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Abstract

The e-e* DA®NE collider is designed to reach a luminosity of the order of 1032-1033
[sect cm2] at 510MeV, by storing high current. Such a current, of the order of few amperes
for beam, can in principle be achieved by filling many RF buckets in the machine. One of the
main problems arising in the beam dynamics concerns the Multibunch Instabilities caused by
the strong coupling between the beam and the parasitic HOM resonances of the RF cavity.
Due to the high current, the instability is very fast, so that it is impossible to stabilize the
beam with a feedback system alone. An effort has to be made to reduce the shunt impedance
of the cavity HOMs, so that a feedback system can be effective. This task is accomplished by
properly designing the RF cavity and by coupling off the HOMs through loops or waveguides
in order to extract energy from the resonant fields, thus reducing at the same time the quality
factor Q and the shunt impedance R. The residual excitation of beam oscillations is damped
by means of a bunch-by-bunch digital feedback system.
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Momentum compaction.

Dipole oscillations growth rate (1/t;).

Effective dipole oscillations growth rate (1/t.g.
HOM filling rate.

Feedback damping rate.

Natural angular frequency for a single HOM.
Energy deviation.

Feedback energy correction.

Phase angle of synchrotron oscillations.
Coherent mode of oscillation m®,

Electron charge.

Nominal electron energy.

Waveguide electric field.

Magnetic Green function for a rectangular waveguide (3 X 3 matrix ).
Stationary longitudinal phase space distribution.
Harmonic number.

Cavity unperturbed magnetic field.

Waveguide magnetic field.

Induced wake current in the inductance of a single HOM.
Beam current.

Beam average current.

Amplitude of "m" armonics.

Current density.

Bessel function of the first kind of m™ order.
HOM loss factor.

Number of bunches.

relative mode number.

Total dissipated HOM power.

Total power dissipated in the waveguide loads.
Cavity quality factor.

Bunch charge.

Cavity shunt resistance.

RMS bunch duration.

Longitudinal phase space amplitude.

HOM Filling time.

Dipole rise time.

Longitudinal radiation damping time.

Effective dipole rise time.

Asymptotic effective rise time (for high Q).
Total energy of a single HOM.

Energy loss for the broad band impedance.
Energy loss by radiation for the synchronous particle.
Energy loss by radiation.

Induced wake voltage for a single HOM.
Generator voltage.

HOM impedance.

Revolution angular frequency.

Coherent synchrotron angular frequency.
Resonance angular frequency for a single HOM.

Incoherent synchrotron angular frequency.



1. - INTRODUCTION

In the @-Factory DA®NE, a 510 MeV e*e- twin ring collider under construction at
Frascati Laboratories (see Table I), the luminosity goal is achievable by storing a high current
in many bunches. This has required a strong effort on the study of the control of multibunch
instabilities. The problem can be afforded both from the side of the reduction of the causes
and from the side of the cures of the instability.

Table I - DA®NE single ring parameter list.

Machine length 97.69 (m)
Revolution freq. 3.069 (MHz)
RF frequency 3168.26 (MHz)
Harmonic number 120

Number of Bunches 30+ 120

VRrE 254 KV)
Energy 510 (MeV)
Radiation loss/turn 9.32 (KeV)
Momentum compaction 5.8+10°

Synchrotron frequency 22.88 (KHz)
RMS bunch duration 100 (psec)
Longitudinal damping time 17.8 (msec)

An analysis of the interaction of the beam spectrum with the parasitic modes of the RF
cavity shows that the instability growth rates depend on the strength of the "stable" and
"unstable" sidebands and their position with respect to the HOMs.

For HOMs with very high Qs, it is really unlikely that a sideband couples to an HOM.
The shunt impedance of these HOMs also is very high, however harmless as long as the
HOM is not excited by a sideband. Unfortunately during machine operation the HOM
frequency can drift, because of thermal excursions or as a side effect of tuning the
fundamental mode, leading to a strong coupling and very fast instability.

A careful design of the cavity shape can lead to HOMs with rather low shunt
impedances R/Q<1€2, however not low enough to maintain the stability in case of full
coupling.

Recent development of HOM damping techniques have shown that, for normal
conducting cavities, it is possible to achieve Qs less than 100, thereby obtaining a strong
reduction of the beam-HOM coupling. This would make it possible to damp the residual
multibunch instabilities by means of a feedback system.

In this paper we describe the results obtained at the design stage for DA®NE!. The
work is organized as follows: in section 2 the theoretical estimates of the growth rates are
presented; the optimum design of an RF cavity with low HOM contents is briefly described in
section 3; the HOM damping techniques, which have been investigated, are treated in section
4; section 5 illustrates the bunch-by-bunch feedback system, while the time domain
simulation code able to show the beam dynamics behavior and the effectiveness of the
feedback system is described in section 6.
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2. - THEORETICAL GROWTH RATES
2.1 — Coherent frequency shift

The analysis of the dynamics of k;, equispaced bunches interacting with the long range
wake fields is performed by computing the coherent frequency shift predicted by Sacherer's
theory?2.

Any perturbation of a bunch with a stationary phase space distribution go(T) is
developed as sum of multipole coherent modes AWp,. Under the effect of long range
wakefields the coherent mode of oscillation "m" (m=1 dipole, m=2 quadrupole, etc.) can
grow or decay in amplitude. Limiting our analysis to the dipole mode, we have

AY| = g,(7) exp[j(we — ws)] (1)

where g1(t) is the perturbation amplitude, and (w¢ - ®g) is the complex coherent angular
frequency shift with respect to the synchrotron one .

The spectrum of the bunches executing free dipole oscillations exhibits lines at angular
frequencies

©p= (pkp + n) W, + O )

-0 < p <+o00,0<n<Kky-1, p,nintegers

where n is the number of the relative mode of oscillation.

In DA®NE, due to high revolution frequency, the unstable sidebands corresponding to
a given "n", are quite apart. A single HOM with high Q can at most excite a single sideband.
For a damped HOM, with Q=100, the resonator can significantly couple to a few unstable
sidebands. However, the bandwidth is such that, apart of n = k/2, there will not be
compensation of stable and unstable sidebands.

In the following analysis we shall consider the effect of a single HOM coupling to the
relative bunch motion "n". Let @y, R, Q be the resonator parameters. In this simple case the
coherent frequency shift is3:

, 1, Z “dg, 2
j(wc-w3)=— aC [4] (qw;+wC)J ag;ojl (qon)dT
o

where 1 is the beam current, o, the momentum compaction, ¢ = pkp+n, and
R
Zqwotwe) = o+
1 + jQ[q 0 O-)C _ w’ ]
Wr q,+ o (4)

the resonator impedance.

The customary way of computing the coherent frequency shift4.3 considers the bunch
spectrum at angular frequencies wy, i.. the spectrum of a bunch with dipole perturbation
executing free oscillations in the absence of growth or damping. Once the impedance
spectrum is known, this procedure leads to the solution for the unknown ¢ This is not
exactly what is prescribed in eq.(3) where the impedance has to be computed at the shifted
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frequencies. As a matter of fact, eq.(3) is an eigenvalue problem for w¢. Computing the
impedance at the bunch spectrum sidebands (2) leads to an estimate of the growth rates that is
not exact, especially in the case of high Q resonances6.’.

Let us write, for simplicity, eq.(3) in a more compact form

01(q)

Hwe=ws) = —= Z(qwo+wo)l,
q (5)
with
(04 = 8g 2
6 = - < 2 Ji (qw,t)dt
() w,(E/e)J.o 3 1 (qu,T) ”
In the realistic case that mc<<wy the impedance can be approximated by:
R
Z(qwo + wc) = jw
1+2=<+ jrg(®,)
% @
where
q0, O,
sf0)=df 22
af = .@L and w, qwo (8)
20

are the filling rate of the resonant mode (1f = 1/0¢ = filling time) and the detuning of the
resonant mode with respect to the line "q" of the bunch spectrum, respectively.

With these definitions and approximations, the coherent tune shift is obtained by
solving the following equation:

. 6,(q)RI .
w? +[aftg(d>,)- , — jaf]coc - a,[co,tg(cb,) —qu)——g- —jw,] =0

€))

2.2 - Dipole mode, on resonance

Assuming a resonator at 0 = o+ G, We get:

V ! (10)

As expected, in the full coupling condition there is no real shift of the synchrotron
frequency, whereas the imaginary shift gives the growth rate of the instability. We recognize
in the term

1 -
=%
6,(q)RI, (11)
the instability rise time usually obtained from eq. (3).
It is interesting to analyze two different regimes.
For 1,>> 17, we get:
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.1
W, =W, — j—
h (12)

In this case the rise time given by eq.(11), can be considered a fairly good
approximation.
Quite different results are obtained in the other case, namely when 1,<< 1¢, for which
we get:
J
A ’ T Tf (13)
The effective rise time Tefr =1/11 Tf results to be the geometric mean of 1, and 77. One
could conclude from the above equation that cavities characterized by an extremely long

filling time, should be preferred as regards the multibunch instabilities. Expliciting the two
terms in the rise time of €q.(13) we have:

W, =0, -

ol (91(4)wrlo(R/Q)) (14)

Therefore, in the regime 1;<<1s the effective rise time is inversely proportional to the
square root of the ratio R/Q. By increasing Q and keeping R/Q constant, the effective rise
time reaches an asymptotic value no more dependent on the cavity filling time.

As an example we plot in Fig. 1, as a function of Q, the growth rates &, =1/1, and Oeff
=1/Teff computed for DA®NE, assuming a parasitic resonance with R/Q=1£2, at @, = 500w+
s, exciting the motion of 30 bunches of 3 cm RMS length for a total current of 1.4 A. The
upper curve is the growth rate o,(Q) while the lower one is oerf(Q). We note that at high Qs
the difference between the two curves becomes larger and larger. In order to verify the
correctness of eq.(10), we have reported on the same plots the instability growth rates (dots)
obtained from the time domain simulation code8 described in section 6. The numerical results
agree quite well with those computed from eq.(10).

85

Logw(a)
5.+

Oott
45+

35¢%

10000, 20000, 30000, 40000,  50000.
FIG. 1 - Growth rates o, (Q) and oefr (Q), for an HOM with R/Q=1.
For the DA®NE cavity only few undamped HOMs with a relatively high shunt

impedance give a Tesf significantly higher than t,. In Table II we report the results relative to
the HOMs of the DA®NE cavity given by URMELS?. The rise times computed with eq.(10)



-7-

are given for wp=w; (full coupling). Analogous results for the measured HOMs of the cavity
prototype are shown in Table IV. One can see that when the HOM is beated on resonance, the
instability is extremely fast and uncurable, whereas for damped HOMs the rise time is much
longer and, easely curable with a feedback system.

Table IT - URMEL Cavity Modes

MONOPOLAR MODES

MODE TYPE FREQ. [MHz] R/Q) [Q] Qo T [1S]
0-EM-1 367.38 6138 49100
0-MM-1 695.97 15.81 49800 8
0-EM-2 794.85 0.01 81900 1850
0-MM-2 987.18 0.01 65900 2100
0-EM-3 1069.79 0.25 66900 96
0-EM-4 1119.92 2.11 57500 20
0-MM-3 1138.40 0.09 56800 270
0-EM-5 1203.83 0.79 67600 37
0-MM-4 1283.84 0.17 56200 150
0-EM-6 1318.43 0.77 72400 35
0-MM-5 1390.57 0.33 57800 81
0-EM-8 1481.07 0.85 55400 38
0-MM-7 1570.06 0.55 62200 51
0-EM-9 1574.96 0.88 61000 35
0-EM-10 1665.50 0.17 68200 136
0-MM-8 1672.18 1.12 63100 29
0-MM-9 1717.68 0.22 63500 109
0-EM-11 1742.33 021 57300 133
0-MM-10 1774.36 1.53 62400 24
0-EM-12 1796.49 0.13 56400 217
0-MM-11 1866.16 0.47 63300 62
0-EM-14 1955.71 0.15 91400 133
0-EM-15 2011.62 0.23 59500 132
0-MM-13 2038.39 0.24 64400 120

It must be said that Landau damping could have a noticeable effect on the instability,
once the HOMs have been damped. In Fig. 2 we show the Q required for the 0-MM-1 cavity
mode versus the bunch length. The damping time depends almost quadratically on the bunch
length, and for bunches shorter than 3 cm a much stronger damping of the HOM would be
required. Morover the real coherent shift could make it uneffective.

For sake of completeness, we point out that the growth rates have been worked out
assuming an individual coupling of one sideband with a single resonator. These calculations
neglect the superposition of the shunt impedance of several HOMs on the same relative mode.
This effect can enhance (sum of shunt impedances) or reduce (difference of shunt impedance)
the coupling. The time simulation code shows that for DADNE these effects are generally
negligible, even in the presence of the HOM damping system.
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FIG. 2 — Q. vs. bunch length for 0-MM-1 Landau Stability.

2.3 — Some considerations on high Qs cavity

The shortest rise time is given by the "on resonance" asymptotic value of T.gr, that we
call 7,4, reached for 14>>1, i.e. for HOMs characterized by very high Qs. It might happen
that the machine parameters are such that Teﬁxd (damping time).

Therefore, at a design stage, it is interesting to compare the effective rise time 7,5 with
the damping time 14 due to radiation effect or to the Landau damping. If To>Td the beam is
stable without any action on the RF cavity. As an example we give the condition to keep the
beam stabilized by the radiation damping.

For short Gaussian bunches, it is useful to write down the effective rise time in the

form:
1
- _(4E/e), 2 1
A e 1
ore w,(R/Q)2 (15)

T,<< Trrequires that

OVRTO >> |9t/ )
Ioac (16)

~R/Q <w,U, /e),’-j——(m
(17

The two relations above are never fulfilled in DA®NE. However, for typical R/Q
values, the conditions are better satisfied for superconducting cavities at very high energy,
provided that the momentum compaction is very small.

and T,4>14 gives



2.4 — Dipole mode, off resonance

A problem arising in the standard calculation of w is the following: as a consequence
of the coupling to the imaginary part of the impedance, the sidebands wy shift toward the
resonant angular frequency ; of the HOM; this shift leads to a stronger coupling with the
resistive impedance and to a further shift of wy. Iterating this way of reasoning, every coupled
sideband should always couple with the maximum shunt impedance. Fortunately, the right
expression of ¢ in eq.(10) shows that the sideband finds a new equilibrium frequency.

A sample HOM with Q=10000, R/Q=1 and q=500, has been chosen to compare eq.(9)
with the results of the time domain simulation code. Also in this case the agreement is quite
satisfactory, as shown in Figs. 3a and 3b.

25000.}
(xeﬁ
20000.}
15000.}
10000.}
5000.}
®
9638, 9640. 9642, 9644. [10°6 rad/sec]

FIG. 3a — Growth rate a.gf () for R/Q=1, Q=104, g=500.

15000,

10000.+

5000.%

9642. 9644.
-5000.}

-10000.{

® [106 rad/sec]

-15000.

FIG. 3b — Angular frequency shift Amg(ey), for R/Q=1, Q=104, q=500.
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3.~ A CAVITY WITH LOW HOM CONTENTS

As a first remark, RF power requirements are not highly demanding in a storage rings
like DA®NE. At the operating energy of 510 MeV and beam current of 1.4 A in 30 bunches,
a peak voltage up to 250 kV is requiréd in the RF cavity, mainly to control the bunch length.
The power dissipation in the cavity has to be kept reasonably low to ease the mechanical and
cooling design. A shunt resistance as low as R=2MQ (V2/2P) for the fundamental mode
seems indeed acceptable, what enables us to consider the minimization of the R/Q for the
HOM s as the main goal of the design process. A strong reduction of R/Q.values is pursued in
view of several beam dynamics aspects:

— Power loss of the HOMs,
— Single bunch instability,
—— Multibunch instabilities.

3.1 - Design procedure of cavity shape

The basic 1dea is to 'open’ the beam tubes at the cavity irises in order to let the higher
frequency parasitic modes propagate through them. This implies a strong reduction of the
characteristic impedance of all the HOMs, except at most the lowest in frequency, which need
a special care. A taper is then used as a gradual transition from the cavity iris to the ring
~ vacuum pipe. o

A careful analysis of the longitudinal wake potentials was made by means of the code
TBCI!0, aiming to reduce the cavity contribution to the machine impedance!l. As a result, a
design with no beam tubes and two long tapers was proposed and the final comparison with a
conventional design, with tubes and short tapers, showed a rather impressive difference in the
loss factor to the HOMs (kpm = 0.07 against 0.16 V/pC), while showing a slightly larger value
of the R/Q at the fundamental mode. Since the total loss factor for a single bunch passage is

Kpm = 2 %’-(g)exp(—aﬁo’f)
all the HOMs (18)
this means that on the average the R/Qs are decreased substantially. This fact was confirmed
by a frequency-domain analysis (done by means of the codes OSCAR2D!2 and URMEL),
where the presence of some strong HOMs above the beam tube cutoff was observed in the
short tapered, but not in the long tapered structure.

The cavity design can noticeably influence the R/Q for the lower frequency modes . For
example, it is impossible to maximize the R/Q for the accelerating mode 0-EM-1 and to
minimize those for the two most dangerous HOMs (0-MM-1, 1-EM-1) simultaneously, as
simple pill-box calculations have shown. This is true also when beam 'holes' are introduced,
at least until the mode frequency remains below cutoff. Even if a noncylindrical but regular
shape is used, a similar behaviour is reproduced in the simulations, although the definition of
the accelerating gap becomes a bit arbitrary, since the evanescent field penetrates the beam
tubes. Anyhow one can adjust the longitudinal dimension and the cavity shape to vary the
strength of the 0-MM-1 mode and that of the 1-EM-1 alternatively.
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Two quite popular examples of accelerating cavity are the so-called 'bell-shaped’ (or
‘rounded’) cavity and the 'nosecone' cavity. In the latter the 'nosecones' are introduced to
concentrate the electric field in the region of the beam, thus increasing the R/Q, but they help
also to decrease the R/Q of the 0-MM-1 mode considerably, while the situation of the 1-EM-1
mode is worsened, because of the abrupt discontinuity. In the high-Q, 'rounded' structure, on
the opposite, the smooth profile is beneficial for dipole modes, but retains a big value for the
0-MM-1 mode, which closely follows the behaviour of the accelerating mode. We have
investigated both structures, trying to maintain the shunt resistance R = 2.5 + 3 MQ at the
same operating frequency of 368 MHz. A comparison between the 2 structures is reported in
Table I and shows a clear preference for the 'nosecone’ cavity as regards the 0-MM-1 mode
and for the 'rounded’ cavity as regards the 1-EM-1 mode.

Table III — Nosecone vs. Rounded.

Nosecone Rounded Nosecone | Rounded

Frequency (MHz) 368.3 368.3 0-MM-1 mode:

R/Q (2) 69.9 61.7 Frequency (MHz) 704.7 696.8
Q 34000 49000 R/Q () 4.2 16.0
Ry (MQ) 237 3.04 Q 30000 50000
k1 (V/pC) 0.101 0.129 JRs k) 128 800
ko (V/pC) 0.077 0.068 | 1-EM-1 mode:

kpm (V/pC) 0.024 0.061 Frequency (MHz) 565.0 532.7
k¢ (V/pC/m) 1.16 1.38 R/Q Q) 30.3 13.7
kpm / ko 0.31 091 Q 42000 54000
k' /kg *1 mm 0.015 0.020 R's (MQ) 1.28 0.74

For the other HOMs up to the cutoff the situation of the two cavities is quite similar, as
displayed in Figs. 4a and 4b. We know from multibunch instability calculations that
appropriate actions have to be taken anyway to strongly damp the 0-MM-1 mode, which is
the most dangerous because it has the highest shunt impedance. Thus there is no more any
clear reason to choose the 'nosecone’ cell as our model cavity, while the ‘rounded’ cell is
certainly to be preferred because it is of much easier construction and cooling. Also, it
provides 3 MQ of shunt resistance against the 2.5 MQ of the 'nosecone’ cavity, hence a bigger
safety margin.

The final design is shown in Fig. 5. Much care has been taken to keep all HOM
frequencies far away from harmonics of the bunch repetition rate in order to avoid resonant
enhancement of the parasitic power loss.
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4. - HOM DAMPING

The problem of parasitic mode damping in room temperature RF accelerating cavities
for high current particle accelerators is being faced in other Laboratories!3.14 and the
proposed or adopted solutions depend upon the accelerator demands.

A well known method to damp HOMs consists of coupling them out of the cavity by
means of loops or antennas which are applied to the resonator surface in correspondence of
the peaks of the parasitic fields and dissipating the extracted power on external 50 Q loads
through coaxial lines. As a rule, the transmission response of such devices must vanish at the
cavity fundamental frequency not to extract the accelerating field energy; they require
therefore some kind of tuning. The effectiveness of a loop/antenna coupler to damp a specific
cavity mode can be excellent if its response has a maximum at the mode frequency.

HOM coupling can also be achieved by opening slots onto the cavity surface and
conveying the fields out with waveguides (WG). Energy must then be dissipated by means of
high losses materials applied in the vacuum environment or on external loads placed beyond a
vacuum separation window. Being the WG a natural high-pass filter, the accelerating field
remains trapped in the cavity providing that the WG cut-off is above the cavity fundamental
mode (FM) frequency.

We have applied and tested both damping systems to some cavity models. The results
obtained with the WGs have been more satisfactory due to the wide band WG response and
their capability to reject the FM without any tuning device. We have then considered more
practical to use WG dampers instead of loops or antennas.

4.1 - Waveguide to Cavity HOM coupling

Since the description of the e.m. fields in a resonant cavity loaded with impedance
matched WGs has not satisfactorly been made by existing simulation codes so far, different
approximate techniques have been developed to solve the problem. These methods!3. 16 allow
to work out the most meaningful cavity parameters (as loaded Q values and beam
longitudinal and transverse impedances) starting from the output data of 2 dimension (2D)
and 3 dimension (3D) computer codes.

However, being the WG mode propagation carried out mainly in the TE;g mode, a
general rule to optimize the damping effect is to open the WG slots onto the cavity surface in
correspondence of the maximum intensity of the azimuthal HOM magnetic field Ho. The use
~of 2D and 3D codes is helpful to this investigation.

Once the location and the geometry of the cavity slots have been defined, the loaded Q
values of the cavity HOMs can be roughly estimated if the unperturbed e.m. field existing
before slotting the cavity wall, is considered the source of the guide propagating wave and the
e.m field values normalized to the total energy content U are calculated with the code.

The current density source J(r) on the aperture surface S can be derived from the
unperturbed magnetic field Hy(r) as:

Js(1)=nxHo(r) o e surface S (19)
where n is the outward unit vector normal to S.

Then, the WG magnetic field H,(r) can be obtained from the magnetic Green Function
of the waveguide G ,(r,r") accordingly to:
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H, (r)= J. G, (r,r')J (r")d’r

s (20

The magnetic Green Function G(r,r') for a rectangular WG is a 3 x 3 matrix whose
analytical expression is known!7.

The magnetic field H,,(r) can be expanded in terms of normal modes propagating in the

WG. Anyway, as long as the cavity mode has a frequency between 15t and 204 WG mode

cutoff, the sole non-evanescent term in the expansion (20) is the TE;g WG mode. Other

expansion terms should be considered for mode frequencies above the 27d WG mode cutoff.

Even in this case, due to the symmetry of the source, the term associated to the WG TE g
mode is the most relevant one in the expansion; thus, we can conclude:

H (r) = Hopyo(r) (21)

Assuming a perfectly matched WG, the total energy associated to the Poynting's vector
is dissipated in the WG termination load, i.e.

1 * 1 2
P, = —Z—J. Re[Ew X Hw]da = §ZTEIO J.IHth da (22)
’ s'

S

where Py, is the power dissipated in the WG load, Ztg,, is the WG impedance, S' is the WG
cross section and H,,, is the H,, transverse component.

Finally, the external Q of the cavity mode due to the loading of several WGs is given
by:
w,U

Qexz'—'zpw

(23)

The calculation of Qex; becomes less accurate as the wavelength decreases with respect
to the wider slot size. For a wavelength to slot size ratio close to unity, the computed and
measured Qex; = Qloaded values are in the same order of magnitude as shown in Table IV.

Table IV — Measured modes of the cavity prototype.

UNLOADED MODES LOADED MODES

MODE Freq.[M R/Q Qo Terr Freq QL,Cale. | QL Meas. Tert
Hz] [Q] [us] § [MHz] [ms]

0-EM-1 357 61 25000 349.5 22000
0-MM-1 747.5 16 24000 | 9 745.7 75 70 1.37
0-EM-2 796.8 0.5 40000 { 90 796.5 550 230 12.9
0-MM-2 1023.6 0.9 28000 | 60 1024.9 90 150 10.0
0-EM-3 1121.1 0.3 12000 | 370 11254 — 240 18.3
0-MM-3 1175.9 0.6 5000 440 1172.0 65 100 219
0-EM-4 1201.5 0.2 9000 730 1194.3 220 130 50.5
0-EM-5 1369.0 2.0 5000 135 1361.6 115 300 22
0-MM-4 1431.7 1.0 2000 670 1423.2 — 750 1.8

0-EM-6 1465.0 0.1 2000 6670 § 1467.6 190 712
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4.2 — Cavity Damper Design

HOM damping can be optimized by placing the WGs in correspondence of a maximum
of the surface field. This has been calculated with the code OSCAR2D as a function of the
curvilinear coordinate s of the cavity profile (see Fig. 6) for some HOMs. The center of the
cell profile is the curvilinear coordinate reference.

The highest R/Q mode 0-MM-1 has the magnetic field peak at s = 23 cm; some higher
frequency modes have a maximum in the tapered tubes.

125.00

75.00

25.00

-25.00

-75.00.

Boundary Magnetic Field [Gauss])

-125.00 1 | 1 1 i 1 1 L L1 I 1 i ! i
0 10 20 30 40 50 60 70 80
Curvilinear coordinate s [cm]

FIG. 6 — Surface Field Distribution of the Cavity Modes

To improve the damping of the 0-MM-1, without perturbing the FM symmetry, three
WGs can be applied 120° apart at s = 23 c¢m onto the cavity surface. The WG cutoff
frequency should be 500 MHz to allow the dipole modes 1-MM-1 and 1-EM-1, at 511 and
532 MHz respectively, to propagate.

Other modes can effectively be coupled by the WGs, as shown in fig. 6. One more WG
with cut-off at 1070 MHz can be located onto each tapered tube where some high frequency

HOMs penetrate and have magnetic field peak. The WGs on tapers can be rotated 90° apart to
couple also the dipoles.

4.3 - Cavity Prototype Tests

A low power copper cavity model has been manufactured. Due to some mechanical
imperfections of the model, the measured frequencies sligthly differ from those calculated
with the codes but the HOM quality factors were high enough (in the order of some 104) to
carry out reliable damping measurements.

An intense measurement program has been carried out to define the dimensions of the
cavity main body WGs. Three WG shapes with equal cut-off have been considered. A set of 3
single ridge WGs of 200x40 mm?2 cross section and 70x25 mm? ridge has been connected to
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the prototype and tested; both the FM frequency and the quality factor Q degradations were
negligible due to the very small size of the ridge WGs.

Two sets of rectangular WGs of 305x40 and 305x50 mm?2 were also tested. In this case
the larger WG size caused a degradation of both the FM frequency and Q but the HOM
damping was better. The 305x40 mm2 WG has been choosen being the best compromise
between opposite requirements.

The WGs applied to the tapers have a 140x40 mm? rectangular cross section and do not
degrade the FM since that field vanishes at those locations.

A picture of the cavity model is shown in Fig. 7.

FIG. 7 — The DA®NE Cavity Low Power Model.

A complete characterization up to 1.5 GHz of the cavity prototype fully equipped with
WGs is reported in Table IV. Some HOM Qs have been estimated according to the method
illustrated in section 4.1. The obtained HOM dampings are satisfactory and the expected rise
times of the coupled bunch dipole mode instabilities seem compatible with the operation of a
fast feedback system. The FM Q degradation, due to the evanescent field in the WGs is less
than 15% and a frequency variation of about - 2% has been measured; therefore the outer
diameter of the final cavity has been reduced by about 1 cm to have the unloaded FM
frequency 2 % greater than the nominal value.

A mechanical sketch of the RF cavity proposed for DA®NE is reported in Fig. 8. Three
additional circular ports in the cavity main body allow to insert loops or antennas if more
damping of particular modes will be needed.
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FIG. 8 — Sketch of the DA®NE Cavity.

4.4 — Waveguide Termination Loads

The HOM power extracted from the cavity has to be dissipated on a dummy load placed
at the WG far end. The most significant features of such a load should be low reflectivity on a
broad frequency band and vacuum compatibility.

The beam power delivered to the cavity HOMs has been estimated for 30 bunch
operation. This permits to evaluate the thermal load onto the absorbing materials.

The beam current can be expressed as a Fourier series:

+o0
ipy()= Tl nexp|jma,] (24)
m=—o0
The total HOM power strongly depends on the cavity monopole spectrum and increases
when the beam lines I, overlap the cavity spectrum.
Such a power can be calculated as follows:

too 2R/ Q)QI%
=Y % (R/O0QIn
m=o alltheHOMsl+Q2(ma)o _ a)r )
w, mo,

(25)

The probability that a beam spectrum line interacts with the resonator spectrum is very
small for an undamped cavity, but the associated power loss can be very high. For a strongly
damped cavity, as in our case, the probability of overlap is much higher but the resultant
power loss is a moderate value.
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To estimate the HOM power, the measured damped Qs of the cavity model have been
considered. The HOM frequencies and R/Qs values were taken from the cavity code
simulation. The maximum estimated total power results Pt = 150 W corresponding to an
asymmetrical machine filling of 27 bunches (insted of 30), required to avoid ion trapping. A
large power capability safety margin can then be assumed in designing the WG loads.

The termination loads must be highly loss materials placed either in the ultra high
vacuum (UHV) or in air after an Al;03 RF window.

Both RF and UHV characteristics of an absorbing material consisting of plain ferrite
tiles have been obtained!8. The results show that the UHV desorption of this material is
compatible with the machine vacuum but the ferrite brazing to the UHV side requires some
care.

The use of an Al,0O3 RF window to make the air/vacuum interface can be an alternative
solution but the frequency bandwitdh of such a window could not be wide enough to couple
out all the HOM power up to the DA®NE beam pipe cutoff frequency (= 2.5 GHz).

A novel and interesting solution to extract the cavity HOM power is a wide-band WG to
coaxial transition which converts the WG TE o mode to the TEM mode in a large frequency
range (= 2.5 octaves) with very low power reflections (VSWR < 2). Such a device, under
development at LNF, would allow to use commercial coaxial N type or 7/8" ceramic
feedthroughs to transfer the RF power to an external 50 Q load. In this case, the possibility of
sampling the HOM beam power with a directional coupler connected to the transition coaxial
output, is a very actractive by product.

5.-BUNCH BY BUNCH FEEDBACK

Analytical calculations show that a cavity with undamped HOMs may lead to coupled
bunch instabilities with unmanageably fast rise time.

The effort made to damp the dangerous HOMs, has reduced the shunt impedance by a
large amount; on the other hand, the probability for any given coupled mode frequency to
overlap a detuned HOM is higher and for some modes the coupled bunch rise time is still
faster than the natural damping.

In this section we describe the main features of the damping feedback system adopted
for controlling the longitudinal instabilities in DAONE.

5.1 — The feedback layout

The system proposed is a bunch by bunch, time-domain feedback. This choice is
common to other multibunch, high intensity machines!9. In order to obtain the right phase of
the correction signal, the detected synchrotron oscillation has to be processed by a proper
filter. A frequency domain feedback needs a passband filter tuned onto every excited
oscillation mode. For DA®NE this would imply a large number of RF filters with a
consequent complication of the whole system. _

A bunch by bunch feedback allows to damp the individual motion of each bunch
indipendently of the cause (e.g.: injection transient, beam-beam, HOMs) thus uncoupling its
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motion from that of the other bunches. In principle, ky, parallel filters are needed to damp
independently the motion of ky, bunches.

Available electronic technology allows the realization of a mixed analog/digital system
employing Digital Signal Processors (DSP) as filters.

The main advantage of such system is that the same DSP can serve as a filter for several
different bunches, thus reducing the overall complexity. Indeed, the use of programmable
devices allows also the flexibility to program the gain and to tune the frequency response of
the filter on-line according to the beam current intensity and to the machine parameters which
affect the synchrotron motion.

The proposed scheme is the following: the synchrotron phase error of each individual
bunch is detected by a longitudinal pick-up. The resulting signal is shifted by w/2 at the
oscillation frequency by a proper digital filter, then the signal is amplified and an energy
correction is applied via a longitudinal kicker.

In the smooth approximation the damping rate provided by the system is:

AU
aﬂ, = —1—(1)0 —‘&

where AUfp is the energy correction by the feedback kicker and AE is the instantaneous
energy error.

The number of revolutions per synchrotron oscillation is very high, that means we have
an overwhelming number of samples to reconstruct the phase error of the single bunch; in
order to reduce the complexity of the feedback processing part (and the number of the DSP
needed), the down sampling technique is adopted20. This consists in processing the detected
signal after a certain number of turns.

5.2~ Frontend

We need to measure the single bunch error with a phase detector; we do not use a
narrow band tuned detector because any signal feed-through by the preceding bunches must
be avoided.

The signal from a longitudinal pick up passes in a microstrip comb generator?! in which
a coherent burst of bipolar pulses can be produced. The phase of this pseudo sinusoidal signal
with respect to the RF voltage is measured by means of a double balanced mixer in which the
local oscillator is a harmonic of the ring radiofrequency.

The phase detector output goes into a fast digitizer (input bandwidth 1.2 GHz) capable
of sampling the signal of individual bunches at full rate with 8-bit resolution.

5.3 — Digital filter

A demultiplexer distributes the digitized bunch signal to the proper DSP, which
performs the filtering algorithm, producing the feedback correction. This correction signal is
calculated by a Finite Impulse Response (FIR) filter with N taps where N is the number of
samples with which we reconstruct the synchrotron oscillation.

The output signal is computed as the convolution sum of N preceding values of the
input signals AQp.i:
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N
Y(tn) =Gy A@(tn - ihi
i=1 27
where h; are the filter coefficients, and G is the feedback gain.

As shown in the simulations, the feedback system performs satisfactorily with a number
of taps as small as 5. A preliminary estimate of the number DSP's needed for 30 bunches is ~
5, assuming a DSP with an instruction time of 25 nsec. Different filter algorithms were also
investigated and the best effectiveness is achieved with sinusoidal and highpass
configurations.

The proposed architecture of the digital part exhibits good flexibility together with the
minimum hardware complexity.

54 Longitudinal kicker.

The energy correction, in terms of the output power Pp, of the final amplifiers is

AUy, = 2P 4 (RT?), (28)

where (RT?2)y is the kicker shunt impedance, corrected by the transit time factor.

The bandwidth of the kicker must be at least (kywo/47) in order to kick all bunches
separately.

In order to reduce the power requirements of the final feedback amplifiers and the
reflections due to mismatches at the power port, we are optimizing the design of the
longitudinal kicker. The present choice is a series of two A/4 strip lines with full coverage,
connected with A/2 delay lines. This arrangement must provide a peak shunt impedance of
400 € and a half power bandwidth in excess of 1/2 the bunch frequency.

From the simulation results, the power needed to damp the bunch oscillations at the
maximum phase displacement, expected at the injection, is less than S00W.

6. - TIME DOMAIN SIMULATION CODE

The theoretical analysis presented in section 2 considers the coupling of a single
sideband with a single parasitic resonance of the RF cavity. The bunches are assumed equally
populated and equispaced.

A more general analysis could be done by considering many HOMs coupling to the full
beam spectrum. Even including all the modes, it remains unpractical to study the beam
dynamics under the conditions of unequally spaced and unequally populated bunches, as well
as of large oscillations at injection and under the effect of the bunch-by-bunch feedback.
These different scenarios are better investigated by means of a time domain simulation code
properly developed3.

The simulation code executes the tracks of the longitudinal motions of the bunches
stored in DA®NE, with the aim of including all the main phenomena affecting the beam

dynamics (i.e. the bunch-by-bunch feedback,the effect of the HOMs, the synchrotron
radiation).
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Each bunch is modelled as a single particle of a given charge. With this condition it is
possible to simulate dipole oscillations only.

Basically the core of the algorithm can be divided into three main parts:
1) propagation around the ring
2) feedback effect
3) beam-cavity interaction.

6.1 — Propagation around the ring

To describe the motion of a single bunch in the machine, we use the energy deviation
AE and the phase A¢.

In the propagation around the ring, each bunch loses energy due to the broad band
impedance (U,,) that does not depend on the energy of the bunch, and to synchrotron
radiation (U,) , for which we used the following linear expression

U, =U0(1+2-A—E)
E

where U, is the energy lost by a synchronous particle.
It is therefore possible to correlate the quantities AE and A@ just outside the RF cavity
with those we find at the entrance of the feedback kicker at the following turn:

(29)

U
o)zt [an), (™)
Ap), 2mhao, 1 Nae f 0

E (30)

where o is the momentum compaction, h is the harmonic number, 'k’ means at the entrance
of the kicker and 'rf ' outside the RF cavity.

6.2 - The feedback effect

HOM damping is not sufficient to get the beam stable by itself. A powerful longitudinal
feedback is necessary to damp oscillation modes and the injection transient.

In the program the feedback described in section S is simulated in all its parts. It is
possible to change the system configuration and the feedback gain by means of the input file.

Different digital filters as delay line, high and low pass, derivative and sinusoidal filters have
been also investigated.

6.3 — Beam-cavity interaction

The cavity is simulated as a series of parallel RLC circuits that represent the HOMs.
When a charge g, crosses the cavity, it perturbs the voltage of each mode. Since the beam
loading in the fundamental cavity mode is very heavy, RF cavity feedback will be necessary
to compensate it. In simulations to date, we have assumed the compensation is perfect, i.e. the
fundamental mode voltage is given by

V8 = V‘ COS(A(p) (31)
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with Vg the peak generator voltage.
The induced voltage for each mode is a kick AV depending on the shunt resistance R
and the quality factor Q of that mode. In order to take into account the bunch length (we

suppose that the bunch has a gaussian distribution), the shunt resistance is corrected by a
factor equal to

exp|~(@,0,)’] (32)

where g, is the RMS bunch duration.

With the purpose of following the behavior of the induced wake voltage of each mode
in a matrix form, we use the conjugated variables v(t) and the current in the inductance i(t).
Between the passage of two bunches, the voltage of each mode executes free oscillations

represented by the homogeneous solution of the differential equation of an RLC parallel
circuit. Therefore we have?22

o R
e 9% _oR
- (vm) N cos(B)——Fsin(B)  ~-sin(B) (v(,o )j
= -y o _
' LOunB)  cos(Br) + Lsin(pr) M)
PR ‘ B (33)
where [ is the natural angular frequency and v(t,) and i(t,) are the starting conditions.
When a bunch crosses the cavity, we increase v(t) by the kick AV and continue the
propagation. The total energy gained by the bunch in the RF cavity is therefore

1
E = e(Vg + ~ lhEH [v(t) + —Z-AV]]

e HOMs (34)
where the last term takes into account the fundamental theorem of beam lcading: a bunch sees
half of the wake voltage it induces during its passage.

6.4 Application to DADNE.

We have performed different simulations with all the HOMs measured values of the
waveguide loaded cavity as given in Table IV.

Since the frequency may vary during the machine operation, we have chosen to
simulate the worst case, i.e. all the HOMs are in full coupling with the unstable sidebands of
the beam spectrum.

First, we have observed the instabilities with the feedback off, by simulating the
injection of the 30* bunch (with an error of 100 psec) assuming all the others in the
equilibrium state. Fig. 9 shows the oscillations of a perturbed bunch and Fig. 10 shows the
oscillations of the injected bunch during the first 5000 tumns.

Then we have found a feedback configuration such as to damp the oscillations with a
kicker voltage of 400 Volt, as we can see in Figs. 11 and 12.
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FIG. 9 — Oscillations of a perturbed bunch.
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FIG. 10 - Oscillations of the injected bunch.
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FIG. 12 — Oscillations of the injected bunch with the feedback on.
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To be sure that the injection of the 30* bunch was the most dangerous for the stability
point of view, with the same feedback parameters, we have simulated the injection of the n®
bunch with n-1 bunches at the equilibrium phase. In Fig. 13 we show the maximum phase
excursion of the bunch more perturbed by this injection versus the number of the bunch
injected. As expected the oscillations becomes larger increasing the total current already
stored.

Comparison of results obtained by a similar code developed at SLAC23.24 showed some
inconsistencies in the case of low Q of the HOMs. We presume that this is due to the

approximations on the wake field expressions, valid only for high Qs, adopted in the SLAC
code.
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FIG. 13 — Maximum perturbation of the stored bunches.

7. - CONCLUSIONS

Multibunch instabilities are certainly one of the main problem to solve to reach a very
high luminosity in DA®NE. We made a strong effort on the analysis of the methods that
could take these instabilities under control. We are reasonably confident that by properly

damping the resonant fields in the machine, we will be able to damp the residual instability by
means of a feedback system.
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