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Abstract We show that in the hamiltonian formalism of compact QED on the lattice
gauge transformations appear as representations of translations on a circle or on a line
according to the boundary conditions on the wave functions.When gauge invariance is
enforced, one gets at strong coupling a linear potential in the first case and a Coulombic
potential in the second.

1-It is generally accepted that the occurrence of a linear potential at strong coupling is
an intrinsic feature of the compact formulation of abelian and nonabelian gauge theories
on the lattice [1].Contrary to such a belief, some time ago it has been shown that the
abelian theory can also be formulated in such a way that the potential is Coulombic at
strong coupling [2].This can be achieved in the hamiltonian formalism by imposing appro-
priate quasiperiodic boundary conditions (b.c.) on the wave functions (not to be confused
with the b.c. of the gauge fields as functions of the site, which we will always assume pe-
riodic).A partition function incorporating such b.c. has also been constructed.The above
results have been derived in the case of static charges.

The interplay of b.c. of the wave functions and gauge transformations, however, has

not been elucidated.In this paper we reconsider the problem and we show that gauge

1This work is carried out in the framework of the European Community Research Program” Gauge the-
ories, applied supersymmetry and quantum gravity” with a financial contribution under contract SC1-
CT92-0789 .



transformations appear as representations of translations on a circle whith periodic b.c.
and translations on a line whith quasiperiodic b.c. of the wave functions.When gauge
invariance is enforced we get at strong coupling a linear potential in the first case and a

Coulombic potential in the second.

We will discuss the problem using as independent variables the compact gauge fields

A(z) : —w < Az) <. 1)
We will then show how it can be reformulated in terms of the Wilson link variables
Ui(z) = () (2)

by using a unitary transfomation.

We will first consider the case of the coupling to static sources and then we will outline
the generalization to dynamical charged fields.The construction of the partition function
in the presence of dynamical charged fields can be done by a suitable modification of the
method of ref.(2) for static charges, and it will not be reported here.

2-The gauge field hamiltonian in units i=c=1is

1 2 1
Ho ==Y A5 L Ei(a) + 55 L1 - cos (Madu(z) = Dudn(@))}  (3)
a7 245 2e? 3%
where e is the electric charge, a the lattice spacing , A, the right derivative
Ap Ax(z) = A(z + en) — Ae(z), (en)e = Sni (4)

and E(z) the electric strength

0

E),(z) = -—im. (5)

We assume the gauge fields to satisfy periodic b.c.



Ak(z + ehL) = Ak(:c), (6)

where L is the side of the lattice.It then follows from the Gauss constraint that the
total charge in the lattice must vanish.

The coupling of the gauge field to static charges takes place only via the Gauss constraint

on the admissible wave functions ¥

G(z)¥ =0 (7)
where
G(z) = 3 AL Eu(2) + o) (8)
k
Af:) being the left derivative
AL A(z) = Au(z) — A(z — en). (9)

We start by considering the coupling to two opposite static charges localized at y,z

whose charge density is

jo(z) =6y — bz (10)

Let £4 be the Hilbert space of square integrable functions of Ax(z) whith scalar product
< ¥ | ¥ >=[]— / " dAu(z) ¥ 9, (11)
Py 2x J-x !

In the presence of compact variables there are several different dense domains in the
Hilbert space £4 where the hamiltonian is selfadjoint.Some of these domains are carach-

. terized , among other requirements specified below, by the socalled quasiperiodic b.c.



V(Ai(z) = —x) = 7O P( L (2) = 7), V Ai(2) (12)

where the ax(z) are arbitrary real parameters.We restrict ourselves to those domains,
which we call D,, which are completely characterized in the following way. Let us intro-

duce the complete orthonormal system

@) _ g ToalatemeAn) (13)

where n;(z) are arbitrary integers .Then the D, consist of all the wave functions

Y ctmieio (14)
{ra}
satisfying the condition
Z | C{ny) |2 n: < oo. (15)

{na}
Introducing the functions x which describe the gauge degrees of freedom of the static

charges, the wave functions ¥ can be written

¥ = {E cimetan X @)x(2)- (16)

na}

Gauge transformations are naturally defined by exponentiating the Gauss operator
G(we use the spectral representation of G, which is selfadjoint on a domain containing
D,) .The resulting transformation of the basis functions is

ARG for) = AT @l rm(oN Halalgfnl, (17)

¥y (2) = MW x(2), (18)



where §(z) is the parameter of the transformation.

Therefore for the total wave function we have

(6T HIEFY ) = 3 cpayyel TranOmENAME-200ED, (15 (5). (1)
~ {na}
Collecting the terms independent of n; in the exponent we get

(e L 0ECEF)(4,) = 72" Lan EMAnd) (4, (2) — Af(z) + 2rm(Ax,8)),  (20)
where the integers m( Ay, 8) are defined by the condition
-7 < Ae(z) — Dib(z) + 2xm( A, 0) < x. (21)

We recognize a representation of the product of the translations group on the line, which,
for periodic b.c., ax(z) = 0, can in a natural way be interpreted as a representation of
the product of the translations group on the circle, i.e. the U(1) group.

The point is that there are solutions to the Gauss constraint in both cases.In the case

of periodic b.c. there are solutions of the form

¥y = e Lr Ay (y)x(2) (22)

where I' is an arbitrary simple line going from the negative to the positive charge.Such
solutions, as it is well known, give rise at strong coupling to a linear potential.
In the case of quasiperiodic b.c. a solution is given by

L P 1 0) &) (23)

where

@)= - Ms[ATHz-y) =A@ - ). (24)



As shown in [2] at strong coupling it gives a Coulombic potential

;; > Ekl Ei(z)¥c = —%[A“(y - z) - ATY(0)]¥c. (25)

In order to formulate the problem in terms of the unitary Wilson variables Ui(z), we
observe that there is a unitary transformation relating the Hilbert space £, to the Hilbert
space £y of square integrable functions of Ux(z) whith scalar product

<&, | By >= / [1du(Ui(2)) &; &, (26)
.k :

where du(Ui(z)) is the Haar measure on the group U(1) normalized to 1. Such transfor-

mation and its inverse are

(VE)(Ui(z)) = (5 InTi(2)) (21)

(V7'2)(4) = B(e ) (28)

By means of this transformation we can rewrite all the above in terms of the Uy(z).

3-We now extend our analysis to the case of dynamical charged fields, confining ourselfs to

the case of Dirac fermions described by field operators x satisfying the anticommutation
relations

{X;‘ (3)’ Xaz(y)} = 8a, a3 5:.3- (29)

For the present discussion we do not need to specify the fermionic hamiltonian. It is
sufficient that it be hermitian, bounded, and that it commute whith the Gauss operator.

It is convenient to define the basis states

Ay B (Y1oeYny Z10-20) = X3, (N1 )eeX3. (¥n)-e X (21)0-Xva (20) (30)



where the indices §; = 1,2 , 4; = 3,4 and

xs(z)2 = x3(=)Q = 0. (31)

It should be noted that these states contain the same number of positive and negative

charges as required by the Gauss constraint for periodic b.c. of the gauge fields.They are

eigenstates of the charge density operator

io(@) = S ExE] = T x3(e)xsle) ~ T xaledxie): (32)

ﬂ=l,2 7=3v4

The complete orthonormal system in the Hilbert space of the Ax(z) will be denoted by

R (33)
where
k(2 Y1 Yny Z1eeZn) = — D 3 ANz — ) — A7 (=2 = %) (34)

=1

The wave functions ¥ have the expansion

¥ = 2 Y b HB1 Y 210e-20)
{m} (Bl (v} nVnis12n

ei:l}(m---vm 210 Zn)ABy .. B vn (Y1 oYy 2100 20). (35)

It is now easy to see that the eﬁ:l}(y, z) must satisfy the Gauss condition appropriate to
static charges localised at y;...yp, 31.-.20

> AP E(2) + Y bes — Balefos (1Y 21.0-20) = 0. (36)

The potential at strong coupling is given by



e? a e? - |
2a 2 2 ER@eRn amanm) = =S 2w - 5) - 3 A7 - w)
z HJ
| a

-3 A (z - zj)]e({oi(yl, Yny 21y --2n). (37)

The Hilbert space of the total system can be written as a direct sum of orthogonal
subspaces, £4 = Y2 £4.c, where £, ¢ is the set of all the wave functions whith a given
configuration C (positions and values) of the charges.It is then easy to see that, over a
domain D = Y8 D,, where each of the D, is constructed in the previous way, the total
hamiltonian is a selfadjoint operator.

In conclusion, we have shown that there are different definitions of compact QED on
the lattice .The formulation whith periodic b.c.is simpler, but the one whith quasiperiodic

b.c. is more natural from the physical point of view.
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