogous proof can be given for the change from

the #,d to the antiproton, antineutron functions.

We must show that Eq.(7) holds with

¥ = ¢P,1¢P,2¢n,1¢n.2_: A= P(ul)P(uz)P(dl)P(dl’)’ P(u‘) = ulu2u3, F # 0. (18)

Inserting in Eq.(17) the values of the matrix elements of the Pauli matrices one obtains

0, = —2i(w,udy) — (w,ugdy)]. (19)

In the above equation

(zyz) = €abc®Yy’ 2°, | (20)

z,y, 2 being three-component vectors. Note that for vectors z,y, z with anticommuting
components (zyz) is completely symmetric.

We first evaluate

Vo 1¥p2 = —4[(viu1d2) — (w1u2d))][(v1u2d2) — (u2uady )], (21)

noting that, if u, z, z are 3-vectors with anticommuting components, we have

(vuz)(uyz) —€ape€aesuubu?zy sl = —eucapabaes P(u)ay 2! = —2P(u)(zyz)

6P(z). (22)

(zzz)

b

Here we use u®u’u® = €, P(u). Hence

¢P,1¢P,2 = —4[—-2P(u1)(u2d2d2) - (311&1(12)(1521&26!1) - (ulugdl)(ulugdg) -+ 2P(u2)(u1d1 dl)].
' (23)



By the exchange u « d we obtain

Yn1¥n2 = —4{=2P(di)(nousd,) — (vadidy)(u1dads) — (uidids)(uadid2) + 2P(d2)(uqu,dy ).
(24)

We now evaluate ¥ disregarding all the terms which are more than cubic in anyone of
the vectors u,,d,, since they are necessarily zero. The resulting expression for ¥ is a sum
of 6 terms, 5 of which can be immediately shown to be proportional to A using only the

identities (22). ¥ has therefore the expression

¥ = 16{7 -48 A + (ul‘ledl)(ul‘u.zdz)(‘u.)dldg)(Uledg)}. (25)

Now

- a, ay,az. b, c b, e, .ba,c
(uz1y1 )(uz2y2)(UT3Y3) =  €avc€aybic, Cagbgct Ut U2 T Y TS Y5 TP YT

_ b, c. bi..cL . ba,,c2
= €abc€aybic, Eﬂzb'zczedﬂldnp(u)zlylm2ly2 Z3'Ys

Il

P(u)((z12292)(y123¥3) + (1122y2)(212393)]- (26)

(We have used the well known formula ¥, €46c€aa,a; = Sba; Ocaz — Obazdca, ). In the same

way we reduce also the last term in ¥ to finally get

¥ =27.32.5A. (27)

Finally we report without derivation the set of all the relevant monomials constructed
in terms of bilinear variables with the quantum numbers of the pion. The pionic bilinear

variables are (3]

Ty =d'% —du, v =uw'd —id, m=ui" -dd - (du—dd). (28)



The exponents of their relevant monomials

€ = ()™ ()" (o)™, (29)

must be restricted according to Eq.(9). In the present case the quark-antiquark variables

are involved at the same time, so that

A = P(u1)P(u2) P(1) P(t52) P(d1 ) P(d2) P(d1) P(dy). (30)

Inserting Eqs.(28)-(30) in Eq.(9) we find, after a lengthy but straightforward calculation,
that ®,, depends on only one of the components of the vector index m. Choosing this

component to be m; we have
m_.=m,, my=24-2m,, 0<m, <12, (31)

so that there are altogether 13 relevant monomials. The values of the corresponding

weights are

by, = (=1)"+"™*(m,!)*(24 — 2m,)! § 6(6 — r)0(r — m4 + 6)

r=0
6! 6!
32
(6 —7)r! (6 —my +7)(my —1)! (32)
where
8(r) =1 for >0, 6(r)=0 otherwise. (33)

From Egs. (28), (29) and (31) it follows that the index of nilpotency of the pion fields

is

n., =n,_ =12, n; =24 (34)

T+ o
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4-We end the paper by suggesting a way to use our change of variables to set up a
perturbative scheme in QCD. Let us confine ourselves to nucleons and mesons.

First of all we see that we cannot introduce all the corresponding composites at the
same site because they are redundant. One way to avoid this redundancy is to introduce
at some sites nucleons and at other sites mesons. This can be done in several ways. For
the present illustrative purposes we choose to put them at staggered lattice sites, locating
the nucleons at the sites x and the mesons at the sites y.

To do perturbation theory the action must contain quadratic terms in the hadronic
variables, and we must know the corresponding propagators. In simple cases the quadratic
terms can be introduced by appropriate manipulations [1], but due to the high index of
nilpotency of the pion fields of Eq. (28) this way is certainly impractical in QCD.

In general the quadratic terms can be introduced by hands as irrelevant terms (from

the point of view of the renormalization group, not of the integration!). We then consider

the action

S = S() + S,\, (35)

where

wa' S 0 N ()3 7 — DN (e +2) = (7 + 1)N(z — 28) + 4(My + 4)N(2)]
T p

+apaty Y] a’n; y) [mi(y + 2) + m(y - 20) — 2m(y) —4M7]. (36)

v 4 t=+,-0
In the above equation N is the nucleon field, a four spinor, isospin doublet (the sum
over the corresponding quantum number being understood), = is the meson field, ay and
a, are dimensionless couplings, My the nucleon mass, M, a parameter related to the
pion mass (see ref.1), u a vector with components p, = §,, and a the lattice spacing.

For the nucleon field we have assumed the Wilson action. In the formal continuum limit

So disappears, but at finite lattice spacing it provides the gaussian term necessary for a

. perturbative expansion. Of course one should add to the action all the terms of dimension
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not greater than the dimension of S,, and among them there will also be couplings of

nucleons to mesons.

We therefore replace the partition function

Zy = / [dA"dA|[dU)e™S> (37)

Z, = / [dA7dA|[dU}e~(o+5) = / [dy~dy][dg dg][dU]e~(+5H), (38)

where in the last step we have changed variables of integration.

The whole S, must now be treated as a perturbation. The evaluation of each term in
the perturbative expansion requires the rearrangement of the product of the A, A~ fields
appearing in S, into relevant functions of the 1,9~ at the sites z and of the ¢, ¢" at the
sites y.

In the above example the quark field has been altogether eliminated as integration
variable. But in some calculations a different change of variables might turn out to be
more convenient. Let us for instance consider the coupling of the nucleon to the Maxwell
field only, without mesons. In this case it might be advantageous to leave the quark
variables at the sites y. The free part of the action now contains also the free action of
the quark field, while the interaction part will contain new terms connecting the sites =
and y, describing the fragmenfation of the nucleon into quarks. A similar situation occurs
if we are studying the positronium, in which case we must obviously keep the electron
field.

Let us now come to the free propagators. In the case of trilinear variables the propagator
can obviously be evaluated as for the defining elements. In the case of bilinear variables
instead the propagator has been evaluated only for index of nilpotency 1. We must
distinguish whether ¢(z)® = 0 (nilpotency in configuration space) or the square of the
Fourier transform of ¢ vanishes ( nilpotency in momentum space). In the first case the

propagator can be related to that of the selfavoiding random walk, which is not known
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analitically, while in the second one it is equal to that of a canonical scalar [1}. For this

reason in actual calculations one should use as integration variables the Fourier transforms

of the composites.
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