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Abstract

The p° — x*x~x*x~ branching ratio is predicted to be (0.5 £ 0.1) x 107*,(1.7 +
0.2) x 10~* and (4.0 - 0.5) x 10~* in the “Hidden Symmetry” scheme, conventional
Vector-Meson Dominance and the “Massive Yang-Mills” approach, respectively. The
corresponding experimental upper bound is 2 x 107,
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The long-standing question of how to incorporate spin-1 mesons in effective, low-
energy lagrangians has received considerable attention along the last years. On the
experimental side, this revival seems related to the announced studies and construc-
tion of new, high-luminosity and low-energy e*e~-machines [1]. From the theoretical
point of view, on the other hand, the success of QCD-inspired effective theories, such
as Chiral Perturbation Theory (ChPT) [2], has certainly contributed to the above
mentioned revival. Indeed, spin-1 mesons and, more particularly, the low-lying vec-
tor mesons have been shown to play a crucial role when trying to understand and
predict the values of most of the low-enegy constants or counterterms appearing in the
ChPT lagrangian {2, 3, 4, 5|. This implicit presence of vector meson dynamics in the
parameters of the theory clearly justifies the recent attempts aiming to incorporate
explicit vector fields in effective chiral lagrangians.

Two main lines of thought have been developped in such attempts. One is the
so-called “massive Yang-Mills approach” (YM) proposed, among others, by Schechter
et al. [6] and by Meissner, and extensively reviewed by the latter in [7]. Spin-1 fields
are incorporated in the ungauged chiral lagrangian through conventional covariant
derivatives. This guarantees the simplicity and elegance of the approach but leaves
the problem of giving a finite mass to the spin-1 gauge fields quite unsolved. The
second approach — known as the “hidden symmetry scheme” (HS) ~ has been mainly
worked out and recently reviewed by Bando and collaborators [8]. Vector mesons are
the gauge fields of a “hidden” local symmetry in the chiral lagrangian. This allows
to introduce the electro-weak gauge bosons through the usual covariant derivative
procedure and, more important, generates automatically the appropriate mass terms
for the vector mesons through a Higgs-like mechanism. A central issue remains open:
thé “dynamical” generation of the kinetic terms of these gauge fields is shown to be
plausible [8], but far from being proved. And new questions immediately appear:
are these two approaches, YM and HS, basically equivalent? If not, how could one
experimentally discriminate between (thus favouring one of) the two?

The basic purpose of this note is to answer these questions. This doesn’t seem
to be a trivial task, as could be forseen from the extensive analysis by Meissner [7].
The basic features of each approach are usually buried in a large variety of secondary
details aimed to enlarge their applicability, for instance, from two to three flavours,
or from vectors to axial-vectors, or from normal, non-anomalous processes to others
related to the axial anomaly. To avoid these complications we will restrict to the
most basic version of both approaches involving only the photon field, A,, and the
two SU(2)-triplet fields of pions, 7, and p-mesons, p,,

o= \/i = ﬁ p° (1)
V2

Extensions to SU(3) or to axial-vector or anomalous sectors ( a; — 37 or w —
3x,7° — 47) will not be discussed here, since the non-equivalence and possible ex-



perimental discrimination between the two approaches, can already be demonstrated
at their most basic level.

As previously mentioned, the “massive Yang-Mills approach” incorporates the
p-meson fields in the derivative term

L= f; tr (9,56*5t) (2)

of the lowest-order, ungauged chiral lagrangian through the conventional substitution
0.Y — DX =9, +1ig(p,, X], (3)

where ¥ = exzp(2iII/f) contains the triplet (1) of Goldstone pions and their decay
constant [9] f = 132 MeV. One is then lead to the lowest-order lagrangian

LM = ﬁ tr (D,ZD*z)

= ig\/fpz (1r+6“7r" - 1r‘a“7r+) [1 — é—% (21r + 41r+1r‘)]

+2¢°p0p% ™ + .. ’ (4)

In (4) the dots refer to terms which are not relevant to our present purpose. In
particular, they include pure pionic interactions, which are already contained in the
ungauged lagrangian (2), and p — = interactions other than those explicitly shown
in (4) concerning neutral p mesons. The p — 7 interactions above proceed, as usual,
through the gauge coupling-constant g, whose value g ~ 4.2 could be fixed by [9]
T(p® — n*tx~) = ¢°p}/3xM; = 152 MeV. Photonic interactions are introduced by
invoking Vector Meson Dominance (VMD), i.e., forcing the #*x~y vertex to pro-
ceed exclusively through the 1r+1r p° one, complemented with the p — v conversion
lagrangian

eM?
——\7——114"1’2 (5)
This lagrangian implies M} = 2¢°f? = (0.75 + 0.04 GeV)* and I'(p — ete” )
2a’7M,/3g®> = 5.4+ 0.6 keV also quite in line with the experimental data [9] M,
770 MeV and I'(p — ete™) = 6.77 £ 0.32 keV, if we finally adopt g—40:i:02

All these results are also contained in the basic lagrangian of the “hidden symmetry
scheme”,

[:P‘Y = - \/iefng“pg =

2
£ = 2 (g Py — ershy + (fb,,{* g*a,,e)+...)
| 1 : -
= EM: trp.pt — 2egfp) A® + \/izgp?‘ (1r+3“7r - 6“1r+) +... (6)

where again the dots refer to irrelevant terms and ¢ = +/T = ezp(ill/ f). Notice that
the free parameter a in (6) has been fixed to @ = 2 in its last line, thus reobtaining



the correct relations among M, and p-couplings as before. Similarly, all the (non
p-mediated) w-interactions generated through the ¥ and ¢ matrices turn out to be
the same. A main difference however appears: there are no quadratic terms in the
p-field in the lagrangian (6) other than the first, mass-term one. This is in sharp
contrast with the conventional massive YM lagrangian (4), where vertices containing
two p-mesons coupled to an even number of pions are obviously present. In a sense,
the ability of the HS scheme in generating M, has to be paid by the absence of the
above couplings. In principle, the latter could be added by hand but this possibility
could be against the spirit of the model and will certainly destroy the attractiveness
_shown in its recent and successful extension at the one-loop-level [10].

For completeness — and also to be fair with Sakurai and other pioneers of the
central issues of the above two schemes — we will also discuss conventional VMD
[11, 12]. In its most simple and restrictive formulation, vector-mesons are assumed to
dominate both the photonic interactions of the pseudoscalar mesons and the strong
interactions among themselves. This is most simply achieved by introducing the co-
variant derivative D,II = 8,l1+ig[p,, II] in the kinetic term of the free pion lagrangian
L = 1f? tr(8,II0*I). One obtains the interaction lagrangian given by

2
LhiP = ig tr (pu(IO*M - 8“1 IN)) — T- tr ([p,,, I))’ (")

The photon field A4, is introduced via eq.(5) thus leading to the same 4p and prw
couplings as in the two previous and more sophisticated schemes. The latter, however,
contain identical (non p-dominated) multipion interactions, which in conventional
VMD are required to be frozen out.

All the three schemes so far presented are fully equivalent when applied to two
of the limited number of processes involving only photons, pions and p-mesons. One
concerns the well known coupling of charged pions to off-shell photons, k? # 0, which
is found to be given by the same p°-dominated form factor, F(k?) = 2f2g% /(M2 —k?),
where the correct normalization, i.e. F(0) = 1, is ensured in all three schemes by
the satisfaction of the relation 2f%g> = M 3 . The second, less well known, process is
the radiative p° — x*x~y decay (as well as its equivalent isospin rotated versions
p* — xEx%, that will not be considered because no experimental data are available).
The corresponding common amplitude is easily found to be [13]

A(p° s xtaTy) = 2V2eg [(—H—l,;e (p+ + %q) P ( - - %) +
Le(p-+30) o(pe-2) +4¢ ®)

where @ and p stand for the four-momentum and polaﬁqation of the p°- meson, q and
€ for those of the photon and p, +p_ = Q—q is the sum of the two pion four-momenta.
Notice the gauge-invariance of the amplitude (8), which goes to zero both under the



exchange €, — g, as well as p, — Q,. As discussed in [13], the amplitude (8) leads
to a decay width I'(p® — x*x~7) = 1.6 MeV for photon energies larger than 50 MeV,
in good agreement with the corresponding experimental rate of 1.5+ 0.2 MeV [14, 9].

All the three schemes under consideration lead, however, to different predictions
when dealing with the experimentally investigated p° — w*x~xtxr~ decay [15, 9].
According to the naive versions [7] of “massive YM approach” all the diagrams shown
in Fig.1 contribute to the corresponding amplitude,

A - 7t xtx  ym = Ao + Ap + AL + Ag, (9)

in contrast with what happens in the other two schemes. Indeed, the spontaneous
absence of quadratic vertices in the p-field in HS [8] (and, exceptionally, in the specific
version [6] of the YM approach) and of multipion interactions in VMD [11}], leads to

A’ vt 7t s = Ap+ Ac+ Ag
A(p° » ¥ x x )ymp = Ao+ A (10)

respectively. From the various lagrangians one immediately obtains

1 1
4. = 229’ [(Q i )f((pnp;)z—M:+(pr+p;)2—Mz)

+(1 o 2)] +CR

_ s[ (@ —2pf)e ( 2p7 (¥ — p7) 2p7 (P} — p7) )
4 = 229 [(Q—zoi’)’—m2 (p7 +p2)2—M?  (pf +p7)% -

+(1 o 2)] +CR

8v2 - -
AC = 3fgg 6[Pt+p-{—pl —pZ]

_ W3] QI .
t = S| s - i@ -+ 0] +OR ()

where Q = p{ + p3 + p7 + p; is the four-momentum of the p®-meson decaying into
four charged pions of four-momenta p1 2, and C R stays to indicate that, because of
the odd charge conjugation of p°, one has to substract similar crossed terms with p*
and p~ interchanged.

Once these permutations have been performed, the scarce phase space available
in p° — 47 makes it most convenient to expa.nd the denominators in (11) in terms
of the ratios |p)%|2/M?2. Using 2g°f% = M?, and neglecting higher order terms in



|;3'1§|2 /Mg, one then finds A, ~ A4 = 0, and one can approximately write

2A(° st "t )y = 6 A(p° o xtr T wTw T )ps

3A(P° = vTr 7 7 )vmp
= 3 Aﬂ = 6 Ac
~ 16\/5%,;2(;:;* +pf - ) (12)

Using g = 4.0 and f = 132 MeV these approximate amplitudes lead to the following
estimates for the decay widths

T(p® - 1r+1r"1r+1r‘)yy ~ 57 keV
P(p° - ntx~ntx")ps ~ 6 keV (13)

[(p° = ntr~atx " )ymp =~ 25 keV,

thus showing that discrimination is indeed possible and justifying a more accurate
evaluation in terms of the complete amplitudes (9),(10) and (11).

After a straightforward but time-consuming calculation we find our final results
[(p° > wte~ntw " )yny =60 £ 7 keV
[(p° - xtr~ntx")ys = 7.5 £ 0.8 keV (14)

[(p° » wtr~ntx" )ymyp =25+ 3 keV

where the common relative error comes only from g = 4.0 + 0.2 since we have fixed
2g° f? to the physical M? in A, and As. These results have to be compared with the
recent experimental analysis [15, 9] leading to

F(po — 7r+1r"1r+1r‘)Exp <30 keV

(15)

BR(p° —» x*x x¥x " )gxp < 2 x 10~*

and improving an older upper bound [16] by more than one order of magnitude. All
the three models we have discussed predict essentially the same pionic spectra (see
Fig.2) but only conventional VMD and the HS scheme respect the experimental upper
bound (15) for the branching ratio.

The isospin rotated processes p° — r*x~x%x° and p* — rtxtx~7° are not dis-
cussed because they are considerably more complicated than p° — x*x~x*x~. They
should involve the triple p vertices of any typical YM theory and, more importantly,
they will receive sizable contributions from the p — wn followed by w — 37 decay
chain. These amplitudes belong to the anomalous sector, for which it is conceivable
that additional free parameters could be introduced and adjusted to save any model.



In summary, we have discussed the p° — wtr~ntx~ decay in the context of
several models incorporating vector-mesons in effective chiral lagrangians. All the
models turn out to predict similar spectra and angular distributions but a clearly
distinct branching ratio. Conventional VMD and, more interesting, the present day
“Hidden Symmetry” scheme of Bando et al. [8] are seen to be compatible with the
experimentally available upper bound. By contrast, “massive Yang Mills” approaches
(other than sophisticated versions such as in ref. [6] ) seem to be excluded. Further

data from planned low-energy e*e™ machines, such as the Frascati ®-factory, should
definitely clarify the issue.
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Fig. 1 Set of diagrams contributing to p° — xtw 7Tz~ according to the various
models discussed in the text. Solid lines stand for neutral p-mesons and dashed
lines for charged pions. Crossed diagrams for ¢), b) and d) are not shown.
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Fig.2 Common di-pion mass spectra in p® — #tr~7 7~ as predicted by the various
models discussed in the text. ‘



