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Abstract

We discuss the decay Ks — mt7~ v in the framework of chiral pertur-
bation theory. The direct emission in this decay can be an useful test of

meson dynamics.



1 Introduction

The amplitudes for K — mry decays are generally defined as a superposition of two
amplitudes: internal bremsstrahlung (A;p) and direct emission (Apg) (1, 2, 3, 4, 5, 6, 7,
8]. Arp represents the contribution from just the bremsstrahlung of the external charged
particles and it is predicted simply by QED [9]. Apg is obtained by subtracting A;p from
the total amplitude. In this way one has disentangled the amplitude which depends from
the direct K — 7y coupling. This amplitude, differently from Arp, is not predicted from
K — mm amplitude and it furnishes a test for mesonic interaction models; historically they
were studied to test the validity of the Al = % rule outside the area of purely hadronic
weak processes. We will be mainly interested to the CP conserving decay Ks — w7~
in the framework of chiral perturbation theory; we will show that forthcoming experiments
(E731, NA31, DA®NE) should determine Apg(Ks — m*w~v), where only upper bounds
are now existing {10]. Such on observation is interesting for meson dynamics and also
for CP violation; indeed the operators contributing to Apg(Ks — m¥ 7™ 5) could also
generate a direct C P violating Apg(K — 7w~ v) which would give rise to a C' P violating

interference between two Al = % transitions: A;g and Apg.

2 Lorentz and gauge invariants, Low theorem and kinematics

The total amplitude for the processes

Ks,.(P) = 7 (p4 )7~ (p-)1( €) (2.1)

[1,2,3,4,5,6,7, 8] is a linear combination of these three Lorentz and gauge invariants:

B:E:-p_;._E,'p_ (2.2a)
. 49°P+ 49-PpP-

B=¢-py q-p- — €-p- ¢ P+ (2.2b)



Bwz = €apyspSp’ qe’ (2.2¢)

which are the possible invariants up to third order in momenta. The total invariant am-
plitude for the process must be then a superposition of these invariants multiplied some
scalar functions. B correspond to the IB amplitude, B correspond to electric transitions,
while Bwz to magnetic transitions. Bwz, in chiral lagrangian is generated by the Wess

Zumino term [11, 12, 13]. Although |

B=(q-p+)(g-p-)B (2.3)

one generally prefers to treat B and B separately due to the different behaviour with the
photon energy going to zero; in this limit QED [9] establishes a correspondence among’
radiative and non-radiative decays (and cross-sections). In particular for Kg; — mtn~y

it tells us that the amplitude can be written as:
A(Ksp — 7t n 7 y)g—0 ~eBA(Ksp — 77717 ) = Arp(Ks — ntn ) (2.4)

where we have defined precisely the Internal Bremsstrahlung (IB) amplitude; A(Ks 1 —
ntr~) is the physical amplitude for K5 — w*x~. If the polarization is not measured
there is no interference among electric and magnetic transitions. Thus the total width can

be written as the following sum

I‘Tot = PIB + FI'nt + FWZ + F|'§|2 (25)

['/p is the internal bremsstrahlung contribution and is proportional to |B|? and I'1,,; comes
from the interference between B and B and thus can be negative. B and Bz have CP
eigenvalues +1 and —1 respectively. Limiting ourself to CP invariant and low angular
momentum states [2, 5, 8] allow us to write:

eB

Fo—a) — -
A(Ks > "n"y)=eBA(Ks — n'nr )+(47rf)2m";{

fDE(E;,COS 0) (26)

where fpg(E},cos 8) is the structure dependent amplitude, EJ is the photon energy in the
Ks rest frame, 0 is the angle between the photon and the = in the dipion frame. One
obtains for the double differential decay width for unpolarized photon from (2.4) and (2.6)

d’T(Ks > ntx~y)  2ap®
dE3dcosd " 7B

2E>
(1 - —1) sin?()[(Ks — wt 77 )x
myg



y 1 E;Re[fDE(E_’;, cos0)A*(Ks — 7r+7r—)]
Ex(1—B%cos?0)?  2(4nf)*(1 — B2 cos? 9)|A(Ks — wtr—)|?

+

|foB(E;, cos O)" B (27)
16(4r f)t|A(Ks — mtn—)|? )
2 4 2
E . _E_';SmK Tr  and ~1<cosf<1
msn 2mK
4m.,? 4m,?
= 1-— = -
,30 mK2 ﬂ \/1 mK2 - 2E7*mK

The first term is the Internal Bremsstrahlung, the second the interference term be-
tween B and B; the third is the pure Direct Emission rate. Indeed according to our

calculation fpg is independent of #; thus we can integrate (2.7) obtaining:

dr + -\ 2aT(Kg— ntn)B 2E
dE."Y‘(KS_”r TTy) = - B 1 oo X
1 [1+82 1+8 1
"{E;[ 26° "1-8 )"

B3Relfpp(B3)A"(Ks — 7+ {3 =g, “’] n
2(4mf)?|A(Ks — wtm)[? g B 1-p

\foe(E3)|PES’
T S Y A(Ks — 1F ) } (28)

We remark that the behaviour -El*— for EY — 0 in (2.7) and (2.8), peculiar of brems-
strahlung processes will tend strongly to enhance the IB rates compared to DE ones, which

depend on meson dynamics and have no poles for E — 0.

1



3 CHPT: o(p?), o(p*) counterterms

CHPT is an effective quantum field theory [14, 15] of hadron interactions based on
symmetry arguments. Indeed the CHPT lagrangian is required to be invariant under the
symmetry SU(3) x SU(3)r which is spontaneously broken to SU(3)y and the Goldstone
bosons of the broken symmetry are the pseudoscalar mesons. One considers the lagrangian
as a perturbative expansion of the external momenta and masses. Already at tree level
all the low energy theorems, PCAC and soft pion properties are recovered. Furthermore,
though the theory is not renorma.]iiable, we do require unitarity, which is obtained pertur-
batively by considering pseudoscalar meson loops. Divergences in the loops are absorbed
by corresponding counterterms, which then depend on the renormalization scale u of the
loops. Due to the non-renormalizability, new counterterms, whose coefficients can be de-
termined from experiments, have to be added order by order to the theory. Actually,
the o(p*) counterterm corrections to the lowest order strong lagrangian can be predicted
reasonably well by vector meson exchange [17], which also gives an o(p*) contribution to
the A(K — 3w) improving the lowest order weak lagrangian result [18]. The lagrangian
is a sum of a strong lagrangian (AS = 0) and a weak lagrangian (AS = 1), including

electromagnetic interactions. At order p? one has

_Larp uput s Lrutars £
Las—o = Z'f TrD, UD"U' + —2—-T1'U puM + ?TTU;I,M (3.1)
where
U=e¥™T D,U=0,U+ied,[Q,U] (3.2)

M= diag(mu,md’ms) Q = d"'a'g(2/37 _1/3?-1/3)

1
TrT.Ty = 56,,1,, f~Fr=933MeV T,=X,/2 (3.3)

Aq are the Gell-Mann matrices, u is the right factor to reproduce the observed meson masses
and A, is the electromagnetic field*. Neglecting the part of the non-leptonic AS = 1 weak

lagrangian transforming as 27, we are left with the octet contribution

1 i
I, =3 f2hsTrAs D, UDHUT (3.4)

* The Condon-Shortley-De Swart phase convention is not satisfied.



From K — nr decays we have at order p?
hg =3.2 -1077 (3.5)

At order p? since there are not enough powers of momenta, only an IB amplitude will
appear for the K — wny decays. At this order for the CP conserving decay Ks — nt7r~ v
the diagrams in Fig.1 will contribute; diagram 1.a is needed to make the amplitude gauge

invariant. In agreement with Low theorem, the total contribution at this order is

A(Ks — 1r+7r_7)°(1’2) =eA(Ks — 7r+1r")°(p2)B (3.6)
A(Ks = 7707 = 8 = m2)

A(Ks — wtn7)°(®") is the o(p?) CHPT amplitude for Ks — w+w~. Thus diagram
1.a, contrary to appearance, contributes to the IB amplitude; its existence is due to the
derivative couplings in CHPT. Actually we take (2.4) as a definition of the IB amplitudes
meaning that these relations hold order by order in CHPT. At order p*, where the loop
diagrams in Fig. 2 and counterterms will appear, the amplitudes IB and DE in (2.6), will
be present. After the explicit calculation of the loop diagrams in Fig. 2 one would find
the two gauge invariant loop contributions to IB and DE in (2.6).

All the possible o(p*) local operators, for the lagrangian AS = 0 [15] and AS =1
[16] have been classified; the interaction with external fields, like for instance the elec-
tromagnetic field A,, appears both through the covariant derivative and a direct gauge
invariant coupling. Accordingly, their coeflicients can be determined experimentally from
amplitudes with no external fields or they have to involve the external fields. Vector meson
dominance (VMD) has successfully predicted these AS = 0 coeflicients [17] ( for a recent
update see also [12]).

In the Ks — wtmx~ v decay, only the AS = 1 p* counterterms contribute. The
operators where the external field appear in the covariant derivative, will give contributions
to the IB amplitude; these summed to the IB loop contribution will give the (2.4), where
A(Ks — ntm™) is evaluated at o(p*). Indeed we have verified that the loop contribution
is consistent with the result for Ks — n+n~ of ref.[19]. As we shall discuss in the next
section for the o(p*) IB contribution, there are two possible attitudes: either we take
A(Ks — 7tn~) from the experiments or we assume the o(p*) CHPT result for this

amplitude taking for the coefficients of the corresponding counterterms the result of the
fit of ref.[19].



At order p* however new gauge invariant counterterms involving the external field F,,
(21, 16, 23] will contribute to processes with photons (real and virtual).

The AS =1 quark lagrangian is invariant under CPS symmetry even if CP is violated
[20, 21]: this consists of a CP transformation plus the interchange of d and s quarks. Strong
and electromagnetic lagrangian is CPS invariant too. Thus imposing this symmetry to the
effective lagrangian only four chiral and gauge invariant p* independent counterterms, will

contribute to electric transitions of radiative decays with at least one photon in the final
state. Defining* C; as [21]

CiL =F*" <QX¢—i7L,L, >

Cor = F*" < QL X¢-irLy, >
Cir = F* < QU X\e_sURLR, > (3.7)
C,p=F* <QR,R,U\e_inU >

Cypr = F* < QR‘LUT/\s_,’-(UR,, >

where
L,=ifUD, Ut R,=if*U'D,U <A>:=trd
due to CPS symmetry only the combination Cir + C| 4 appears and the lagrangian is

written as

3 h w +w o~
zsef: wirCip + wor Cor + IR—ZI—&(CIR + CIR) + warCog| + h.c. (3.8)

w; are dimensionless coupling constants which could be determined from experiments: in

Ler =

the decays K — mete™ [21] only two of these four operators are independent:

wi =wip +twir+w , Wy = Wy, + WaR. (3.9)

The other combinations [23]

* Note that we have a different definition of L and R compared to [21].



wy =wip — (wip + W, z) Wy = Wy — WyR. (3.10)

can be determined in K* — ntyy [22] and/or K — 2my decays*. It was noted that

the combination of counterterms appearing in the electric transitions of the decay Kt —

ntmly:

App(K*(P) = 7t (p1 )7’ (po 7(9))oT = —e;%'fic(wl + 2wy — w! + 2wh) (3.11)

was scale independent [16, 24] (B, = e¢-p,q+- P — ¢+ Pq-p,). Very interestingly this is the
same combination which appears in the Kg — w17~ v counterterm contribution

+

hg —
Ape(Ks — 7" n™ y)or = _e:l_f%B(wl + 2wy — w] + 2wy) (3.12).

Indeed as we will see in the next paragraph the loop contribution is finite confirming the
scale independence of the combinations (3.11) and (3.12). Thus measuring DE emission in
Ks ~ n+tm~~ will give us information on electric transitions in Kt — 7t %y decays. We
emphasize that if CP violation is considered, due to the imaginary part of the combination
w = w) +2wy —w; +2wj, (3.11) and (3.12) could interfere with the respective CP conserving
Arp’s generating a CP violating interference. Thus the experimental determination of the
CP conserving part of (3.11) and (3.12) might bring light to the underlying dynamics which

could generate CP violation.

4 Loop contributions and discussions

We have neglected the kaon and kaon-pion loop contribution since their absorptive
part is vanishing in the physical region; this should imply also that the respective disper-

sive integrals, receiving a non-vanishing contribution only when the absorptive part is far

* The overall sign of the lagrangian in (3.8) has been taken such to be consistent with
the observable counterterm coefficients chosen in [21, 23] and with our definition for the

electric charge in (2.4), (3.2) and (3.6).



from the physical region, should be suppressed. The total contribution to fpg in (2.6) is

obtained by adding the corresponding fST from (3.12) to the contributions from the pion
loop in Fig.2:

h
g;;p(E;) = 2Ef2f' {(m";( —mi)(mk - 2E;mk) {ﬂln (;tl;) — Boln (;O-F—ﬁ;)}
‘Y .

Bo—1 -1
B and [y are defined in (2.7). We notice that it is finite, confirming the scale indepen-

~Eymi(am? - 2mie) + mi(m —m2) (12 (222 <o (GEE) ] ey

dence [16, 24| of the counterterm combination (3.11) and (3.12). It is 4 independent since
there are not enough powers of momenta at this order. Due to the E dependence the
loop contribution could be disentangled from the counterterm contribution, which is con-

.. o 1 .
stant. Furthermore we remark that this is going like — for EJ going to zero. Thus the

interference term in (2.8) goes as a constant in this limit.

Theoretically one would have expected that the dispersive contribution of (4.1) was
suppressed compared to the absorptive one since for this channel the loop contribution is
finite ( separately pion and kaon loop contribution are finite ). This statement is true,
for instance, for the corresponding imaginary and real part of the decays Ks — ~vv [25],
K; — 7%y [26] and KT — =wt4y [22]. Surprisingly and interestingly the dispersive
contribution in this case turns out to be larger than the corresponding absorptive one.
We remark also that while the absorptive part is vanishing in SU(3) limit as result of the
Cabibbo Gell-Mann theorem [27], which it tells us that Kg — nT =~ is proportional to
m2, — mZ, the dispersive part, where pions in the loop are off-shell, is not constrained by
the theorem.

The interference term in (2.8) depends on A(Kg — ntn~); for this amplitude one
can either use the CHPT result [19] or the experimental one. Since the real target of
this paper is Apg(Ks — ntm~v) we feel that the second possibility is probably wiser.

A(Kgs — mtn™) is generally written (for instance [27]) in the isospin decomposition

A(Ks — ntn™) = ;Aoe“o + 71_§A2ei6’. (4.2)

Ay and A; are determined experimentally {19] from K — mr decays*. The energy de-

pendent experimental w7 phase shifts at different energies have been fitted to curves [29],

* The sign for Ay is chosen to be negative consistently with (3.6).
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called Roy’s curves, based on very general assumptions like analyticity, unitarity and cross-
ing symmetries. From a general analysis using experimental data and Roy’s equations the

following phases at the kaon mass scale are quoted [30]:
o = (39 £ 5)° 6, = (-8 £ 2)°. (4.3)

Since CHPT expansion for the separate phase shifts is not rapidly converging [31] at the
scale mg (4.3), looks the best one can do now. In Fig.3 we show how this uncertainty affects
our interference by choosing w; = 0 and plotting the interference differential branching
ratio as a function of the photon energy for different values of the pair (8o, 62): (34°,—6°),
(39°%,—8%) and (44%,—10°). The relative integrated interference branching ratios with a
photon energy cut of EJ > 20 MeV are:

(60, 62) Br(Ks — ntn~y : EX > 20MeV ) rnters.

(34%,-6°) —6.7 x 1078 (4.4)
(39°,-8%) -5.5x 10~¢
(44°, -10%) —4.2x 1078

In Fig.4 we keep fixed the phase shifts to the central value and we allow the countert-

erm combination w to assume the following values:
w=w; + 2wy —wy + 2wy =0,+2Le,+5L,. : (4.5)

Ly is the coefficient of a p* AS = 0 counterterm and its experimental value determined to be
[15] (6.940.7)-102 can be considered as a typical size of p* counterterms. In (4.6) we show
the integrated interference branching ratio for a cut in the photon energy E} > 20M eV,

assuming for the phases the central value in (4.3) and varying the counterterm combination

v w Br(Ks — ntx~y : E > 20MeV )rntery.
5Lg 5.5 x 108
2L, -1.1x10"¢
Ly -3.3x10°¢
0 —5.5x 107° (46)
—Lg —7.7%x107°
—2L, -9.8x 10"
5L, 1.6 x 1073

The previous experiment [10] gave a bound larger than the values in (4.6): |Br(Ks —
=y E> > 50MeV)rnters.] < 9 - 10~5; this was found using a counterterm-like am-
plitude. With the upcoming facilities, one should be able to sharpen the values in (4.3);
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then by studying the photon spectrum one can check the CHPT prediction in (4.1) and
fix the value of the counterterm combination w, constraining theoretical models [32]. For

instance DA®NE [33], should have about 2 x 10° Kg/year, which could be enough to do

this research.
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lc.

Ks /i Ks Ks

Fig.1: o(p?) CHPT Feynman diagrams for Ks — v+tr 4.

2a. 2b. 2¢.

Ks Kg Ks

Fig.2: o(p*) CHPT loops for Ks — ntm~v. The photon has to be attached to the

charged lines or to the strong or to the weak vertex.
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Fig.3: Differential branching ratio for the interference between Apg(Ks — w*r"7)
and A;p(Ks — ntw~y) as function of the photon energy (EZ) in the kaon rest frame.
The scale independent counterterm is set to zero. The dashed curve correspond to a value
for the phase shift pair (6o, 62) of (44, —10°), the full curve to (39%, —8°) and dotted curve

to (34%, —69).
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Fig.4: Differential branching ratio for the interference between Apg(Ks — ntr~v)
and A;p(Ks — wtr~y) as function of the photon energy (E%) in the kaon rest frame.
The phase shift pair (6y,8;) is chosen to (39°,—8°). The scale independent counterterm
is set to —5 Ly (long dash curve),—2 Ly (dotted curve), 0 ( full line), +2 Ly (short dash
line), 5 Lo (dot-short dash curve) .



