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ABSTRACT

A noncompact regularization of gauge theories is presented where exact gauge invariance
at finite lattice spacing is obtained by means of an auxiliary field which decouples in the
continuum limit. The result of the evaluation of the renormalization scale parameter and of the
string tension are reported, showing the same evidence for confinement as in Wilson's scheme.
The new regularization is used to define composite gauge fields.

PACS.: 11.15.Ha



1. INTRODUCTION

Our original interest in a noncompact lattice regularization of gauge theories was re-
lated to the possibility that artifacts of the compact formulation present at strong coupling
could persist at week coupling.This problem has attracted attention especially in connec-
tion with the search for an ultraviolet fixed point at finite 3 in abelian theories {1} and
with the investigation of the confinement mechanism [2-3] in non abelian ones.Such a
mechanism,in fact,which is quite simple at strong coupling where it is strictly related to
the compactness of the gauge variables, in the scaling regime(which should approximate
the continuum where gauge fields are non compact) has not yet been fully understood.To
investigate this problem one would like to have a non compact formulation.Since such a
formulation with exact gauge invariance at finite lattice spacing has long been thougth
to be impossible [4],attempts have been made to define non compact gauge fields on the
lattice by direct discretization [2] of the continuum action (explicitely breaking gauge
invariance at finite lattice spacing) or by using gauge-invariant variables obtained by a
nonrenormalizable gauge fixing [3].In all these cases a vanishing value of the string ten-
sion has been found.Such a negative result,although not very stringent in view of the
mentioned features of the actions used, makes certainly desirable a lattice regularization
with noncompact gauge fields,exactely gauge invariant at finite lattice spacing and renor-
malizable. Such a regularization moreover,being closer to the continuum, might simplify
perturbative calculations making simpler Faddev-Popov terms and reducing the number
of Feynmann graphs which in Wilson’s regularization proliferate due to the expansion of
the unitary link variables.

More recently we have found a new interest in a non compact regularization because it
may allow us to define composite gauge fields in terms of anticommuting variables.

In this talk a lattice regularization with non compact gauge fields is presented [5]
where exact gauge-invariance at finite lattice spacing is enforced by means of an auxiliary
field,which is shown to decouple in the continuum limit.The result of the evaluation of the
renormalization scale parameter [6] and of the string tension [7] are reported, showing an
evidence for confinement analogous to the one obtained by Wilson’s formulation.Finally
an example of composite gauge fields in terms of anticommuting variables is given.

2. NON-COMPACT GAUGE FIELDS ON THE LATTICE
The problem is to define a parallel transporter D, such that the covariant derivative
1
Du(z)$(z) = Dutpl(e + ) = —3(2), (1)
transforms as the field ¢ under gauge transformations

p(z) — g(z)¥(). (2)

This requires that under these transformations

Dy(z) — g(2)Du(z)g(=)". (3)

*This work is carried out in the framework of the European Community Research Program”Gauge the-
ories,applied supersymmetry and quantum gravity”with a financial contribution under contract SC1-
CT92-0789 .



As it is well known the above equation has no solution with the gauge fields in the

algebra of the group,which we assume to be SU(N). In Wilson’s definition in fact D,
belongs essentially to the group

1
D, = ~U,, U, € SU(N). | (4)

We have instead considered the possibility that D, lives in the algebra of GL(N,c)
D, =V, +14,, Ay = AuT,, (5)

with V,, ,A,, complex numbers and T, the generators of SU(N).In the following we will

restrict ourselves to the case of SU(2), where the generators can be normalized according
to

[Ta’ Tb] = ieabcTc
1
{Ta’Tb} - Eéab’ (6)

and V,,, A,, can be taken real.lt is then natural to identify 4, with the gauge field ,s0
that V, should be an auxiliary field which should decouple in the continuum limit.
The transformations of A, and V,, which follow from Eq.( 3) are

§A, = i[A.,6)+a(V, 0,0+ %[A,,, A,0))

1
8V, = —gaTrA,l JAVC (7)
where 0, are the parameters of the transformation. We see that for a — 0, they do not

reproduce the gauge transformations. These can be recovered if the auxiliary field V,,
acquires a nonvanishing expectation value

1
<V,>=—, (8)
a
so that defining the shifted field
1
W,==--V,, (9)
a
we have

_ 1
6A, = AN,0 + z[A,,,@] —a(W, A, 0 — '2'[Au, A,6))

1
W, = —éaTrA,, JAVR (10)
So a non compact regularization can be constructed if a)spontaneous breaking of GL to
iGL can be ensured by a suitable potential and b)the auxiliary field decouples in the
continuum limit.
We will now construct the action in such a way that the above conditions be satisfied.

The strength and the Yang-Mills Lagrangian density can be written in analogy to the
continuum



Fou(2) = S [D,u(2)Du(z + 1) — Du(2)Dulz + )] (11)

‘L) M= —/32 o (2)Fu(z). - (12)

The possibility of enforcing conditions a) and b) is related to the existence of the other
invariant

1 v
b= STr(DED, — ] = A+ W2 = 2W,, (13)
so that the total action will contain an arbitrary function of this invariant. We determine
this function by requiring i)minimal couplings of dimension not greater than 4 to have
renormalizability ii) parity invariance and Euclidean invariance in the continuum limit
iii)lower boundedness for the potential (lagrangian density at constant fields) iv)a diver-
gent mass~ 1/a for W, to ensure its decoupling v)cancellation of the kinetic terms of W,
in order to have a simple propagator .The resulting total lagrangian is

1
LG = Ly[u — —-,6(12 Z(A“tu — Aut“)z
16 W
1
+'2"72 Zti (14)
I

The minimum of the potential occurs at W, =0,-2/a.Since the second root can be shown
to add only unessential complications (which will not be discussed here) the conditions a) -
and b) are satisfied.It is perhaps worth while noticing how the requirements iv) and v) are
implemented in eq. (14).The second term does not vanish for a — 0 because ¢, ~ 1/a ,and
its finite contribution exactely cancels the kinetic terms of W, which remains with only
a mass term ~ 1/a arising from the third term.It is also worth while noticing that in the
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limit 7 — oo we recover Wilson’s definition. In such a limit in fact the partition function
contains a §-function of ¢, . Integrating over W), the jacobian from the § -function gives
the Haar measure over SU(2),while

1[1 +(1—a?42)"?] » (15)

a

W#

is real only if A, is compact.Inserting this solution in Eq.(5) we can write D, in the form
of Wilson.

To conclude this section let us mention that nonunitary link variables already appeared
in the color dielectric theory [8].In such a context an action very similar to ours has been
constructed as an effective action ( rather than a true regularized action) to be used in
the phase of unbroken GL. Here the potential has its minimum at ¢, = —1/a® and as a
consequence there is no particle interpretation,a feature which in such a theory is assumed
to characterize the QCD vacuum autside the hadrons.

3. RENORMALIZATION SCALE PARAMETER AND STRING TENSION

Retaining the auxiliary field W), the renormalization scale parameter An¢ of the present
non compact regularization has been evaluated to one loop following the procedure of
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Dashen and Gross [9)with the result

1272

11 E), ' (16)

Anc = Awexp(—
where

1
B = 022086 (17)



The same calculation shows that in the scaling limit
=18+ (18)

where v; is an arbitrary parameter while v, is determined but it has not been evalu-
ated.The ultraviolet fixed point is therefore the same in the two regularizations.

The plaquette energy and the Creutz ratio have been evaluated by a Monte Carlo
simulation on a 12 lattice with the results reported in Figs.1,2. The same evidence for
confinement is found as in Wilson’s regularization,but the agreement with the scaling of
Eq.(16 ) is rather poor.

4. COMPOSITE GAUGE FIELDS

Composite gauge fields have been considered often related to their dynamical gener-
ations in different perspectives.Here an example is given in terms of a commuting or

anticommuting field A in the fundamental representation of SU(2)

1 -
D, = %[/\*®/\(m+u)+6/\®/\*(m+ﬂ)]. (19)
In the above equation
/_\ = 0'2/\, (20)

and € = %1 for the commuting or anticommuting case.Such a parametrization is the most
general one which is invariant under the global transformation

A — e, (21)
and which gives hermitean fields V,, and 4,
Ay = i(No, DA — AN 0,A)
1 \
Vi = XA+ %(,\* Ap X+ AN (22)

The bosonic case has been included to illustrate two points.The first one is that while Wil-
son’s regularization can be obtained in the bosonic case by requiring AA* = 1, composit-
ness with anticommuting variables requires the gauge fields to be noncompact.The second
point concerns the particle content of such a simple example.In the bosonic parametriza-
tion it is trivial, because the D, of Eq.(19) corresponds to a pure gauge field, which

is not true for the anticommuting variables,whose dynamics ,however,has not yet been
investigated.
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