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Abstract

We review the recent progress in the calculation of the amplitude for vy —
7°7° to two loops in chiral perturbation theory. We match the low-energy am-
plitude in chiral perturbation theory with the result of the dispersion theoretic

analysis. The neutral pion polarizabilities are also given to two-loop accuracy.

Then, the results are compared with the dispersion relation calculation of the
pion polarizabilities.
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The process producing a pion pair in the fusion of two photons has received
a lot of attention in the recent years. It provides a very important test of chiral
perturbation theory (CHPT) [1]-[5]. In this sense, the production of neutral pion
pairs is the most interesting channel. This is because the Born amplitude vanishes
in this case. Hence the one-loop scattering amplitude is finite and does not depend
on the free parameters of the chiral lagrangian [6, 7]. It is by now a well-known fact

that the one-loop cross section for vy — #n%#x° in CHPT [6, 7] does not agree with the

experimental measurements at Crystal Ball {8], as well as with calculations based
on dispersion relations [9]-[15], even at low-energy. We calculated recently the low-
energy vy — n°7° amplitude to two-loops in CHPT [16] and obtained a prediction
that agrees with the Crystal Ball data. Also, the low-energy CHPT amphtude

compares very well with the dispersive analysis of vy — 7°7° by Donoghue and
Holstein [12].

The sum of the electric and magnetic polarizabilities of the neutral pion vanishes
to lowest order in CHPT [17]. The value of this sum was estimated also by a sum
rule, and it turned out to be different from zero [18]. We showed some time ago
[19] that a vector dominance model preserving the chiral symmetry of QCD at low
energy yields a value close to the one obtained from the sum rule. We obtained
recently a refinement of this prediction, by calculating the two-loop Compton scat-
tering amplitude in CHPT [16]. The largest modification in the polarizabilities, with
respect to the one-loop order value, is given by the omega resonance exchange which
accounts for a large fraction of the neutral pion sum rule {19], and the contribution
from the chiral logarithms is small [16].

The v — w7° cross section for off-shell photons has been calculated recently

20] in the framework of CHPT. There, it has been shown that the measurement of
the azymuthal correlations in the process eTe™ — eTe %7 allows to test the higher

order CHPT corrections independently from the measurement of the cross-section.

Recently, CHPT has been reformulated to include [21] into each order additional
terms which in the standard CHPT are of higher order. Within this generalization

of the chiral expansion of the amplitude, the process vy — w°mw? has been analyzed
22].

Gauge symmetry and Lorentz invariance can be used to write the scattering

matrix element

< 7%(p1)7°(p2)out | (q1)y(g2)in >= i(27)*8*(Ps — P)TY | (0.1)



with

TV = ezei‘e;’Vpp ,

Vi i/dme"““”qzy) < 7°(p1)m°(p2)out | Ty.(z)7.(y) | 0 >, (0.2)

where j, is the electromagnetic current, and a = e*/4n ~ 1/137, as follows:

Vpp = A(S,t,U)TI“p B(.S,t,‘ZL)Tg”y

S

Tluv - "Q'gp.v — Q192
Top = 2804, — Vzguv - 2”(91vAp — 92pAV) a
A.u. — (pl — pZ)H 3 (0'3)

in terms of the standard Mandelstam variables

§ = (‘21 + Q2)21 t = (Pl — 91)2: U = (Pz — 91)2 ’
v = t—u. (0.4)

One can go from the analytic functions A and B of the variables s,¢ and u,

symmetric under crossing (¢,u) — (u,t), to the helicity amphitudes in the following

way.
H++ — A + 2(4M£ — S)B y
8(M: —t
H_{__h — ( #3 u)B . (05)

In Ref. {16] the renormalization procedure is formulated in the minimal subtrac-
tion scheme, and the expressions of the order E° renormalized amplitudes involve

three parameters, i1.e. a7, aj and b

aiM? + als

e = (T6n?F2)2 T (0.6)
b" | .
P = (16x2F2)> ~ (01)

where the ellipses stand for finite contributions from the loop-integrals. Here F 1s
the pion decay constant in the chiral limit, F, = F(1 4+ O(m)), Fr ~ 93 MeV, and
the physical pion mass 1s

M2
M2

M?*(1 + O(m))
2m B, ' (0.8)



Table 1: Resonance contributions to the coupling constants ai, a} and 6". Column

6 contains the sums of those contributions which have a definite sign.

IR IR
I w| p° 6| A1TT) | TpIF || S(0FY) | fo
a; || —33.2 | —6.1 | —0.1 0.0 —39 _0.8 T4.1
a., 12.5 2.3 ~0 —1.3 13 +1.3 | £1.0
b 2.1 04| ~0 0.7 3 0.0 | £0.5

where B is related to the order parameter < 0 | g¢q | 0 >, and in the 1sospin symmetry

et

limit m, = mg = m.

The three unknown parameters aj, a, and b" are estimated by resonance sat-

uration [16] and the results are displayed in table 1. The w exchange yields the

dominant contribution.

The low-energy constants A7 and A’ corresponding to the helicity amplitudes
H,, and H,_ read

2loops ]' r 2 T
T = (1672 F2)2 {RLM* R sp oo
oOps 8(M4 _tu) r
o= s(16w2 F2)? L
R, = al+8b R =aj—20" , A=} (0.9)

From column 6 in table 1 the central values of these couplings are obtained in Ref.
116], where a 30% uncertainty is associated to the contributions generated by the
vector and axial-vector exchange, and a 100% error to the contributions from scalars

and from f,. Adding these errors in quadrature, one finds [16]

h:_(Mp) = —-144+95 ,
hi(M,) = (= =35 N (0.10)
R"(M,) = 31 .

The values of A, and A are not affected by the tensor exchange, since the cor-

responding coupling is purely D-wave. Scalars do not contribute to the value of

h” .

In Ref. [23], these couplings have been determined i) from vector-meson exchange



and using nonet-symmetry, and 11) from the chiral quark model, with the result

(—18,9,2) vector-mesons (nonet)

0.11
(—12,6,2) chiral quark model (0.11)

(h:-'-' h:: h:)‘ﬂ"—'Mp — {

which agrees within the uncertainties with the values in (0.10).

The following analytic results are obtained in Ref. [16] for the amplitude A to

two loops:

AG,,
A = fF(;)(S — M:) + Uyg + Py + O(E4) (0.12)

The umitary part U4 contains s,f and u-channel cuts, and P4 1s a linear polynomal

in s. Explicitly,

2 _ ] I _
Us = —3G() [(* = M3)J(s) + O(s, )| + 5=57(s — M7)J (s)
I, — 5/6 i - _ _
| (142471'23F‘)1 (s —4M?) {H(s) + 4 L.SG(.S) + 2M2(G (s) — 3 J (s)) dgo}
AA(‘S:t)u’) 3
(0.13)
with
. 7 1 7 2\2 1 2 2 4
C(s,l;) = YT {2(11 —4/3)(s —2M.)* + (I, — 5/6)(4s* —8sM . + 16M_)/3
—3M}ls + 12M2(s — M2)l, — 12sM? + 15M2}
1
dog = -2-(3 cos 6% — 1) . (0.14)

The loop-functions J etc. are given in appendix C of Ref. [16].
The polynomial part 1s

Py = (IGWiFﬁ)z[alM3+a23] :

a; = aj- 118 {4124-1(81'2“21'A 3) 2301'24-121'& | 1;0} ,

a; = da 118 {zz+3(2z‘2+12&+§-)—-2-2'2+121“A E ?ZZ} ,
oW 015

1L

Here u denotes the renormalization scale, the [; are the renormalized coupling con-

stants of the O(E*) lagrangian [2], and Ipo = lg — [s. The values of these coupling



constants can be found in column 2 of table 1 of Ref. [16]. The result for B is

B =Ug+ Pg +O(E?) (0.16)

with unitary part

(I, — 5/6)H(s)

= - Ap(s,t,u) . 1
UB = " gsntFis 5(s,8,u) (0-17)
The polynomial is obtained in Ref. [16]
b _ b
BT (16m2F2)2
1 2. 1, 393
= b P2+ 120 + = | . 1
‘ 3 || T2t g) gty (0.18)

The integrals A4 p(s,t, u) contain contributions that very small for the cross sections
below /s < 400 MeV, both for vy — 7°#x° (0.1% at 400 MeV) and for the crossed
channel y7° — v7° (1.5% at 400 MeV) [16].

The cross section vy — 7°xn° receives a substantial correction near threshold due

to 7w final-state interactions — which are absent in Compton scattering. Yet, 1t 1s
shown in Ref. [16| that the t‘wo—loop contributions are not small in this channel.
Since in the one-loop approximation the amplitude H. , is one order of magnitude
larger in the v4 — 7w%7° channel than at Compton threshold, even very small correc-
tions in vy — 7°7° may appear large in Compton scattering [19]. The result of the
two-loop calculation and the one-loop approximation differ by one order of magni-
tude already near threshold [16]. This is mainly due to the effect of the low-energy

constant h™ in H,_ (omega-exchange in the language of resonance saturation [19]).

The low-energy limit of the coupling with the photon in the Compton amplitude
for a composite system is characterized (among other parameters) by the electric and
magnetic polarizabilities. One can test the hadron dynamics through experiments

on the hadron polarizabilities [18]. The expansion of the amplitude for charged pion

Compton scattering,

v(q)7 (p1) = ()7 (p2) (0.19)
near threshold reads
.._’ ., o . _ . ~ _ Y .
TC = 2 €1 €9 (M awwlwz) — IBﬂ (91 X 61) . (q;g X €9 )+ ¢ . (020)
with ¢ = (w;, §;). For neutral pions, one has, in terms of A and B,
o
Gpo = M,,T(A + 16 M. B)|,=0t=m2 ,
o

1

Bro ; MﬂA|,zg,t=M3. (0.21)



Below we denote

Q
-
D
L S—
Q
1
QI
3
1
I i
T
=

)
H
5

2
1
Ot
=‘D
H
ey
=‘l:3

(0.22)

The pion polarizabilities have been estimated® through dispersion sum rules [18]

(a+8)° = 039+0.04 |,

(a—pB)° = 10+£3

(a+8)Y = 1044007 ,

(a—B8)Y = —-10+4 . (0.23)

The charged pion polarizabilities have been determined in an experiment on the
radiative pion-nucleus scattering #~ A — w7~ A [24] and in the pion photoproduction

process yp — yntn [25]. Assuming the constraint (a+3)° = 0 the two experiments

yield
13.6 +2.8 [24
C Sl
— = - 0.24
S { 40 +24 [25]. (0-24)
Relaxing the constraint (o + 3)¢ = 0, one obtains from the Serpukhov data
(a+B)° = 1.443.1(stat.) £ 2.5(sys.) [26] ,
(a —B)° = 15.6 4 6.4(stat.) £+ 4.4(sys.) [26] . (0.25)
At one-loop one has {17, 27]
Apo = — o = = —0.50 (0.26)
Qg = o0 = 967(‘2MWF2 = : : :
At order O(E®) we found [16]
a, = —0.504+0.21 —0.07 ~ —-0.35 ,
Br = 0.50+0.79 4+ 0.24 ~ 1.50 (0.27)

where the three contributions that add up to the final results on the r.h.s. are the

one-loop, the resonance, and the two-loop contributions, respectively. There 1s a

1The values of the polarizabilities are in units of 10~ *fm” in what follows.



large contribution from the resonance exchange. Our results saturates the forward

sum rule (a + 8)Y = 1.04 £+ 0.07 in (0.23)

(a+8)Y =104+016~1.15 . (0.28)

Information on the charged pion polarizabilities may be obtained from vy —
mtn~ data [27]. The low-energy constant [o appears as the only free parameter
order in the O(FE*) amplitude, as well as in the leading-order expression for &,

and B.. A fit to the cross section then determines &, and B,. The result [27]

In = 2.3 + 1.7 corresponds to numerical value for the leading-order a, = 2.7 + 0.4,

plus systematic uncertainties due to the O(E®) corrections. For the charged pions, a.
two-loop calculation is not yet available. The charged pion polarizabilities are given

beyond the one-loop order by including the meson resonance contribution in Refs.

28, 19]

The construction of unitarized S-wave amphtudes for 44y — mn which contain
( — B)YN as adjustable parameters has been carried out in Ref. [15]. In this case,
only (a — 3)“" can be determined from the data [8, 29], with the result

(o — ﬂ)c = 48+1.0 [15] ,
(a—B8)YY = —11+17 [15]. (0.29)

The value (0.29) for (a — B)" is consistent with the two-loop result for the neutral
pion, whereas the corresponding calculation for charged pions i1s not available and
so it cannot be compared with the value (0.29) for (a — 8)°.

Finally, it is interesting to compare the chiral expansion [16] with the dispersive
calculation carried out by Donoghue and Holstein [12]. The two representations
of the S-wave amplitude agree numerically very well below £ = 0.4 GeV. In the
dispersive method, higher order terms are partially summed up. The agreement

indicates that yet higher orders in the chiral expansion do not affect much the
threshold amplhtude.
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