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Abstract

We construct an N = 2 superextension of Polyakov-Bershadsky W3(2) algebra with an ar-
bitrary central charge in the framework of Polyakov ”soldering” procedure. It contains as
non-intersecting subalgebras NV = 2 superconformal algebra and W3(2) and can be regarded
as a nonlinear closure of these two. Besides the currents generating these subalgebras, it in-

volves two pairs of fermionic currents with spins 1 and 2. A hybrid fields-currents realization
of this N =2 super-W3£2) 1s presented.
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1. Introduction

During last few years, an impressive progress has been achieved in understanding the pro-
cedure of supersymmetrizing W-type nonlinear algebras and a number of nonlinear superal-
gebras have been explicitly constructed, both at the classical and quantum levels (see, e.g.,
Ref.[1] and references therein). Among nonlinear bosonic algebras there exist special alge-
bras which contain the bosonic currents with non-canonical half-integer spins [2-6]. Until
present, no their supersymmetric extensions were known in an explicit form.

The Wéz) algebra |2, 3| provides the simplest nontrivial example of such an algebra.
It is a bosonic analog of the linear N = 2 superconformal algebra(SCA) [7] and contains,
besides two currents with the spins 2 and 1 (conformal stress-tensor and U(1)-Kac-Moody
current), also two currents with non-canonical spins 3/2. It is interesting to look for its
supersymmetric extensions. Clearly, if existing, these should involve fermionic currents with
non-canonical integer spins. In the present letter we construct an N = 2 supersymmetric
extension of the W3(2) algebra and its realization on a set of fields and currents.

2. Preliminaries
To simplify our task, we assume as a starting point that the N = 2 super-Wéz) algebra we

are looking for contains both W3(2) and N = 2 SCA as subalgebras and does not include
additional bosonic currents besides those present in these subalgebras. Let us stress that
here we are interested only in those N = 2 superextensions of W3(2) which contain it as a
genuine subalgebra. A more general problem of classifying all superalgebras which combine

the fractional spin 3/2 currents with N = 2 supersymmetry is beyond the scope of the
present letter.

To understand, how W3(2) and N = 2 SCA could be embedded in N = 2 super-W3(2), let
us firstly discuss some analogies between these algebras, which will allow us to make some
suggestive conjectures.

The algebra Wéz) x {Jw,G",G",T,}and N = 2SCA {Js, S, S, Ts} have the same spin

content {1,3/2,3/2,2}, but while the currents S, S are fermionic, their Wéz) counterparts
G*,G~ are bosonic. The defining operator-product-expansions (OPE) for these algebras at
the classical level have the following structure [2, 3, 7] *

W
% To
Jw(zl)Jw(ZZ) — 22 ’ Jw(zl)Tw(z2):?)
12 12
1 G* 3G G*
Jw(ZI)Gi(Z2) — ::'5';;; 9 Tw(zl)G:t(:"'?)_ 22%2 IF 312,
3¢ 2T, T
Tw(zl)Tw(22) = z%2+ 2122 | 2123
2¢ 6J 12 1
G (21)G (z3) = - — (T, J2 +3J!)—, 1
()G () = 5 =5t = (T~ )= (1)

1Hereafter, we explicitly write down only singular terms in OPE’s. All the currents appearing in the
- right-hand sides of the OPE’s are evaluated at point 2;. We strictly fix the relation between the central

charges of Wéz) and N = 2 SCA. The meaning of this restriction will be clear later.



N =2 SCA
2 Js
Jo(21)Jo(22) = 0 Jo(2)Ts(22) = -
i 12
1S . 1S
JS(Zl)S(Zz) — 9 Z19 ’ JS(ZI)S(Z2) — 9 212’
_ 2c  2J, Ts+ J!
5(21)S(z2) = ) ? 22, + —
3 S S’ _ 35 S
L)SE) = g+ o TS = o+ 2,
3c 2T, T
Ts(zl)Ts(Zi’) — A | > + —. (2)

212 <12 212

where 2z, = 2; — 2.

One could wonder whether these algebras, while treated as subalgebras of the sought
N =2 super-W;_,EQ), may intersect over some set of their bosonic currents. In other words,
may we from the beginning identify, say, J,, with J, or T\, with T, ? It turns out that such an
1dentification does not match our assumption about the bosonic currents content of N = 2
wi¥. An inspection of eqs. (1) and (2) shows that both Wi and N = 2 SCA are Z,-graded
and the currents with half-integer and integer conformal spins belong to two different Z,-
grading classes. This means, in particular, that all the currents with integer spins appear in
the right hand-side of OPE’s between the currents with half-integer spins. Therefore, any
ad hoc identification of J, or T, with J,, or T,, puts some constraints on the fermionic and
half-integer spin bosonic currents. We have checked that these constraints contradict Jacobi
identities until one introduces some extra currents with half-integer spins, including the
bosonic ones. So it is reasonable to assume that under our starting simplifying assumption
all the currents of Wéz) and N = 2 SCA are independent, i.e. there is no overlapping

between these subalgebras when they are embedded in the N = 2 super- W:,EQ) algebra. This
assumption together with the initial one entirely fix the bosonic currents content of the
N =2 WSEQ) algebra we are searching for. It should comprise the ngz) currents as well as

the currents generating the Virasoro and U(1) subalgebras of N = 2 SCA.

3. The N = 2 super Wéz) algebra.

Surprisingly, the conjectured algebraic structure naturally comes out in the framework of
Polyakov “soldering” procedure [2]. In this approach one writes down a gauge potential A
valued in the (super)algebra of appropriate (super)group G and performs a “soldering” by
putting some components of A equal to constants. From the residual gauge transformations
of the remaining components of A one can immediately read off the OPE’s of some W-
algebra, while these components themselves become the currents generating this algebra.
As the residual gauge transformations clearly form a closed set, the Jacobi identities of the

resulting W algebra prove to be automatically satisfied. Here we apply the “soldering”
procedure to the case of supergroup SL(3|2)2.

°An analogous approach with the same gauge supergroup SL(3|2) has been used in ref. [8] under a
different choice of soldering to derive the classical N = 2 super-W3 algebra.



Let us start with the following ”soldering” choice for the sl(3|2)-valued gauge potential

A:
2J, — 3J, G+ T, S, S,
. 0 2J, — 6J, G- 0 S
A== 1 0 2, — 3Je 0 S, , (3)
¢ S S S, 3J, — 6J, T,
0 0 S 1 3J, — 6J,

where {J,,J,,GT,G~,T1,T,} and {51,5'1,5, S, 52,5'2} are bosonic and fermionic currents,

respectively.
The potential A possesses the standard infinitesimal gauge transformation law

A = 0A + [A,A] (4)

with the sl(3|2)-valued matrix of the parameters A

2 + 1, + 13 a, as b, b,
, as | 2l1 - 2!3 ay bg b4
A= as ag 211 — l2 + l3 bs be . (5)
Cq Co Ca 3l + 14 a-
Cy Cs Cg as 3[1 — l4

One can easily find the residual gauge transformations preserving the form (3) of the gauge
potential. They correspond to the following parameters

ll: l31 3,05, A, Ag, b3565: (bl ~+ 66)3641 Cs, (Cl + cﬁ)‘ (6)

The remaining twelve combinations of the parameters are expressed through these ones and
the currents. Then one can obtain the transformations of all the currents in (3) with respect

to this restricted class of gauge transformations. We have checked that after representing
these transformations in the form

S(z) = e j{ dz, [~61J, + 1815, + asG* + aG™ + 3asT; — 3agTs + b3S + b5
+ (bl + bs)gl — 0452 — C5S - (C1 -+ Cs)Sl] (}5(22), | (7)

where ¢(z) is any current, the self-consistent set of OPE’s for the currents can be obtained.

To establish a link with the algebras (1) and (2), one should redefine the currents in the

following way:

1 .~ 3 1 . - 1
T, =T, +-5:5; — EJj, , To=-T, — ;Slsl + -EJf. (8)
C

Then the currents {J,,G*,G~,T,} and {JS,S, S, Ts} can be shown to obey just OPE’s

(1),(2) and so they form Wi?) and N = 2 SCA with the related central charges. Thus we
are eventually left with the set of currents consisting of those of W;,fz), N = 2 SCA and four
extra fermionic currents {Sl, S1, 52, 5'2} with the integer spins {1,1,2, 2}.



All the currents with the aforementioned spins are primary with respect to the following
Virasoro stress-tensor T with a zero central charge :
4 4 12 12
T:T3+Tw+“5151'——J3+—-‘JwJ3 Ji, . (9)
c c c

C

except for the currents T, and T,, which are quasi primary with the central charges 3¢ and
—3c respectively. We have checked that there is no basis in the N = 2 super-W32) algebra
such that all currents are primary with respect to some Virasoro stress-tensor.

In terms of these currents the whole set of OPE’s of our N = 2 super-Wéz) algebra

contains, besides the OPE’s of the subalgebras W.? and N = 2 SCA (1),(2), the following

non-trivial relations:

_ [ §Jw _ le 1g
51(21)51(22) = zjzz 2 s ? ; Js(zl)sl(zz) = 2zl: )
L5, :
Juw(21)51(22) = z1a Jo(21)Jw(22) = 22,
2J,, GT
Jo(21)Ty(22) = 2 Js(zl)G'!'(zz) — z12
1S 2J, 1S
J(21)Sa(2) = =22 | Ju(2)Te(22) = 355, Ju(21)Sa(22) = — &=,
Z12 212 <12
. (8151 + Judy) (515 + 515] — 551 + 8181 + 2J,J)
3(31) w(ZQ) = Z122 | 210 )
2(G*J, - 5,8 16, Sy — 8, —L(8,J, +3J,5)
Ts(zl)G+(22) — ( 210 ) 9 Ts(zl)sl(‘?"?) — 22%21 } 2 1 02(2112 1
35, 25, —38, +1(35:J, —9J,51)  2G*S 15T, + 35J+18,J!
Ts(zl)SQ(Zz) — 2132 + 22:%2 | 2212
36, dy — 3JuSs — §J,J,S1i + SIS + 80, S) — 2810, + 27,81 — S) + S
| 2212 ,
19 S, —18.J, +2J,S; + S G-8,-4J1,8
Tu(z2)Si(zs) = — 2ot — 222 e Tew N T 0 ()§(zy) = — e e

212 22:]_2 212

35, 25, — %Sle + %JwSl + 357 %G’+S + %SlTw — E%—SIJE + %Sl.];
Tw(z1)S2(22) = 7

212 221, 2213
%52 s %Jw52 T C%JstSI B %Ji& — %sti + %SiJS _' %J:vSl — 53— 51
2212 ’
_1g g _3 ' ~G*S
G+(z1)S(zz) _ 22‘1 32 CSIJ.S CJwSI + Sl : G+(Zl)52(22) — 2¢ 1 ,
212 2192 212
13 ] 3 1G-§ + 1,527,858
G_(Zl)51(22) = ;2 , G (21)52(32) — 2%2 2219 ’
= GT _ TS—I—Tw—I—-gS]LS'l — lJf — EJ:‘:,
[y S — : S [y _ C C C :
1(21)5(22) 270 1(21)52(22) PR
35,5 3G~ 3G J,+185-2%J,G-+G

S(Zl)Sz(Zg) — 5(21)52(22) —

) 2
2¢z12 227, 2219

?



25,5
52(21)52(22) — : 2:
C212
N 3¢ 3J,—-9J, 2T,-2T,+J> -], J,+33J2 +3J —9J
S2(21)S52(22) = — - 3 % = s c Y ! w
<12 212 221,

i %G+G* + %5152 -+ %55‘ + %525‘1 23:2 Jg + %TSJS — %Tst o %JwTs %JwTw 232 JWJ.E

2192
33 72 40 13 9 P 1 pry 9 1 33 7/ 1 1guv | Y yn 3 7
i 2¢c? Jw']s 2¢2 Jw 2CJ‘”J3 T 2(:J3 3 EGJIUJS + ZCJwa T ‘2TS o QTIU + 2']3 o 2Jw (10)
| 2192

Here we omitted the OPE’s which can be obtained from (10) via the discrete automorphisms:
Jw,s — _Jw,sa G_:t — ::G;7 S — 5) S — Sa Sl — 5'13 S'l — -51552 ? 323 52 — 52-

All these OPE’s are guaranteed to define a closed nonlinear algebra (with all the Jacobi
identities satisfied) because they have been deduced directly from the gauge transformations

algebra.
Besides the Wéz) and V = 2 SCA sub-algebras, the obtained N = 2 super-W(g) algebra

) 3
contains an affine Kac-Moody supersubalgebra formed by the currents S, 5, and 3J,, — J,,

with the local part given by the anticommutator

{(Sl)o y (5‘1)0} — % (3Jw — JS)O ) (11)

all other (anti)commutators vanishing. This algebra is a contraction of si(1|1).

We close this Section with several comments.

First, despite the fact that the V = 2 super—W3(2) algebra constructed has equal numbers
of bosonic and fermionic currents, it seems unlikely that they can be arranged into N = 2
supermultiplets. The main obstruction against existence of a superfield description is the
fact that in our superalgebra numbers of the currents with integer and half-integer spins
do not match with each other while any N = 2 superfield clearly contains equal number of
components with integer and half-integer spins.

Secondly, a generalization of the proposed construction to the case of N = 2 super-W %)
1s straightforward like in the case of N = 2 super-W, algebras(8|. Starting with the gauge
potential valued in the superalgebra sl(n|n — 1) and choosing the “soldering” that gives

rise to the algebra W{ x W,E{__ll) in the bosonic part of si(njn — 1), one can deduce the
relevant OPE’s. Of course, there is a lot of other options for “soldering” in the bosonic part
of sl(n|n — 1). A detailed consideration of these cases is beyond the scope of this letter (a
discussions of this subject within the general Drinfeld-Sokolov scheme can be found in [9]).

4, Hybrid fields-currents realization.
The N = 2 super—W3(2) algebra (1),(2),(10) has the same feature as its Wéz) and N = 2
SCA subalgebras, namely, all the currents with integer spins appear in the right hand-side
of OPE’s between the currents with half-integer spins. So, to construct some realization of
N =2 super-W3(2), it suffices to specify only four spin 3/2 currents G*,G~, S and S. This
also implies that the N = 2 super-Wég) algebra 1s a closure of its Wé” and N = 2 SCA
subalgebras, providing central charges are related in an appropriate way. Keeping in mind

these useful properties, let us construct realizations for N = 2 super-W32) algebra on set of
the spin 1/2 fields and spin 1 currents.



The minimal realizations of W32) and N = 2 SCA algebras include the spins {15 18 1B 15}

2 19
| and {;F, ;F, 17 15}[10] respectively. These multiplets are not large enough to form a.

realizatlon of N =2 super-W( ) algebra in their own right. Let us remind that N = 2 super-

W3(2) 1s generated by tweive independent currents which are those independent components
of the gauge potential A (3) which transform inhomogeneously (at ¢ # 0) with respect to the
residual gauge transformations (7). So, to reproduce these inhomogeneous transformations,
1t 1s necessary to introduce an independent basic field for each current. For the remaining
four fermionic currents S;, 5,59, and S, of N = 2 super—Wéz) algebra we are led to introduce
four fermionic spin 1 basic fields (alias currents). Thus, the whole multiplet of the basic fields

contains six bosonic fields - {Ul, Us,, Vi, VQ,E,E} and six fermionic ones - {Al, A1, Aa, /_\2,1,[),1/;}
with the spins {1, 1,1,1, %, -é—}, respectively, and with the J,- and J,- U(1) charges equal to
the charges of the currents with which these fields are associated.

Now we are ready to construct the realization of N = 2 super-W;i(z). Taking the most gen-
eral Ansatz for the currents (in terms of the introduced basic fields) as well as for the OPE’s
between basic fields, and requiring the latter to be consistent with the OPE’s (1),(2),(10)
we obtain the following realization

s = \/E(w’——gw)—éisg = (80 + U+ U)

5 = Ve(¥-5Vd) +eh - 2 (660 - U),

Gt = ve(Vig— gVt +€) + N+ } (U:€ — £ — evd),

6 = —Ve(GHE+VE—€) +hav+ — (666 + Evd + Uid + Tif)

J, = SV -Va) - U — 6 - o,

Jo = 1‘32-(514 +V2) — %Uz - -;-66'— %mﬁ,

S, = % (A1 +X2) - —;-w,

S = Y(u+h)- L

5 - --2‘/-_- (Vika = Viks + X, — Xp) + Ve — 26w/ — Vatw + 56
_ % ( ¢EX — §¢'Ei2 -¢1,B:\1 - iw}iz — Uihy + Upks — -;-Uz;'\l + %Uz,‘\z)
- 5o (Geedv + tatw),

5 = f( WA = Vo + Vady = SVado = 2 X+ 20 ) + 60 — S8 + SVidd + 5 Vil

1, 1 - 3 -
(fo)\l — 165/\2 + "4",/}’%5)\1 — Z¢¢A2 + Ui Ay — UiAz + §U2’\1 - §U2A2)

%IH



1 /3 -
- = (et + JE9)
C , , . !l -, 1 ,- 3_ .- 1 - 3 1
T, = 7 BV +V, —3ViV,) + AtAs + —¢¢ — "‘¢¢ — §V1£f + §Vz§5 + §U1V1 + §U1V2
1 1 - _ __
+ UV Ul - 35U - — - (eM9 — Ehad) + (szf ~ Uiy = DhUs + €€€€)
c (7 7 7 , , - | T
T = 2(3WVi+3hiVetValh— V= 3V) = Ao — 36 + €€
5 -1 -1 3 2 5 A
— gvl(”)b — —V2¢'¢ — §U1V1 — ‘2‘U1Vz — §U2V1 — ‘6"U2V2 + U; + §U2
. 1 1 .
- 2 (00— E00) + (00 + 00+ T, + 3023 (12)
The superalgebra of the basic fields is represented by the following OPE’s
_ 1 _ 1 - 1 | %
E(21)€(z2) = ——, D(a)h(z2) = ——, Mi(z)hi(z) = 5 +—,
212 212 212 <12
- 1 Vi 1 ]
/\2(21)/\2(22) = | = ; U2(21)V2(22) == 2 ) Uz(zl)Vl(Zz) — 5 )
212 %12 212 212
1 Al - Al Al
Ur(21)Vi(22) = -, Ui(z1)Ai(22) = —, Ui(z1)Ai(22) = ,  Us(z1)A1(22) =
F 2D 212 212 <12
A A2 _ A2
Uz(zl)/\l(ZQ) —, Ug(zl)Ag(Zz) = ; UQ(Z]_)AQ(ZQ) — . (13)
212 212 212

It is instructive to examine the structure of the stress-tensor T (9) in this realization

_ _ i .,- 1 -, 1 - 1 - '
T = —A1A1 — AA + 55'5 — Eff' + §¢¢’—' -2'¢’¢ + UV = UL Ve — ULV, + 2V’ — —V (14)

As we could expect, it is bilinear in all basic fields unlike T, and T, in (12). The relations (12)

are specified up to possible automorphisms of both the N = 2 super-W3(2) algebra and the
superalgebra (13). In particular, the OPE’s (13) possess the one-parameter automorphism

Ur(z) = Uh(2) = Ui(z) — aVa(z) , Us(e) = Us(z) = Ua(z) + a(Va(z) — Vi(2)), (15)

with a beings an arbitrary constant.

5. Conclusion
To summarize, we have constructed the classical N = 2 super-Wéz) algebra and its realization
on a set of the spin 1/2 fields and spin 1 currents.

While our soldering procedure corresponds to the non-principal embedding of si(2) in
sl(3|2), in principle, there is another possibility of combining the bosonic spin 3/2 currents
with N = 2 SCA. Namely, we could consider a non-principal embedding of sl{(2) in the
sl(3]|1) superalgebra rather than in s/(3|2). Simple calculations show that for such a choice

the resulting V = 2 superalgebra does not contain W3(2) as a genuine bosonic subalgebra,
despite the presence of bosonic spin 3/2 currents in 1t.

In a forthcoming publication {12] we will show how to describe N = 2 super-W,>) con-
structed here in terms of constrainted superfields in the superspace with a non-standard



dimension of Grassman coordinates 8,8 (0 and 1 instead 1/2 and 1/2). We will also consider
the reduction of our N = 2 super-W.? algebra to N = 2 super-W, 8], and extend our
consideration to the full quantum N = 2 super-Wéz) algebra [13]. '
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