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Abstract

Within the Extended Nambu Jona-Lasinio model, we calculate the O(p®) counterterms entering
the low-energy expansion of the yy — @ 7> and the n — 7 yy amplitudes 1in Chiral Perturbation
Theory. For yy — #°#" our results are compatible with both the experimental data and the
two-loop calculation using meson resonance saturation. For the n decay we find I'(y — 7 yy) =
0.58 & 0.3 eV which is in agreement with experiment within one standard deviation. We also give
predictions for the neutral pion polarizabilities and compare them with the results obtained from

resonance saturation.

1. Introduction

Over the last few years the transitions yy — 7°#" and 7 — #’yy have been studied

in the framework of Chiral Perturbation Theory ( yPT). These two processes have in
common the fact that their amplitude starts at O(p*) and that there is no contribution
from tree diagrams at this lowest order.

The first transition has recently been analysed in [1] at the two-loop level. The O(p®)
counterterms have been evaluated assuming resonance saturation and it 1s shown that
the predicted cross-section fits well the existing data [2]. It has been noted by several
authors [3-6] that the contribution of these counterterms to the cross-section is very
small 1n the threshold region. On the other hand, when not only high-precision data
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from DA®NE become available for energies up to 600 MeV, but also the theoretical
predictions are improved by an unitarization procedure (this requires calculating the full

vy — @~ amplitude to two-loops), it may become possible to extract one linear
combination of the O(p®) coupling constants.

Concerning n — wlyy a particular feature of this decay is that the O(p*) one-
loop contribution to the width 1s more than two orders of magnitude smaller than the
experimental measurement. In [ 7] this suppression has been explained in physical terms
and a partial analysis of higher-loop contributions has been carried out. It is expected
that the contribution of the O( p6) counterterms should account for a large part of the
amplitude. The analysis of [7] gives a reasonable estimate of the order of magnitude for
the decay width. However the latter 1s still a factor two smaller than the experimental
value [8] I'(n — 7#'yy) = 0.85+ 0.18 eV. New data may become available in the
foreseeable future at SATURNE in Saclay, where a proposal for measuring this decay
width has been recently approved.

The S-matrix elements for both transitions depend on the same set of O(p®) coupling
constants. Throughout the following we restrict ourselves to the large N -limit, where
only three low-energy couplings enter these transitions. The theoretical analysis 1s not
yet refined enough and the present experiments are not sufficiently precise, to extract
the value of these coupling constants from the data. Therefore it 1s important to make
predictions for these couplings (this is particularly relevant in the case of the n — 7 yy
decay width which has a strong dependence on the counterterms). One possibility is to
estimate their value using the resonance saturation method, which provides successtul
predictions to O(p*) [9,10]. However it is not known whether the O(p®) couplings
are actually saturated by resonance exchange. In addition to the estimate based on
resonance saturation, one can find in the literature a calculation of two of the O(p®)
coupling constants using the chiral quark model [4].

The purpose of our paper is to compute the three O(p®) coupling constants of the
large N.-limit in the framework of the Extended Nambu Jona-Lasinio (ENJL) model.
Within this model the low-energy effective action of QCD has been derived [11] to
O(p*), as well as some of the coupling constants governing the low-energy behaviour of
the lowest spin-1 and spin-0 resonances {11,12]. The model has only three parameters
(which is an advantage compared to the resonance saturation method where the number
of parameters increases when new transitions and higher chiral order are considered)
and the agreement with experiment i1s good.

This paper is organized as follows. In Section 2 we present the structure of the
O(p®) chiral Lagrangian in the large N -limit. Section 3 contains the expressions for
the amplitudes of the transitions and the pion polarizabilities. Section 4 1s devoted to
the ENJL predictions for the O(p®) coupling constants. Finally in Section 5 we discuss
the numerical results and compare our predictions with those of the resonance saturation
method and with the existing data.
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2. O(p®) chiral Lagrangian

Let us collect as usual the octet of Goldstone bosons in the unitary unimodular
matrix U

$g(x) + P1(x)
2 .
V2 fo )

where fo ~ fr = 93.2 MeV and (x are Gell-Mann’s SU(3) matrices with trA Ay, =
26ab)

U = exp( (1)

sl + +
e =+ % T K
A — - =y s
()= Z. b () =| 7 f_Jgjg K ], (2)
K~ K 2 "%
@1 (x) = —=ml (3)
X) = —= .
l \/3‘ )
The axial-vector field matrix £, is defined as follows:
En = i{€M 0y — iry )€ — €10, — il 1€} = ig'D,UEY, (4)
where £ =U and [, r, are external 3 x 3 left and right field matrices. We also define
fo, =EFTE" £ ETFF €, (5)

where F]  are the external field-strength tensors

F{" =o"1" — " I* —i[I", "],
F&P =a*r — a%r* —i[r*, r’]. (6)

Since we are only concerned with f(;) we set in what follows f{, = f*”. The
specification to the electromagnetic field reads

FI' = F§¥ = |e|QF*" (7)
where Q =diag(2/3, —1/3, —1/3) is the quark charge matrix. Finally we shall need
= ETxEN +ExTE, (8)
with
X = 2By M, (9)
where M = diag(m,, my, mg) and By is related to the vacuum expectation value
(9) = ~ foBo(1 + O(M)) . (10)

The structure of the strong chiral Lagrangian up to O(p*) has been studied in [14].
It is straightforward to write the relevant O(p®) chiral Lagrangian involving two neutral
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pseudoscalar mesons and two photons. By restricting ourselves to the operators whose
coupling constants are leading in the large-N, limit we can write

Lo = % {ditr (E%EpfapfPH) + datr (Eué” fapf™P) + dstr (X fapf™P)}. (11)

We have considered here that all quantities were commuting since we are interested
only in neutral particles. Our conventions and notation are chosen in such a way that
the expansion of this Lagrangian in terms of pseudoscalar fields coincides with the

analogous expansion of the Lagrangian (4.28) in [1] which was introduced for the
SU(2); x SU(2) g case.

In the following section we display how the physical amplitudes are expressed in
terms of these three coupling constants d;, d; and ds.

3. Amplitudes in YPT

The Lorentz covariant and gauge invariant amplitudes for

v(q1)y(q2) = 7 (p1)7 (p2) and
n(p) =7 (p2)y(q1)y(q2)

read

A= ezeu(ql )ev('q2)v;w ’ (12)

where

Vi =A(s, t,u)Ti + B(s,t,u)Tz,, ,

\)
Tlp,v — "2' Suv — 412924 >

Touy =254, 4, — (t —u)’gu, ~2(t —u) (qul, — qau4,) ,

A, =(p1 —DP2)u- (13)
3.1 yy - a0
For the yy — 77" amplitude the Lagrangian (11) generates the O(p®) counterterms

N 2D i6(d; — dym2 + (df + 84

A6—9f4[ (3_ 2)m7r+( 1+ 2)S]+'*',

10 |

N _ r

B6-— 9f?rd1+"‘; (14)

- We refer to Ref. [1] for the calculation in SU(2); X SU(2)r of the additional con-
tributions coming from chiral loops indicated here by the ellipses. The contribution of
one kaon loop in the O(p*) amplitude has been computed in [15]. For s far below the
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KK threshold it is numerically small, with respect to the contribution of one pion loop,

owing to an extra factor s/48m% [16,6]. The calculation of the two-loop amplitude in
SU(3); x SU(3)r has not been carried out.

As 1 [1] one connects the constants aj, a5, and b" parametrizing the renormalized
amplitudes

AN alm -+ 612.5‘ o
(16m2f2)2 77
b
BN — .
° T (1672 f2)?

with the constants d;

(15)

(16721‘“2)2 (_f%) 16(d; -

(16772]2)2 - ("}%) (di +8d3) ,

p-—-L

(16'772f2)2 (9f4) ' (16)
3.2. n — myy

For the np decay we have [7]

44/2
3V2 f4

24/ 2
3\/_\2/;4(1'1’4_..._ (17)

In these expressions we have included the contribution of d; which has not been taken
into account 1n [7]. However the size of this contribution is small because mf, << m%
The mixing 7 — ' has been treated within yPT in [14,17]. As a result the physical 7
1S a superposition

A7 =

[16(d3m — Em,%) + (dy+8dy)s} + -,

By

n =cosf@ng —sinfn;, (13)

with sin§ ~ —1.

For the expressions of the O(p*) one-loop contribution to this process we refer to
Ref. [7]. As explained there, this contribution is very small because pion loops violate
G-parity and kaon loops are suppressed by a factor 1/24m%. The two-loop calculation
has never been performed but the same argument can be advocated [7], to claim that
loop contributions to the O(p®) amplitude are suppressed. In addition, consistency of
the yPT expansion implies that they are smaller than the O(p*) one-loop contribution.

On the other hand at O(p®) a new type of one-loop contribution appears by taking

two anomalous vertices of O(p*). As shown in [7] the latter has an order of magnitude
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comparable with the O(p*) one-loop contribution. This fact does not break the pertur-
bative yPT expansion because the higher order corrections to this O( p%) one-loop term
will be small with respect to it.

Because all these loop contributions are small with respect to the measured decay

width, one should expect that the O(p®) counterterms account for a large part of the
full amplitude.

3.3. Neutral pion polarizabilities

The polarizabilities characterize the electric and magnetic properties of a compos-

ite system. They appear as parameters in the low-energy expansion of the Compton
amplitudes at threshold [ 18]

7—»C0mpt0n =2 |:€1 ) 62* ( 44 a'Nwle) _BN(ql X El) . (q2 X 62*) + '..] s

Moy
(19)
where ¢! = (w;, q;). Following the Condon-Shortley phase convention we define
(a+ B)" =8am, }1_{}1’(1) IEI’% B,
(@ — B)Y =2 lim lim (A + 8m2B). (20)

mfn' s—0 t——>n12

mw

The one-loop amplitude calculated in [15,16] has been used in Egs. (20), in order to

find the neutral pion polarizabilities to O(p*), as discussed in Refs. [19,20]. Taking
into account the full O(p®) result one gets [1]

a 80 r r r
(a— BN = P amﬂg}?(d1+4d2—~4d3) + (& = B)2—100p »
80
(@+ BN =—am; —= di + (@ + B))_1o0p (21)

9fr

where the two-loop contributions can be obtained from Table 3 in [1] )

(@ — B)5_jo0p = —0.31,
(a+ B)) 1oop = 0.17. (22)

The latter numerical values have been derived for the SU(2), X SU(2)r case; we are
neglecting the additional two-loop contributions for the SU(3), x SU(3)r case due to
kaon loops. Notice that the kaon-loop contribution to the one-loop amplitude, calculated
in [15], vanishes for s — 0. Hence, at the one-loop level, there is no kaon-loop
contribution to the pion polarizabilities, according to (20).

3 The values of the polarizabilities are in units of 104 fm? in what follows.
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4. ENJL model prediction for the coupling constants

The 1dea of the ENJL model is to approximate large-N. QCD at the chiral symmetry
breaking scale A, by an effective four-fermion theory (generated by integration over
quark and gluon fields above A,). The main assumption of this model is that higher
dimension fermionic operators are irrelevant for long distances. The three parameters are
the scale A, and the two coupling constants Gs and Gy of the four-fermion operators,
respectively the scalar-pseudoscalar and the vector-axial ones. Alternatively one can
trade these parameters for three other ones, i.e. the constituent quark mass, M, the
coupling of the constituent quarks to the pseudoscalar current, g4, and the ratio MzQ / Ai,.

Integration over quarks* below A y (see [11] for the description of the method) yields
the low-energy effective Lagrangians involving pseudoscalar mesons and the lowest
spin-0 and spin-1 resonance. Within this context twenty-two low-energy constants have
been derived 1n [11] and thirty-six others in [12]. Whenever there are experimental
data, the ENJL prediction 1s in good agreement with them.

A calculation ot the coupling constants d; and d, in the context of the chiral quark
model which i1s nothing but the mean field approximation of the ENJL model, has
been carried out in Ref. {4] (in this article however the operator modulated by ds
in Eq. (11) has not been taken into account). In this mean field approximation one
neglects the fluctuations of the resonances so that the calculation involves just one loop
of a constituent quark of mass M.

In the full ENJL model (see Ref. [11]) the quark-loop contribution is modified with
respect to the mean-field approximation by the presence of the mixing axial-pseudoscalar
parametrized by the constant g4. In addition one gets contribution from integrating out
the resonance fields. For any coupling our notation is (in what follows we shall drop
the index ‘r’ of the coupling constants) d; = d; + 5, d¥ where d; is the contribution
of the quark loop and >, di* stands for the sum of the contributions of the resonances
(R=S,VA,T).

Calculations have been performed with the Seeley-DeWitt expansion [21-23]° . For
details of the procedure the reader can consult Ref. [11]. A brief summary is given in
the appendix.

For all the numerical applications we shall use for the input parameters the values

2
obtained in [11], Fit 1, i.c. Mg = 265 MeV, g4 =0.61 and x = = = 0.052.

X

4.1. Quark-loop contribution

The results read

7 N f2 1 2
d = T _ e
T 16n? M2, 24 264

% Here we disregard the gluonic fluctuations below A, (see [11] for a discussion of this issue).
>In [4,13] an error in the coefficient H4 of the expansion given in [23] has been pointed out. We use the
correct expression for the coefficient which was already given in [22].
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1 N f2 ! 2
d — Z F ’
> 1672 M2 48~ P
- N, f: 1 . Mof: T
d = ~—TIip with p=—2T 84 (23)
167> M7, 48 (Gq)| T

where we have used the shortened notation I', = I'(n, Mg,/ A%) for the incomplete
Gamma functions defined as follows:

[ di _ _
I'(n—2,x=Mpy/A%) = / e 2 (24)
Mo/ A

For applications we use I’y = I'; = 1. When one sets g4 = 1 our results for dj 5
coincide with those of the quark-loop calculation of [4] and do not agree with [13].

Concerning ds we disagree with the result extracted from Eq.- (2.53) in the last paper
of Ref. {13].

4.2. Spin-1 and spin-2 resonances

Here we shall follow the notations and definitions of [10-12]. The vector (respec-

tively axial-vector) resonance field will be denoted by V,, (respectively A, ). We also
define

R, =d,R,—d,R,, for R=VA with d,=d,+7I,,

where I',, 1s given by the expression

1
r,= E{ff[aﬂ—-ir#]gf#f[c?ﬂ—-il#]ff}. (25)

Let us first consider the vector case. The coupling we are interested in is the one

which modulates the operator €**?7tr (V,{£,, foo}) called hy. The O( p®) counterterms
receive contributions from the exchange of @’, p’ and ¢ mesons. The last one will

not be considered here since its contribution is suppressed by the large ¢ mass (the ¢
resonance contribution to the yy — 77’ amplitude has been included in Refs. [5,1]).
Guided by the nonet assumption, we shall not use for the contribution of the p’ meson
the experimental data on the decay p’ — 7y which have a large error, but instead
those on the decay p* — ar"y. Then from I'(p* — #ty) and I'(w® — 7y) [8] one

can extract

Bt B0

~47-107° MeV ™! and ~4.9-107° MeV !, (26)
ot 0
. . hpg o h 4
and take, according to the nonet assumption, M, = M‘; -

Within the ENJL model the constant hy has been computed in {12]. Here we just
recall the result
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N, V2

hyv =
T 1612 8 fy

(1+g84), (27)

where fy modulates the operator tr ( f,,, V#") and has the following expression [11]

N, 2
’ c
= Iy .
Jv 16723 ° (28)
Using the relation found in the ENJL model [11]
fvMy = I , (29)
V1—ga
one obtains
hv Nc \/5
— = | /1 — ga4.
My = 167287, ¢ +g4)v/1— ga (30)
Numerically one gets, for g4 = 0.61,
hy _
=3.6-107° MeV!. 31

For this constant the agreement of the ENJL prediction with experiment (26) 1s not
as impressive as for the other low-energy constants. Moreover this quantity has to be
squared in the contribution to the amplitude, so that finally the ENJL. model prediction
of d is a factor two smaller than the one based on resonance saturation. However
one has to keep in mind that the coupling constants predicted in the ENJL model
are parameters of the Green functions evaluated atr zero momenta. This fact has to
be taken into account, when comparing with processes, such as the decay of a vector
resonance, whose typical energy scale is large. In [12] it was argued that including
intermediate resonance exchanges and chiral loops one obtains an improved prediction
in good agreement with the phenomenology of the vector resonance decay.

Whenever we deal with processes at small energy, such as Compton scattering at
threshold tor the determination of the pion polarizabilities, we favour the value of Ay
predicted in the ENJL. model. On the other hand, for the  decay the energy scale 1s
quite close to the p mass and it seems appropriate to use for hy the value extracted from
experiments. Finally for the yy — 77 transition we shall display two different cross-
sections corresponding to the values of hy obtained from ENJL and phenomenology,
respectively. We take the difference between the cross-sections as a contribution to the
uncertainty on our result.

The b, axial-vector resonance is not included in the ENJL model. We shall use the
experimental data in order to incorporate it as it is done in [1].

The tensor resonance 1s not described either by the ENJL model. Such a resonance
would appear only 1f higher derivative four-quark operators were taken into account.
In this case again we shall use the experimental data. Unfortunately they allow only
for a determination of the absolute value of the tensor contribution to the transitions

considered here. Hence this contribution will appear as an uncertainty in our results.
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4.3. Scalar resonance

The scalar-sector analysis requires the knowledge of the coupling constants C¢, C*
and C{ which modulate respectively the operators tr (S£,£#), tr (Sy™*) and e’F,, F*
xtr (SQ?). The coupling constants C§, CJ as well as the scalar mass Ms have been
computed within the ENJL model in [11]. Their expressions reads

N. My

Cd= 2¢4(T'o— 1),
S = 1672 As ga(lo— 1) (32)
N. M
Ced = ' —21y),
1672 As p(I 0) (33)
with the rescaling factor
N, 2
A= —--(3Iy—2I), 34
§= w5330 —2I') (34)
and the mass
N. 8M?
M3 = 2 T | (35)

S 1672 /\%

Numerical evaluations for these constants can be found in [11] as well as the comparison
with experiment and with the resonance saturation approach.
We have computed the coupling constant C¢{ which governs the decay S — yy with

the result
N. 2 I
16723 MpAs

Cl (36)
Numerically we find C} ~ 0.19 GeV~'. This value is about a factor 2 larger than the
estimate given in [1] (N.B. with an uncertainty of 100%). However it corresponds
rather well to the estimate obtained in the analysis of [24], where higher order terms
in the chiral expansion are taken into account, in order to match the QCD high energy
behaviour.

The contributions of the scalar particle to the constants d; (or a;» and b) are given
in [1] in terms of the mass Mg and the absolute values of the constants C d C 4 C}

(in contrast with the resonance saturation calculation, here we know the sign of the
different contributions). Within the ENJL model we find

dy =0, (37)
CICé f? N, 2\ 1 I

dS: SSJm — C Ui 2 ) " A ’ 38
C‘)’cmf2 N f2 1 I

dy =557 - ¢ _Jm r—,—2ry). 39

3T 8M? (16772 Mé) 96 1, P11~ 20) (39)

We find a} ~ 0.14 and a; ~ 4.7 whereas the resonance saturation approach used in
Ref. [1] gives a; ~ 0.8 and a; ~ +1.3.
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A few comments are in order. First we have a definite prediction for the signs,
even though it is very dependent on the input parameters in the case of aj which
is proportional to the difference of d3 and d, two quantities of comparable order of
magnitude. Secondly and as a consequence of the latter remark we confirm the smallness
of a;. Finally we get for a; (which is proportional to d3) a sensibly higher value. This is
related to the fact that in the ENJL model the constant C{ computed in Eq. (36) appears
to be higher than the estimate of [1] (but, as we said, this is in agreement with the recent
analysis of [24]) and the scalar mass rather low (see [11,25]). At the present time
it 1s not completely clear if the scalar contribution to the coupling constants predicted
by the ENJL model is a better estimate than the analogous contribution calculated in
[1]. Hence we keep the latter as a lower bound estimate and obtain in this way the
uncertainty on the scalar contribution to the coupling constants.

In the next section we discuss a possible way of improving the situation in the future
which 1s related to the coupling constant ds.

4.4. On the constant dx

An interesting feature of the scalar sector is that within the ENJL model many
cancellations occur between the quark-loop and the scalar resonance contributions. This
is the case at O(p*) for the constants Ls, Lg and H, (see [11]). In our calculation,
one finds that the combination a; + &, is actually independent of the parameter p and of
the quadratically divergent incomplete gamma function I"_;. For the full d; one obtains
a quite simple expression

Ne f2\ 1

d3:d§+6f3=(

Let us also notice that we get the following relation© :
o 8 ds
Céd = fiLs

With the set of parameters we have already used one finds from Eq. (40) d3 ~ 1.5 10~
whereas the value predicted in [ 1] using scalar resonance saturation is d3 ~ 0.38 x 10-°.
The ditference between these values comes both from dg (which 1s already bigger 1n our
case than the value of [1]) and from d3 which is not present in the resonance saturation
approach. One can compare both values with the estimate d; = (0.94 + 0.47) x 10~>
obtained 1n [26] using a sum rule for the vector-vector two-point function. This estimate
1s affected by a large uncertainty which makes it compatible with both our value and
the value 1n [1] and so it does not provide a very satisfactory test.

An 1mportant improvement would be to extend this sum rule to two-loop order, as it is
required by the fact that d3 modulates an O(p®) operator. Hence it is a bit premature to
try to improve the agreement of our result with the sum-rule, which could be achieved

(41)

® Which is valid to all orders in the asNq-expansion (see Ref. [11]).
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Table 1
Final results
Q.L. (177) (177) (0t) (2tt)  Total
ENJL Data ENJL Data
aj —12.3 —-20.3 —36.6 0 0.14 0.8 4.1 —28 > a3 = —-53
a 6.1 7.6 13.7 —-1.3 4.7 1.3 +1.0 13€a, <24
b 1.0 1.3 2.3 0.7 0 0 +0.5 2< b4

by changing slightly the value of the parameters My and g4 and redoing the fits of
Ref. [11] including d3; this would of course have an effect on all the O(p®) constants.
We postpone such considerations until a full two-loop calculation of the sum-rule is
carried out.

5. Results

5.1. yy — ma°

In the Table we display the full ENJL results for the constants a;, a2 and b to be
compared with Table 2 1n [1].

Inspection of the Table shows that we have three sources of uncertainties. The first
two are related to the different estimates of the vector and scalar coupling constants
obtained in Section 4 by using ENJL and experimental data, respectively /. In the last
column we have added these uncertainties in such a way as to have an upper bound
and a lower bound for the cross-section. This 1s because the uncertainties on the vector
(see Section 4.2) and the scalar resonance (see Section 4.3) contribution have different
origins. The last uncertainty comes from the sign of the tensor contribution which
is undetermined. We included also this contribution in the total (last column of the
Table).

For the low-energy constants entering the helicity amplitudes we get

8,>,h+—a1+8b2-—17,
2<h_=b<4. (42)

Our results are compatible with those quoted 1n [1]:

"We assume the central value of the experimental data, ignoring the errors on the measured parameters
(which typically have a 10% size). In addition, we disregard the changes in the ENJL prediction due to
variations of the three parameters of the model. In our opinion, assuming the quite large band of error on the
cross-section associated to the ENJL prediction and the experimental estimate for the resonance contributions,
is pessimistic enough.
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Fig. 1. The yy — #%7" cross section o(s;|cos@| < Z) as a function of the center-of-mass energy E at
Z = 0.8, and the data from Crystal Ball [2]. The solid and dash-dotted lines are the O( pﬁ) results obtained
from the ENJL model. They correspond to the values in the Lh.s. and, respectively, the r.h.s of the inequalities

(42). The dashed line is the two-loop result obtained with resonance saturation in [1]. It coincides with the
solid hines in Figs. 5, 11 of [1].

h_’_:"“14::5,
he=T7+3, |
h_=3+1. (43)

In the Figure we display the data from Ref. [2] for the cross-section o (s;|cos8| < Z =
0.8) as a function of the center-of-mass (c.m.) energy E = /s. The solid (respectively,
dash-dotted) line in the Figure corresponds to the values in the 1.h.s. (respectively, the
r.h.s.) of the inequalities (42). For comparison we show in the Figure, as a dashed
line, also the cross-section obtained in [1] for the central values of (43) (see the solid
lines 1n Figs. 5, 11 of Ref. [1]). We can also compare our results with Fig. 9 of
Ref. [ 1], where the uncertainties in the values of (43) are taken into account (in Fig. 9
of Ret. [1], however, the contribution of the integrals 44 5 coming from the two-loop
box and the acnode diagrams in Fig. 4 and appearing in Egs. (7.3), (7.8) of [1] is
neglected, whereas in our Figure the full contribution is retained). This comparison
shows that our results are compatible with those of [1]. The upper curve in Fig. 9 of
Ref. [1] disagrees with our result by more than 20% for c.m. energies E >540 MeV

(at E =540 MeV the 4,4 p contribution to the cross-section is very small, i.e. 1.5%, see
Figs. 5,9 0f [1]).
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5.2. n — myy

As we said in Section 3.2 the O(p®) counterterms contribution is expected to ac-
count for a large part of the amplitude because the loop contributions are suppressed.
In Ref. [7] 1t 1s shown that the resonance saturation approximation is not sufficient

to explain the experimental decay rate. Indeed if one takes into account only vector
resonance saturation one gets

r(n— a’yy) ~0.18 eV, (44)

to be compared with the experimental value [8] I'(n — 7%yy) ~ 0.8540.18 eV. Let
us review the calculation of [7]. By keeping the momenta dependence in the vector

propagator the authors of [7] made an ‘all-order’ estimate, i.e. at O(p®) and higher, of
the counterterms contribution with the result

I'(n — myy) ~0.31eV. (45)

Then if in addition one takes into account chiral loops (the O( p*) ones as well as the
O(p®) ‘doubly-anomalous’ one-loop diagrams) one reaches the value

I'(n— myy) =0.42+0.20 eV, (46)

where the error includes scalar and tensor contributions (whose sign was not known)
as well as a 30% error coming from other contributions such as one-loop diagrams
involving the O(p®) Lagrangian (11).

Let us now show step by step the ENJL results. To the estimate (44) which 1n-

corporates only vector resonance exchange, we first add quark loop contribution and
find

'(n — 7%yy) ~0.36eV. (47)

Already we are not far from the central value of Eq. (46). In addition if we include the
scalar contribution as predicted by ENJL. we have

I'(yp — 7’yy) ~05eV. (48)

We shall use as lower bound the prediction for the scalar exchange given in [1]. Then
we have

'y — 7yy) =0.454+0.05 V. (49)

Finally taking into account the axial resonance and, as in [7], the contributions from

chiral loops and, in addition, an uncertainty from the contribution of the tensor resonance,
we get

'y — 7’yy) =0.58+0.12 eV . (50)

Of course we can play the game of making an ‘all-order’ estimate of the counterterm
given by vector resonance exchange as it is done in [7]. Starting from the upper
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bound in the last equation, we obtain a decay rate of 0.86 ¢V. However this represents
only a partial resummation of the chiral corrections. First there are O(p®) one-loop
corrections involving the O(p®) Lagrangian (11) which could be as important as the
counterterms contributions (even though they are next-to-leading in 1/N.). Secondly,
in the large N, -limit, other chiral corrections (i.e. of O(p®) and higher) coming from
the counterterms occur within the ENJL model. Indeed the quark-loop contribution
considered here corresponds to the computation of a four-point function at zero momenta.
The full ENJL calculation at non-zero momenta (as it has been done in [27] for the two-
point and some of the three-point functions) would bring additional chiral corrections.
We shall include all chiral corrections of this type in an additional 30% uncertainty. Our
prediction 1s then

I'(p — 7%yy) =0.58+0.3 eV. (51)

As we said above, the higher order corrections included in the ‘all-order’ estimate of
the vector resonance contribution enhance the decay width and therefore go in the right
direction, in order to match the experimental result I'(n — 7%yy) =0.85+0.18 eV. It
would be interesting to carry out the O(p®) loop analysis (this can be done, given that
most of the loop diagrams are suppressed (see Section 3.2)), as well as to calculate
in the ENJL model the O(p®) counterterms. In this way one could obtain an accurate
description of the O( p8) chiral corrections.

5.3. Polarizabilities

The pion polarizabilities have been estimated through dispersion sum rules [18]

(a— BN=—10+4,
(a+ B)N=1.0440.07. (52)

At order O(p®) resonance saturation gives [1]

(a—B)"=—1.01 —0.31 —0.58 £ 0.20 = —1.90 + 0.20,
(a+ B)V=0.00+0.17+1.00+0.30=1.17 £ 0.30, (53)

where the three contributions that add up to the final results on the r.h.s.-are the one-loop
result, the two-loop contribution, and the one from the O(p®) counterterms assuming
resonance saturation, respectively. There is a large contribution from the O(p°®) low-
energy constants due mainly to the w-exchange in the resonance saturation approach
[28]. For the estimate of the uncertainties in (53) the reader is invited to consult
Ref. [1].

The contribution due to the O(p®) counterterms to the pion polarizabilities

N amy
(a B)C.t."" (47Tf7r)4 h-l-’
(@a+ BN =—T"7__gp (54)

(47 f7)*
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i1s obtained from the ENJL model prediction for the low-energy constants displayed in
Egs. (42)

—0332 (a — ﬁ){:t
0.78 < (a + ﬁ)c.t,

—0.69 .
1.44 . (55)

N\ \\/

Adding the one-loop and two-loop contributions - identical to those in (53) — we get
our results with the ENJL. model

—1.65 —2.01,

(a—B)"
( 1.61, (56)

a+ )"

//\ \\/
ANA\Y

which are compatible with Egs. (53). Both the prediction in (56) and the resuit in [1]
are compatible with the forward sum rule (a + BN =1.04 £0.07 in (52).

As we mentioned in Section 4.2, we consider the ENJL value of the vector resonance
coupling as favoured. This choice corresponds to the range of values —1.65 >(a—B8)" >
—1.68 and 0.95 < (a+ B)Y < 1.28. Here the residual uncertainty for (a — 8)" reflects
an incomplete knowledge (see Section 4.3) 1n estimating the coupling constants for
the scalar resonance, whereas the undetermined sign of the tensor contribution to the
low-energy constants in the Table yields the remaining uncertainty on (a + B)". The
sizeable difference between the value of (@ — B)" obtained using the ENJL prediction
for the vector resonance coupling and the result (53) 1s mainly due to the fact that the
ENIJL prediction of the vector contribution to A, 1s a factor two smaller than the one
based on resonance saturation and the experimental data (see Section 4.2). The size
of the quark-loop contribution, which is included in the ENJL prediction, 1s not large
enough, to bring the ENJL value for h, to the one obtained from resonance saturation.

The construction of unitarized S-wave amplitudes for yy — 7@ which contain
(a — B)SN as adjustable parameters has been carried out in Ref. [29]. In this case,
only (a — B)SY can be determined from the data [2,30], with the result [29]

(a— B)*=4.8+1.0,
(a—B)N=-1.1+1.7. (57)

The value (57) for (o — )" is consistent with the two-loop result for the neutral pion,
both for the calculation based on resonance saturation [1] and for the ENJL prediction,
whereas the corresponding two-loop calculation for charged pions is not available and
so it cannot be compared with the value (57) for (a — B)°.

In [31] the validity of the errors quoted in a recent estimate of (a+8)%" by Kaloshin
and collaborators [32] is questioned. Here the polarizabilities appear as adjustable
parameters in the unitarized D-wave amplitudes, hence the values of (a+ 8)" can be
determined from the data with the result [32]

(a+ B)=0224+006  [30],
(@+pB)N=1.00£0.05 [2]. (58)
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The authors of [31], arguing on the partial wave analysis of the data that shows large
uncertainties even at the f,(1270) mass, conclude that the errors quoted in (58) for

(@ + B)" are unbelievably small. This result is compatible with the ENJL prediction
(56), as well as with the value in (53). |

6. Conclusion

Within the ENJL model we have computed the O(p®) coupling constants entering
the yPT expansion for the amplitudes of yy — #%7" and n — #%yy. In addition
to the contribution of the resonance exchange, one has to add terms coming from the
constituent quark loop. Both contributions have comparable orders of magnitude. This
situation at O(p®) differs from the one at O(p*), which is described in [11].

Our major result concerns the decay n — #'yy, where the contribution of the
counterterms dominates the amplitude. The values of the couplings calculated in the
ENJL model yield a prediction for the decay width which is compatible with the data.
Our central value compares much more favourably with the experimental result [8] than
the value calculated in [7] within resonance saturation.

Concerning the transition yy — 77°, our results are compatible with those of the
resonance saturation approach worked out by [ 1], as well as with the data [2]. For the
neutral pion polarizabilities, we find results consistent with the estimates given in earlier
references [1,29,32].

To mmprove our knowledge of the coupling constants d;’s and be able to test in a more
accurate way the ENJL prediction, we need both experimental and theoretical progress.

High-precision data from DA®NE on yy — #97° may allow to extract the value of A,
since the cross-section in Fig. 9 of [1] shows a sizeable dependence on this low-energy
constant for energies near 600 MeV. It will be necessary to carry out a unitarization of
the two-loop result, using a procedure analogous to [33] and matching the dispersive
calculation for the all-order amplitude with the two-loop amplitudes for yy — 797"
and yy — v, once the latter will have been calculated. The consideration of this
improved, unitarized amplitude will justify the inclusion in the analysis of experimental
data up to 600 MeV.

For the other source of information, i.e. the decay 7 — 7Vyy, it will be very inter-
esting to investigate the O(p®) analysis, as we said in Section 5.2. The crucial test may
be the future SATURNE experiments which may allow to determine d;, d, as well as
the size of the O(p®) chiral corrections.

Finally the determination of the constant d; from the sum-rule has to be improved by

carrying out the computation to the two-loop order.
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Appendix

I et us define
V,u=du+ A,
l _
Ap=Ty— 5 v5(8adu + W) - > W};L) .
Let us also introduce the following expression:
1
M=—MQ —S—"Z'(Z—')’SA)a
where
S=¢TME + eMIE,
A= MET — eMTE.

Here S, W{*) and W{~) denote the fields of the resonances, respectively scalar, vector
and axial-vector.
We recall briefly the Seeley-DeWitt expansion of the operator

DiDg —M% =-V,V,+E,
where Dr is the Euclidean Dirac operator

DE - Y}Lvﬂ M ]

and

1

E = 2MQS+ iMQ‘yP«‘YSgAfu — Zo-pvfﬂv + o

(here we do not need the complete expression which can be found 1in [11]).
The effective action reads then

F(n — 2, x)

_ I

_ / — Tr exp(—7D;Dg) = 1677'2 E )n = trH, ,
1/A2

in terms of the incomplete Gamma functions defined in (24). We give the Seeley-DeWitt
coefficients up to a total derivative and a circular permutation. Only the terms we are
interested in are displayed here. These terms read
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1 1
Hy=— {E3 + > ER#,,RW} |
(4, ] .
Hy= o { + Z[ERuER,, + 4E R#pr]} | (59)
Note added

A calculation of the O(p®) Lagrangian within the ENJL model, but without including
the contribution of resonance exchange, can be found in [13]. Notice that a complicated

expression for the Seeley-DeWitt coefficients displayed in [13] reduces to the very
simple expression (59) in our appendix, owing to the presence of just neutral external

particles in the reactions considered in the present work. However, the calculations of
[ 13] do not reproduce the results obtained in the mean field approximation by the authors
of Ref. [4] using two different approaches, i.e. both by means of the coefficients of
heat kernel expansion and by directly calculating the Feynman diagrams. Our calculation
reproduces the mean field results of [4].
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