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Abstract

We consider the O(p*) predictions of Chiral Perturbation Theory (xPT ) in the pro-
cess vy — 7°x° , together with the study of the existing experimental measurements
and the planned new ones. At the Frascati ®-factory DA®NE the rate of the events
ete™ — ete 7n0 is large enough to allow for a measurement of the cross section with
a good statistical sensitivity. However, a quantitative analysis of the commonly used ap-
proximation of considering only real photons for the detection of the yy — 7% signal is
still lackmg This motivates us to compute the cross section in ¥ PT for the production
of 7° pairs due to off-shell photons. A measurement of the azymuthal correlations would
test the higher order x PT corrections independently from the measurement of the cross
section. We approximate these corrections by including the contribution of the low-lying
vector resonances in the scattering amplitude. !
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1 Introduction |
$-factories are well suited for studying the chiral symmetry of the strong interactions.
One very important test is given by the reaction 7y — 7°x°, for which the data collected
by the Crystal Ball collaboration [1] are not in good agreement with the prediction of
‘Chiral Perturbation Theory (xPT) to lowest nonyvanishing order, i.e. to O(p*) in the ex-
ternal momenta and quark masses [2], [3]. The considerable interest of this reaction stems
from the fact that the O(p*) scattering amplitude is finite, hence it does not depend on
the free parameters of the chiral lagrangian. In this case the O(p®) amplitude can give
a numerically important contribution to the cross section in the threshold region. The
calculation of the O(p®) corrections recently presented [4], reconcile the x PT theoretical
predictions with the Crystal Ball measured cross section. Hopefully ®-factories will im-
prove the situation from the experimental point of view, producing much more precise
data.

DA®NE at Frascati provides a very good possibility to measure the productlon of

(both charged and) neutral pion pairs [5). The rate for the events ete” — ete~n%x°,
which we computed in x PT up to O(p*), is quite large and should yield a high statistical
‘precision [6],[7]. The systematical errors can be reduced by tagging the scattered leptons.
It has been pointed out that ®-factories provide a unique possibility for the measurement
of doubly-tagged events, thanks to the low energy of the lepton beams [8]. Equipping the
- KLOE detector [9] with a single or double tagging should allow to elixm'nate most of the
background processes and obtain a clear signature of the vy — 7%r° process [10].

In this paper we present the x PT predictions for the vy — 7#%x° one-loop cross section
with both photons virtual, and this ingredient is necessary in order to give the complete
one-loop cross section for the reaction ete™ — ete~w%r°. Our main motivation to do
this is that we would like to discuss quantitatively all the approximations usually made in

‘studying the process ete~ — ete~7%x°. The final assumption people use to make is that

this process can be described only by the cross section for the process yy — 7°x° with
real photons. All the approximations needed to arrive to this result have been widely
discussed in the literature, and the qualitative picture leading to them is clear and very
well known. What is still missing (as far as we know) is a quantitative discussion of
them. We felt urged to do this for the following reason. From the experimental point of
view DA®NE will offer the opportunity to have data more precise than ever, and one has
then to check whether the theoretical predictions match this precision. Moreover, since
xPT is not a model, rather a systematic field-theory approach to calculate amplitudes of
processes involving pions, there appears no obstruction to considering non-real photons
in this process. ve

In particular, it has been proposed that a measurement of the azymuthal correlations
of the outgoing e*e™ pair should be possible at DA@NE and allow to test the predictions of
various models for the 44 — 7%z amplitude [11]. This topic is included in our description,
within the general theoretical framework of xPT.

This paper is organized as follows: section 2 contains a description of the kinematics
and the general formalism for a process of the kind efe™ — ete™X; in sectiom 3 we
carry out the calculation of the 4y — w%x° order O(p*) cross section with both photons
off-shell. In section 4 we present our numerical results and discuss the abovementioned



approximations. Finally, in section 5 we discuss possible effects of higher orders in x PT
estimating them by a vector resonance exchange in the scattering amplitude.

‘2 Kinematics and QED structure of the cross sec-
tion

The generic process ete~ — ete~ X décurring via two photon fusion has been thoroughly
studied in 1973 by Bonneau, Gourdin, Martin {12]. They developed a quite general
formalism to calculate the cross section using the fact that the lepton photon vertex is
very well known and that the 44 — X reaction has to satisfy gauge invariance. So they
wrote the most general gauge invariant vy — X amplitude in terms of 10 unknown form
factors (they have to be determined case by case) and were then able to write down
also the ete™ — ete~X cross section in terms of these. We have used this formalism
in the case in which the X final state is a pair of neutral pions. Before calculating the
49 — 7°n° process in the formalism of xPT, let us summarize the kinematics of the
process and discuss the formalism of ref. [12].
The reaction under study is:

e*(k1)e” (k2) — e™ (k) )e™ (ky)7°(p1)x°(p2)- (2.1)

The four-momentum transfers between the leptons are in this case equal to the momenta.
of the two photons: '

g = k,‘ - k:, 1= 1,2. (22)

So, later on we will consider the amplitude of the reaction:

Y@ )r(e) = = )=%ps). (2.3)

This, as a normal two body scattering process, is completely defined by the usual Man-
delstam variables:

P=(p+p) = (0 + @)
t=(q— px)z‘ = (g — p2)% (2.4)

‘"-=(¢12 Pl)2 (‘h Pz)z-

Only two of these variables are independent if the masses of the particles are known. In
our case we will consider ¢? and ¢ to be given, and use as variables of our process the
following four ones:

Wz’ t—u, qf: qg' (25)

If we want to analyze only the distribution in W? of the #%x° system, the kinematics
of our total system is the same as that of a 3-body decay of a particle of mass /3,

s = (ky + k2)?, (2.6)



into an electron-positron pair and a particle of mass W. In order to determine completely
the final state we need to measure, for example, energy and momentum of the two leptons:

E},cos by, ¢, E,’,, cos 8, @2, (2.7)
where . .
k!
a6 = ik (2.8)
||| 5

and ¢; are two azimuthal angles. However one of these variables is trivial, corresponding
to the total orientation of the system. So we need five independent variables to determine
completely the final state. In the v — 7°7° amplitude we will be naturally led to choose
as variables ¢?, g and W. For the remaining two, we will follow ref. [12] and use

uy = 2ky-qv, uz = 2k -qa. (2.9)

In the ete~ center of mass frame the variables we chose can be expressed in terms of
the six lepton parameters in this way:

g =2m? + 2|l-c.||k_;| cos 0; — \/sE’,

uj =8 —2m? - 2|I-c‘|lk-3| cos §; — /sE;
(2.10)
W? = s — 2,/3(E} + E;) + 2E{ E}, + 2m?+
2|k} || kb |[cos 61 cos 8 + sin 8, sin 8, cos(¢y — ¢2)]-

The fully differential cross section in these variables can be written as follows:

5 2 .
d'a =2 1 - qzw;—l— ! {errKrr + o7 KT+
du1du2dq1 dq2dW2 21r2 3(3 - 4me) 419> T \ [A -— 4mgB (2 11)

or.Krr + oK + e K$5 + (to + 1) KiT}

where we used also the variable ¢, which is the photon momentum in the 4+ center of
mass system, that can be expressed as:

9= 55 \/(W2 —qi - Q2)2 i (2.12)

and:

A= 4g2g¥(s — wi)(s — w2) — (wivz + Giq} — 251°q2)
B = 4s(¢2¢2 — (q1°¢2)%) + ¢?(u2 — @3)° + G3(ur — })* + 291+ @1 — ¢})(v2 — @3 )(2 3
1
Let us discuss a bit formula (2. 11) The various terms inside the curly brackets have
all the same structure, i.e. the product of a "cross section” o) or a "correlation” 7() times



/

a "structure function”. The subscripts refer to the helicities of the photons: T means
transverse, L longitudinal. Note that orr at ¢ = ¢ = 0 is exactly the cross section
usually calculated for real photons. When both photons are real only orr and 7y are

different from zero. At low {/—g? the Taylor expansion of the various cross sections and '
correlations is:

ort ~ const., TrT ~ const.
2 2
_oLT ~ 41, oTL ~ @) (2.14)
2 2
oLL ~ 419, To ~ 11~ \/giq3.

The Kpy’s do not depend on the dynamics of the 44 process and have been calculated
and shown explicitly in [12], so we are not going to redisplay them here. They can be
expressed as simple combinations of the variables we chose, and represent the probability
for the two electrons to emit a pair of photons with the hehc1ty indicated in the subscript.
In this sense we called them "structure functions”. The o()’s instead are nothing but cross
sections of a two body scattering process in which the two initial particles are virtual
photons with helicities given in the subscripts. They depend only on the 44 process
and can be calculated only when one has an amplitude for the specific problem under
consideration. The same can be said for the 7()’s with the only difference that they are
not cross sections but interferences of amplitudes. It is worth mentioning at this point
that the K()’s multiplying them are proportional to cos 2¢ (K55 ) and cos ¢ (K;%) where
the angle ¢ is the azymuthal angle between the outcoming leptons in the center of mass
of the two photons (see for example [13]), so_that they disappear when integrated over
this angle. On the other hand they can be observed measuring the azymuthal angular
distribution of the outcoming two leptons, and have been proposed as interesting, new
tests of the various models built to describe the yy — hadrons process [11].

Note that while the K(y’s depend on all the five variables, the o()’s and 7)’s do not
depend on u; and u,. Hence one could make another step ahead in the calculation without
loss of generality, namely the u;,u, integration. This has been done also in ref. [12], and
we are now going to display the formula for the triple differential cross section, since this
will be our starting point for the numerical calculation of do/dW?2. The reason why we
showed the fully differential cross sections is that it contains all the informations needed
for a Montecarlo study of the tagging problem and of the measurement of azymuthal
correlations. No integration in the lepton variables has been made, so every kind of
detector-dependent cut can still be applied.

The triple differential cross section in ¢?, ¢? and W? is:

- dPo a? 1 W
IPdRAW = 207 3(s — damD) £ {errdrT + OLT LT+

| (2.15)
orcdrr + oL + rrr i + (To +n)Ji%}
h
1) 2’ \/————_ ) y419r 42 ) . .
A—4 -



The J)’s can be easily derived from a set of integrals L.s(q?,¢%, W?,3s),a,8 = 0,1,2
calculated and given in [12], and we make reference to that paper for the complete ex-
pression. We have recalculated and checked explicitly all the expressions of [12] we used,
including the integrals L,s(g?,q2, W?,s). We found a complete agreement with the for-
mulae of ref. [12]. Notice that our convention for the metric tensor is different in sign
from that used by Bonneau et al.

3 Off-shell vy — 77 at one loop in YPT

Before making the calculation of the various o(y’s in the framework of xPT), let us make
some very general considerations about the y4 — #%r° process. The amplitude of the
process 7y — 7’7 can be written in terms of four different form factors:

q1.9
M, = A(Qf,qgv W,t - '”') {gﬂ" - M} +
qQ1-q2

1
B(q},q3, W,t — u)m{qfﬁm — @0 — CqiuGiv + G- Pq1uga }

. .
C(¢?, q2, W,t — u)m{Qsz'Agpu — @2 Aqiuqiv — CauAu + @1 @q1 AL}

C(qg, Qfa W,u — t)m{nglﬂgﬂu - 41'AQ2p42u - ngluA,, + Q1'<I2Q2uAp}+

1 ' ; ‘
D(qf) qg’ W7t - u)m{‘h 'AqZ'Aguv - QZ’AQIUA;J - q ‘AqZ;AAu + q1"q2ApAu}7

(3.1)
where A = p; — p;. The only constraints imposed here are Lorentz covariance, gauge
invariance, Bose symmetry in the exchange of the two photons and Bose symmetry in
the exchange of the two pions. The Bose symmetry properties are included in the form
factors:

F(g} ¢, Wit—u) = F(¢,¢,W,u~t)  F=A4,B,D,
F(Q?9qg’w)t_u)=F(qqungau_t) F:AanDa (32)

C(Q%a qzs W,t — u) = _C(qfs q%, W,u — t)

The form factor C has no definite property under the exchange of the two photons, but
appears in the amplitude in such a way that the amplitude is symmetric in this exchange.

To calculate the o(y’s and 7()’s we now have to contract the Lorentz indices with the
polarization vectors of the photons in a definite helicity state. This definition is obviously
gauge dependent, so we choose a Coulomb gauge: e-q = 0. We have three independent



polarization vectors (we are now considering the general case of virtual photons), two
transverse and one longitudinal, defined in this way (we are in the center of mass of the
two photons):

.6+(q’;)'= ( »— f’ '\/"’ )’ (@) = (O’%’T%’O>’

(3.3)
, w w
Eo(lh) = (%10’01 —2) ’ 60(q2) = (_ d 2s0’01 2) )
\v—a 2\-a) - 2/
having defined ¢; = (W/ 2,0,0,9). Then we introduce the helicity amplitudes as:
My, = €, (01)€3,(g2) Mo (3.4)

To get the o(y’s and 7(y’s we simply have to multiply two helicity amplitudes and integrate
over the 7%7° phase space. For example we have:

1 ‘
orT = Z(a++ t+o__+oi +o_y) (3.5)
where . ,
Tap = 4qW “Blz’ a’ﬂ =+,—
- | | 3.6).
1 d3p dap (

The detector acce\pta.nce may limit the phase space of the two pions, but, as observed in
[14], this does not occur at a ®-factory if one has a detector like KLOE that covers almost
the full steradiant (cosd < 0.98). From now on we will always integrate over the whole
phase space.

Let us now abandon the general consideration and calculate instead the o(y’s and 7()’s
in the x PT framework to the O(p*) order. As noted in [3], dimensional considerations
imply that at this order the amplitude contains only an S-wave. This means that only
the A and B form factors can be different from zero. The authors of ref. [3] calculated
A in the case of one off-shell photon; here we are going to give the result of a complete
calculation of both form factors neglecting the’ contnbutlon from kaon loops, i.e. in the
SU(2) x SU(2) limit. They will be expressed as integrals in one Feynman parameter since
the analytic solution of the integral is too cumbersome to be of any use:

A= (W —m)(1+ L),

2F2 .
(3.7)

B= — (W —m2)(1 + I),

8r 2F2
‘where the value of the pion decay constant Fr, = (93. 15 + 0. 11)MeV is taken £rom ref.
[15]. The integrals I4,p read as follows:



L= [ dalt-22(1-2)f@) + (6 6o
1 | (3.8)
In= [ do[1+5 -6 +a)e+22 (=) + (6 &)
with

2-[é+z(a+26)+ R](1 — =)
2-[e+2(e+26) - R(1-2)]’

1
f(2) = 1o
R [ (3.9)

R = {&2(&2 — 4) + 262(a + 261)z + (a? — 46:&;)22} /2.

We have introduced here the dimensio_nless variables:

(3.10)

Both A and B have an imaginary part due to a cut in the logarithm contained in f(z).
This cut goes from z_ to z,, where:

1 / 4m? l
4 = 5 [1 41— w2 . (311)

With A and B being the only nonzero form factors in the amplitude, we may easily
calculate the various o()’s and 7()’s. Note that since neither A nor B depend on ¢t — u, the
integral over the phase space factorizes. The only two o()’s that turn out to be nonzero
are orr and orr. Their expression is:

ra® 1 4m? ¢ |
orr = ——={[1- = |4 12 _B 3.12
T 8 qW W2 + (ql’q2)2 H . ( )
ma? 1 4m2  ¢2¢l
= —— /]l - —= A+ BJ2. 313

In figs. 1-4 we plot o7t and orr as functions of W and ¢? at different values of g3.
Notice that the solid line in fig. 3 agrees with previous calculations [2] [3]. Some comments
are worth making at this point. The fact that the only nonzero o()’s are the two we found
is in some sense a good feature, in order to measure just orr at ¢ = ¢ = 0. In fact
oLL, that starts with g?¢? near ¢? = g2 = 0, can give a sizeable contribution only when
both photons are off-shell (see fig. 4), but this event is strongly suppressed by the QED
dynamics hidden in J;;/q?q3. Were or7,07L ‘nonzero, they would have given a sizeable
contribution in the region where only one photon is off-shell, and this would be much less
suppressed by QED. Their contribution to the total cross section would then be much
bigger than that due to oz, and this would make it more difficult to extract from the
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Figure 1: o7 as a function of \/—g? for various values of g and W = 6m2. The solid,
dashed and dotdashed lines correspond to ¢ = —rm? , with » = 0.1, 1.0, 10.0 respectively.

data a measurement of or7. Moreover the dependence of o7r on. g2, is strong only for

very large values of at least one of them (see fig. 1). Hence also for this cross section the

QED dynamics makes very small any physical effect originated by its dependence on ¢? ,.
Also two 7()’s are nonzero; their expression is:

rrr = 207T, (3.14)
ral 1 4m? \/qlqg[ q2q? ( g’ q? )]
n= - —— B|? + Re(AB*) {1+
' A ey BN M wr B15)

It is very interesting that at this order 7rr turns out to be equal (modulo a factor of two)
to orr. Thus a measurement of the azymuthal correlation would give an independent test
of the x PT prediction for the 7y — 7%r® cross section, with different systematic errors
from the experimental point of view, but also with-different theoretical corrections coming
from higher orders. This happens for the following reason: at this order rrr and o7t are
equal because M,_ = M_, = 0. This implies 077 = (044 + 0—=). The definition of
rrr in terms of helicity amplitudes is:

TIT = T4p—— = I W/dp,o,oM++M (3.16)

But for parity reasons one has M, = M__ Hence it follows 74 _ = o044 = a__, and
immediately formula (3.14). This result changes at higher orders, where o,_ and o_,
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are no longer zero. This can be seen in the last section, where we approximate the order
O(p®) with vector resonance exchanges, but also from the direct calculation of this order
in xPT [4]. We thus believe that a measurement of the azymuthal correlation would be
highly valuable both from the theoretical and experimental point of view (see also ref.
[16] for a detailed analysis of the interest and feasibility of such a measurement).

4 Numerical results

As we said in the introduction, the final assumption often made in treating this kind of
processes is that they can be described only in terms of a v cross section with both
photons real. To arrive to this result one needs two different approximations:

i) that all the cross sections, but o7 give a negligible contribution;

ii) that the ¢ and ¢? dependence of orr can be neglected. We are now in a position
to discuss them both from a quantitative point of view.

Our starting point for the numerical calculation is formula (2.15), in which we use the
J() s given in [12] and orr and oy calculated in the preceding section. Our first result
is the prediction for the total cross section at fixed W for the process ete™ — ete~xx®.
We calculate and compare the contributions commg from orr and opr:

dO'TT LL a dq% dq2
4.1
TdW? T 2r?s(s - 4m2) / / "W"” Ledrr L (41)

We integrated numerically over the g7, ¢ phase space, whose boundary is given by the
equation:
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23[1—2—"‘=+,/1—ig"1
- 1.
(@192 + gW) [1+\/1—iq"'?3 [1+\/1—4'"’

We did not attempt to consider any realistic possibility to detect the leptons and made
the integration over the whole phase space, correspondlng to the experimental situation
in which the leptons are not tagged.

In table I we give the results for darr/dW? and do;;/dW? at /s = 1.019 GeV for W
varying between threshold and 500 MeV. As one can easily see, o, gives tipically a 1%
correction to the orr cross section, an effect too small to be measured, and even to disturb
the program of extracting orr from the ete™ — ete 7%? data. So the assumption i)
seems to be a very good one, but let us stress once more that this is not a result predictible
before making the actual calculation of the amplitude. Were o7 71 nonzero at this order,
they would have produced a much bigger contribution to the total cross section.

Now let us consider the approximation ii). It has appeared many times in the litera-
ture, but usually people make reference to the paper of Brodsky, Kinoshita and Terazawa
(BKT) [17] (it is cited also by the PDG booklets), in which they defined an equivalent
photon lum.mos1ty functlon that has to be multiplied by the 4+ cross section in order to
obtain the ete™ — ete™ X cross section.

The connection with the formalism used here is the fo]lowmg: BKT neglected all the
contributions to the cross section but aTT (the only one different from zero at g7 ~ g2 ~ 0),
considering it to be a constant in ¢?,¢? and using aTT(ql,qz,W) ~ or1(0,0,W). The
motivation for this is that in the integral o771 is multiplied by %—;JTT, a function strongly
peaked at ¢ = ¢ = 0. Put it another way, this simply corresponds to the fact that
electrons prefer to emit quasi-real photons, so it does not seem to be a bad approximation
to consider the photons after the emission as being real. Then they calculated the leading

term in the 1ntegra1 and called this the vy luminosity function £,,. The expression they
obtained is ?

., =§ln2 (4;3) [(2 + v—?) In (us/z) 2 (3 + -V-V—i) (1 - WT2)] . (4.3)

Bonneau et al. [12] noted that the BKT approximation can be very bad in the high
energy domain (which is already reached at DA®NE, as we will see), and were able to
give a complete analytic expression for the integral of Jrr, that they called Frr:

d‘h
(44
frr = 432// q qu (t4)

As one may easily check comparing (4.1) with (4.4), the expression for do/dW? is obtained
in each case using '

(4.2)

d 21
d_V:”z = (%) Wzo'TT(O 0, W)L+, Frr). (4.5)

IThe expression normally used for £, contains a (a/x)21/W? factor in front. We omitted it here for
later convenience (see eq. (4.5) below). :



In table II we compare L, and Frr at various energies. It is clearly seen that at DA®NE
the BKT approximation gives a result that is about 20% too high. Let us immediately
say that this observation does not affect the Crystal Ball data [1], since they used the
analytic expression of Frr given in [12] to analyze the data.

Now, forgetting about the BKT approximation, in table III we compare the complete
calculation with the factorized one at both DA®NE and PETRA energies. The error is
always between 5% and 10%, something smaller than the statistical error at Crystal Ball,
but hopefully an effect that should bétaken care of at DA®NE.

This calculation needs three numerical integrations of functions that are not very
regular over the domain of integration. This requires good numerical routines, a good
computer and also a certain amount of time. In order to save time in this and future
applications of the formulae given here, and also as a check of our numerical routines,
we tried to approximate A and B with analytical expressions. As noted in [3], in the
case when only one photon is virtual, B is equal to zero and for A a simple analytical
expression can be given (just integrate I4 putting £, or £; equal to zero). The expression
obtained in this way for orr would then be wrong only in the region of phase space where
both photons are off-shell. But this region is very much suppressed by QED, as we already
mentioned. So the error made with this approximation should be reasonably small. This
is in fact the case, as we show in table IV, where the error is typically 1% (note that this
is of the same order as the correction given by o1, which starts with ¢?¢2, i.e. a term we
left out of orr in this approximation).

At this point a new question naturally arises: since it is established both experimen-
tally and theoretically that higher orders in x PT are important, we would like to see how
they could affect the present analysis. The first thing to say is that they would probably
switch on the othet form factors (C and/or D), and consequently other o()’s and 7)’s.
The effect of this could be to hide better orr inside the ete™ — ete 7%%x? cross section
and make it more difficult to extract orr from the data. As an estimate of these effects
we will use vector resonance exchanges, and discuss them in the next section.

5 Estimating higher orders by vector resonance ex-
change

The contribution of the low-lying vector resonances to the process vy — x°x° has been

computed in xPT for real photons [18], [19], [5]. The correction to the scattering ampli-

tude due to the exchange of a vector resonance in the t,u-channel to order O(p°®) yields
nonvanishing contributions to three form factors in eq. (3.1)

DM = —BM) = CL{(W? — ¢} — ¢2)%, (5.1)

c) = 0.

Here we denote, as in ref. [5],

320 [ hy \°
C = T‘ll’a(MvFr) Oy (52)
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where My (=~ M,) = T7T0MeV is the common mass of the octet and singlet vector mesons.
The effective coupling relevant for the V — 4P decay reads, following ref. [20],

L; = hVeu”WTTV“{u",f+W} ’ (53) '

where
=iwutD,Uut | fo = uFvult £ ufFen | (5.4)

with the covariant derivative D,U.and the corresponding nonabelian field strengths de-
fined as in ref. [21]. The absolute value of hy has been fixed in refs. [20], [5] using the
decay rates with the smallest experimental errors, i.e. p* — 77y, w® — 7%y, and making
the nonet assumption for the w. This yields the coupling constant values

hy = £0.037 . (5.5)

Notice the agreement of the scattering amplitude obtained from the form factors (5.1)
in the limit of two real photons, with the corresponding result in ref. [5). The various
cross-section contributions can be straightforwardly calculated, including the 1-loop am-
plitude and the correction due to the vector-resonance exchange. Here we only display
the contributions that are numerically more important, within the framework of a power
counting in the constant C whose value is obtained from Egs. (5.2), (5.5). Both orr
and oy receive contributions to O(C). We recall from the previous section that o7y is
negligible with respect to o7, to the 1-loop order. On the other hand, it is clear from
earlier work [18], [19], [5] that the correction due to the low-lying vector resonances to or7
is relatively small (i.e. less than 35% of the 1-loop value of or7) over the whole energy
range where a xPT calculation of the 7y — 7%x° cross section can be considered as a
sound approximation (i.e. W < 0.6 GeV'). Hence we neglect here the correction to eq.
(3.13) and only write the O(C) correction to orr in eq. (3.12)

2 2 2.2
o = OV T W B AT e D)

(5.6)
- —a2)?
[2(‘11"12)(2W2 g} — g2 — 4m?) — 4q2q} + J(W? — 4m?) (q1 +q2 _ 4 o )] .

Notice that, since o,_() = g_, () = 0, we have rr7(!) = 2077(), just as for the pure
1-loop contributions.

The O(C?) corrections spoil the va.hdlty of the relation (3.14) holding, both to order
O(p*) and including the O(C) corrections, between 777 and orr. This is so because
o4-®) = o_, @ are not vanishing

z 2
o (2) 27l'a

; o (ql @) (W — 4m2)?. (5.7)

As a consequence, we can now determine the O(C?) correction to or7, in terms of the
analogous contribution to rrr and eq. (5.7), as follows:

1
11 = Lorz® 4, ) (58)
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where
ra? 1 4dm?2
rpr® = C? 7 qW\/ [ (q1-92) (2W — ¢} — ¢ —4ml) — 2q1q2)
_a2)2\ 2 :
+55(W? — 4m?)? (‘11 +q3 — gl ) o (5.9)
2_ 212
+AOV? = 4m) (@ @)W - g = of — 4m) - 26160 (d + f - )|

To order O(C?) there are also nonvanishing contributions to oz and o,

,mat 1 4m2( ‘11)
o =Cl 1 -

(W? - 4m2)*(W? — ¢} + ¢3)%, (5.10)

60 qW W
Although they are less suppressed by QED than oyp, these contributions represent a
very small correction with respect to the size of o7r and 7rr. In a similar fashion, one
can neglect the contribution of the vector resonances in the calculation of the azymuthal
correlation 75 + 7, whose value is dominated by the expression (3.15). Notice that o
becomes nonzero to order O(C?)

2 2
n=0 0 - W VB i+ (12

In concluding this section, two remarks are in order. In the first place, it is clear that,
from the numerical standpoint, the higher order corrections we calculated in this section
do not change sizeably the lowest order prediction. Hence we do not go into the numerical
details of these corrections. Secondly, including the contribution of the low-lying vector
resonances in the scattering amplitude bares as an important consequence the unbalancing
of the relative size of the vy — w°x° cross section o7 and the azymuthal correlation rrr,
whose lowest-order values are related by eq. (3.14). This means that an independent
measurement (with enough precision) of these quantitites would provide two distinct
handles to test the x PT prediction of the higher order corrections. We should add finally
the remark that the corrections due to the inclusion of a vector meson dominance within a
x PT calculation of the photon scattering amplitude yields also an important contribution
to the 7° polarizability, accounting for about % of the n° forward-angle dispersion sum

rule [22].

(W2 —4m2)*(W? — g3 + ¢2)%. (5.11)
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dGTTZ) and SLL from Egs. (4.1), (4.2) at VS = 1019 GeV.

TABLE I - Values of

dw d(W?)

W (GeV) dorr doy, , doyy

. d(W?) dW?) = d(W?)
0.28 " 1.035 1.044
0.30 2.026 2.043
0.32 2.467 2.492
0.34 2.680 | 2.706
0.36 2.762 2.792
0.38 2.756 2.785
0.40 2.703 2.731
0.42 2.603 2632
0.44 2.479 2.505
0.46 2.338 2.362
0.48 2.196 2.218
0.50 2.055 2.079

TABLE II - Values of the yy luminosity function Ly and Frr from Egs. (4.3), (4.4) at

various energies.

(5. W) Ly Frp
1.019,0.3 238.875 188.047
1.019, 0.4 159.329 121.33
30.0, 0.3 3264.259 2838.29
30.0, 0.4 3020.998 2642.8991
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TABLE III - Comparison between the factorized calculation of Egs. (4.5), (4.4) and the full
calculation according to Eq. (4.1), at both DA®NE and PETRA energies.

DADNE PETRA
W{GeW) Orr [ Jorrirr Sirh | forrdm
0.28 0.98 -+ 1.03 - 13.8 14.4
0.30 1.88 2.03 28.4 29.8
0.32 2.28 2.47 37.1 39.0
0.34 2.48 2.68 43.3 45.8
0.36 2.55 2.76 47.9 \ 50.9
0.38 2.53 2.76 51.3 54.8
0.40 2.48 2.70 540 58.0
0.42 2.38 2.60 55.9 60.4
0.44 2.26 2.48 57.4 62.3
0.46 2.14 2.34 58.4 63.8
0.48 - 2.00 2.20 59.2 ' 64.9
0.50 1.86 2.05 59.6 65.8

TABLE IV - Comparison of the result of the tull calculation according to Eq. (4.1) and the
approximation of one virtual and one real photon discussed in Ref. [15].

W(GeV) forrIrr j orPH Jpp
0.28 1.035 1.033
0.30 2.026 | 1.993
0.32 2.467 2.435
0.34 2.680 2.654
0.36 2.762 2.740
0.38 2.756 2.740
0.40 2.703 2.690
0.42 2.603 2.600
0.44 2.479 , 2.480
0.46 ’ 2.338 2.346
0.48 2.196 2.208
0.50 2.055 2.071




