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ABSTRACT. The Microcanonical Fermionic Average method has been used so far in the
context of lattice models with phase transitions at finite coupling. To test its applicability
to Asymptotically Free theories, we have implemented it in QED,, t.e. the Schwinger
Model. We exploit the possibility, intrinsic to this method, of studying the whole 8, m
plane at negligible computer cost, to follow constant physics trajectories and measure the
m — 0 imit of the chiral condensate. We recover the continuum result within 3 decimal
places.

The Microcanonical Fermionic Average (M.F.A.) method for performing Lattice
simulations with dynamical fermions [1] is ideally suited for discussing the phase structure
of theories with phase transitions at finite couplings, and it has been applied so far in this
context (2, 3].

The conventional wisdom, however, requires that physically interesting theories are
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Asymptotically Free like QCD. It is then interesting to test the applicability of the M.F.A.
method to a theory without phase transitions at finite coupling [4]. In this paper we
present an analysis of the Schwinger Model on the lattice. Strictly speaking, the Schwinger
Model in the continuum is not Asymptotically Free, since it is superrenormalizable and the
Callan-Symanzik 8 function vanishes. However, in the lattice version, since the continuum
coupling is dimensionful, the continuum theory is reached at infinite lattice coupling, much
in the same way as four dimensional Asymptotically Free theories like QCD.

The continuum model is confining; it is exactly solvable at zero fermionic mass, so
that we can compare the results of our simulations with exact ones.

We have simulated the (unquenched) model in lattices ranging from 162 to 100%; we
present here results for the average plaquette and for the chiral condensate, in the non
symmetric (§ = 0) vacuum of the model.

The evaluation of the chiral condensate has been made easier by the fact that, in the
M.F.A. approach, the main computer cost resides in the evaluation of an effective fermionic
action at fixed pure gauge energy by evaluating all the eigenvalues of the fermionic matrix
at m = 0. It is then essentially possible, at no extra cost, to move in the plane 8, m to
follow constant physics trajectories in approaching the correct continuum limit. This 1s
easier in this model since here the Renormalization Group amounts to simple dimensional
analysis.

The M.F.A. method is fully described in [1]. Starting from the partition function in
terms of the total Action S = Sr+ Sg, sum of the fermionic and pure gauge contributions,
we define the density of states at fixed pure gauge Action (i.e. Euclidean Energy)

N(E) = / DUS(Sg(U) — VE) (1)
and an effective fermionic action through

e~ Sers(mns B) — (det A:«’L)E

J DU det A% §(Se(U) — VE) .

which is the microcanonical average of the fermionic determinant.

In terms of the effective Action the partition function can thus be rewritten as
Z = fdEN(E)e‘BVE“SfH('“'“f’E) (3)

Massless electrodynamics in 1 + 1 dimensions is confining, superrenormalizable and
exactly solvable.
Its partition function 1is

Z= / DA, D¢ Dypel @2l FuvFra+9D ¢) (4)

with the usual definitions of F,, and D/. The electric charge is dimensionful in this
model].



The partition function (in the photonic sector) can be rewritten as [5]
7 = /DApefdzx[i‘F#anv+%2;A#A#] (5)

t.e. as that of a theory of free massive vector bosons of mass M = - In particular the
Green’s functions of purely bosonic operators are the same in both theories. This fact
can be exploited for obtaining the average plaquette in the lattice (see later).

As for the chiral properties of the model, the chiral current is anomalous. If the chiral
limit is obtained from m # 0, then the § = 0 vacuum is selected. In this vacuum the
chiral condensate is (with one flavour) '

e‘Ye

1 -

while it diverges at zero flavour (2.e. the quenched limit) and is zero with two flavours.

This 1s the value of the chiral condensate to be compared with the results of lattice
simulations, where its chiral limit is obtained from m # 0

In the present simulation the pure gauge part is described in terms of non compact
fields, while for the fermionic - gauge term we use the standard staggered formulation
with n; species.

Since the photonic sector of the continuum theory is equivalent to a theory of a free,
massive vector boson, the average plaquette of the Schwinger model can be compared
with that of the vector boson, which can be exactly computed on a finite lattice:

1 2 — COS p; — COS Py

— 7
2V 1= 2835 (1 — cospy) + M? (7)

(E)L

(pu = #=k,) and for V — oo

1 f d°p 2(1 —cosp) + 2(1 — cos p,)

E = § (2.,‘.)2 M? + 23 27(1 — cosp-,) (8)

The value M = -—\}—1—; corresponds to the continuum Schwinger model, while the quenched

val .
uc 1S 1

MMzM:% (9)

Since e. is dimensionful, B explicitely contains the lattice spacing: f = —'5 so that the

continuum limit of the theory is approached at 8 — oco. The limit must be reached
keeping fixed the dimensionless ratio ¢ = v/Bm. This ratio defines constant physics
trajectories.

We have performed simulations in lattices up to 100°. We present here the results for
the 64° lattice, where we have the best statistics (for a total of 70 Cray-equivalent hours)
8]. We will mainly discuss the 1—flavour case.

As stated before, we compute all the eigenvalues of the fermionic matrix. This allows
us to compute the Effective Action for all values of the mass, including m = 0. We have

done so for 20 values of the energy, from 0.08 to 1.3.
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Figure 1: Average plaquette 64°,m = 0,n; = 1.

One advantage of the MFA method is that the phase structure of the theory can
be inspected directly from the fermiomnic effective action, whose derivatives must be
discontinuous in order to generate a phase transition, at least for small ny, if the underlying
pure gauge theory has no transition [2]. In the case of QED, the continuum theory is
obtained as 8 — oo and one does not expects finite 8 transitions. The effective fermionic
action numerically evaluated for the model does not show any sign of non analyticity and
hence of phase transition (8].

The average plaquette is obtained as

dEN(E)Ee#VEgSes(mnsE)
(B), = LR (10)

and can be directly computed at m = 0. Since the underlying pure gauge theory is
quadratic the density of states 1s known analytically

f

-

N(E) = CgE®V-2 (11)

so that the integrals in (10) are simple one-dimensional integrals.

In Figure 1 we report the value of the average plaquette energy (diamonds), multiplied
by 25 to improve the visibility, compared with the exact result for a Massive Vector Model
on the lattice. It 1s important to notice that the Schwinger Model is equivalent to a Vector
Model in the continuum. On the lattice, there is no guarantee that the two models are
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Figure 2: Chiral condensate, 64°,2 = 0.01,0.04,0.08

related. From Figure 1 one can see that at small 8, where presumably we are far from the
continuum, there is disagreement between the numerical results and the analytical ones.
However, already at 8 ~ 1 the agreement becomes excellent, showing that, at least for
this operator, the continuum physics is reached fastly. The straight line is the quenched
value 23(E) = 1, and one can see that, as m increases, the asymptotic value of (E) moves
towards 1t. The chiral condensate

_ 1 [dEe S-Sk,
(¢¢) - an dee Setg (12)

cannot be directly computed at m = 0, where it vanishes on the lattice, so it must be
obtained as the imit m — 0. To reach the correct continuum value, this limit has to be
taken simultaneously with the 8 — oo one, keeping the product /Am fixed.
This can be easily done with this method, which does not require a separate simulation
of the fermionic contribution for each pair of parameters (8, m).
In Figure 2 we report the value of the chiral condensate for three values of the ratio
. For relatively large values of this ratio, scaling sets up already near 8 ~ 1, but even
for a very small value (in this lattice) as < = 0.01, where finite spacing and volume
eflects appear in the small and large 3 regions, there is a clear scaling window. We have
repeated this procedure for 12 values of T<, and the values of the chiral condensate in

the scaling window so obtained have been reported in Figure 3. The behaviour of the
condensate is very clear towards the continuum value, indicated in the figure as a circle.
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Figure 3: Chiral condensate vs ,ny = 1, errors are smaller than symbols

By fitting the points at small 2< with polynomials we have always obtained consistent

c

results for the intercept:

' (2p) = 0.160 3 0.002 (13)

in perfect agreement with the theoretical value.
One can exploit the analogy between the fermionic system and a magnetic one to

predict that the chiral condensate should behave as a power in 7¢ 1n the scaling region,
so allowing an unambiguous extrapolation at m = 0.

From a formal point of view this result is also important, since it shows that, even
with staggered fermions, where it cannot be proven rigorously, the usual introduction of
the flavour number through powers of the fermionic determinant is correct; in fact the
numerical value for the chiral condensate, which exactly matches the continuum value, is
obtained here by taking the square root of the determinant in the partition function.

We have also analyzed the zero and two flavours cases [8]. In the zero flavour limit
there is really no scaling region, with the chiral condensate increasing at large 0, indicating
that it diverges as expected [6]. On the contrary in the two flavour case, the behaviour of
the chiral condensate at finite mass indicates a vanishing value in the chiral limit, again
in agreement with expectations [7].

In conclusion, the results we find agree completely with the analytical expectations of
the continuum theory. In this respect we believe that the MFA method can be applied to

lattice models where the continuum limit is approached at infinite inverse coupling, like



QCD.

It is particularly interesting, in view of more ambitious applications, the ease with
which constant physics trajectories can be followed in this approach: in particular, since
the mass dependence of the lattice Dirac operator has become trivial, it is possible to
move in the B, m parameter space at negligible computer cost. It is useful to remember
that also the n; dependence is trivial {2].

This potentiality has been fully exploited in the Schwinger Model, where
Renormalization Group amounts to simple dimensional analysis and Constant Physics
trajectories can be exactly defined through the whole parameter space; as a consequence
our numerical results for the chiral condensate are quite independent from the
extrapolation to zero fermion mass and (as shown in Figure 3) are by far the best available
in the literature.

We believe that this potentiality can be used in more realistic theories like QCD.

All the above simulations have been performed on various Transputer networks at
L’Aquila University, Zaragoza University (RT N ), the bulk on the Transputer Networks
of the Theory Group of the Frascati National Laboratories of the INFN.

This work has been partly supported through a CICYT (Spain) - INFN (Italy)

collaboration.
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