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Prologue!

Tragically, Nick Brown died in an accident on 13 June 1991 just as his great
potential as a physicist was beginning to flower. He was enthusiastically
committed to science and this was his last and uncompleted research. He
had written up rather complete notes which I include here as section 1 in
his own words with only minor editing by me" and hope that he would have
approved of it and the subsequent commentary.

We had become interested in the possibility that radiative decays of the
¢ meson might be so prominent that they would undermine the primary aim
of the ¢ factory, namely the study of CP violation. As a result of Nick's work
we can now be confident that the CP programme will not be significantly
affected by this possibility. At the same time, the DA¢NE facility will create
opportunities for studying ¢ radiative processes, in particular the production
of the enigmatic scalar resonances, in their own right. Qur joint understand-
ing of this was primitive at the time of Nick’s death and we did not perceive
the subtleties and insights that this, still incompleted, work would bring.
My personal sadness is that Nick was not able to witness the discoveries that

"Denoted by Enclosure within [...] in the closing paragraph of section 1



came from all this; he certainly would have enjoyed them and I would like to
dedicate this paper to his memory.

Introduction

The existing literature makes predictions for the branching ratios ¢ — KK~y
and ¢ — Sy (where S denotes scalar mesons S* or fo(975) and § or ao(980))
that vary by several orders of magnitude!*=5!. Clearly not all of these can be
correct. In the spring of 1990 I began to look at these questions to try and
isolate where the differences arise and decide which papers are most reliable:
this problem has some practical urgency in view of the impending ¢ factory,
DA¢NE, and the developing programme at VEPP4.

Nick Brown looked at the scalar resonance contributions to the ¢ — K K~
process, and noticed some inconsistencies in the literature: his conclusions
are presented in section 1. I have studied the question of the intrinsic ¢ — S«
rate to seeif it can discriminate among models for the scalar mesons - e.g. are
they ¢, ¢2§? or K K bound states? This latter work is summarised in sections
2 and 3 and will eventually be written up in detail with Isgur and Kumanol™.
It suggests that an accurate measurement of the absolute and relative branch-
ing ratios for ¢ — v fo and yao may indeed provide such discrimination and
reinforces the conclusions of section 1 that, overall, ¢ — yK°K° will pose
no significant background to CP violation studies at DA¢NE.

1 Some comments on calculations of ¢ —
KK

(N Brown notes as transcribed by F Close)

The decay ¢ — K°K°y poses a possible background problem to tests of
CP violation at future ¢ factories. The radiated photon allows the K°K°
system to be in a CP even state, as opposed to the CP odd decay ¢ — K°K°.
This has been proposed as a good way to measure £'/e, but because this
means looking for a small effect any appreciable rate for ¢ — K°K°y (Br
(¢ — K°K°4107%) will limit the precision of such an experiment.

Estimates of the non-resonant ¢ — K°K%y branching fraction give, in
the absence of any resonant contribution, a number 0(107°), far too small



to pose a problem. Estimates of the resonant decay chain ¢ — S*(6) + 7,
followed by the decays S*(§) — K°K®°, however, vary by three orders of
magnitude, from 0(107%) down to 0(107°) . Here we concentrate on this
resonant process, noting, of course that if the contribution were of 0(107?)
, interference effects between resonant and non-resonant amplitudes would
be important. We will discuss differences between the calculations and show
that there is, in fact, no large discrepancy. The smaller of the two estimates
will turn out to be the more reliable, showing that ¢ — K°K°v transitions
are unlikely to be a problem in tests of CP violation.

The larger estimate for the ¢ — K°K°y branching fraction comes from
Lucio and Pestieau!!!, based on work by Nussinov and Truong(*¥. They
calculate a differential decay width ’

dlrp (e, b)g2g’ )
dQ? ~  dmi,nt X (1)

Here Q? is the invariant mass squared of the K°K® system, and hence the
resonance. The calculation presumes the transition goes through a virtual
K* K~ loop [fig 1] and g,, is the coupling of ¢ to K* K~ and g is the coupling
of the resonance. I(a,b) is a factor coming from the loop integral given by

Ia9) = 55 - g ~ FO + g o) = o) @)
where
—(arcsin(33=))? = >}
f(=) = { i[ln(?’-*_i) -_Z:r]z :c<%
—(4z - 1) arcsin(5i=) >}
(=) = {-;-(1—43)1/2[111(33)17;] z<l
£ = lasoaey) a=Te -9 3
n "5( (—z))a—mfﬁ’—m}“ ()
The factor x in eq (1.1) is given by
o md- Q- Ry

_ 4
x 12872m2 (Q? —mi.)? + mi.T'%. )



For the moment we have assumed that only a single resonance 5*(975) con-
tributes. The differentia.l width eq (1.1) must be integrated from K°K°
threshold up to m’. We should note here that we are unable to get agreement
with Lucio and Pestlea.u s final answer of I'(¢p — K°K%y) =~ 6 x 10" MeV,
unless we choose I's. ~ 33MeV (as quoted in the particle data tables) and
integrating from the K* K~ threshold, as opposed to the K°K® threshold.

Unfortunately this decay width is extremely sensitive to this threshold.
This is partly because a lower threshold allows us to get closer to the reso-
nance peak, as well as increasing the Q? range of integration, which enhances
the rate considerably since we are then less suppressed by threshold factors
(1 - 2258) /3 (m2 — Q?)°.

Integratmg correctly from the K°K° threshold gives us I'(¢p — K°K°)
= 7.7 x10-"MeV. However this is still not correct, since the “width” quoted
in the particle data tables is a fixed number, whereas since we are considering
transitions very close to the K K threshold, the width is strongly mass depen-
dent. Indeed assuming, as Lucio and Pestieau do, that gs.gogo = gs-x+k-
we have

I(57(Q?) — K°KR°) = ngWZQK;"(Q — 4m3, /2

D(S(Q) — K*K™) = 9;6""5; (Q7 - 4mis)/? (5)

Taking their value of g%. x4 x-/47mm3 = 0.58, these widths rise from zero

at their respective thresholds to 32 MeV and 37 MeV respectively at Q? =

- Adding these Q? dependent widths to a fixed mx width of 33 MeV gives

us a total decay width I'(¢ — K°K%y) = 3.7 x 10""MeV, over an order of

magnitude less than the result quoted in their paper. On the other hand,
the calculation of Paver and Riazuddinll gives

dr’ PR - a 1 4m}(o

_ 3 1/
where
B=Gs~( 12 -3 2 - -+ ! ) (7)

m%.  mi. —-mi, mi - Q% —ims.Ts.
The structure here is different to that from a simple scalar pole expression.
The other terms arise from demanding that the complete amplitude satisfy



certain current algebra conditions. For the moment, and for the purposes of
comparison, we restrict ourselves to the scalar pole term, in which case we

obtain
dlpr

dQ?
where Gs. = Gg.gogo.Ggs+y, and x is given in eq (4). Since the function
|[I(a,b)|? varies smoothly and slowly over the @2 range of interest (it falls by
a factor of 2 from Q? = 4m}, to Q* = m} see table 1), replacing it by a
constant should be a good approximation. Any difference, then, in the two
approaches lies in the values chosen for the various coupling constants and
the width, I's..
We have already discussed how the width I's. should correctly incorporate
the Q? dependence due to the opening up of the K K channels.

Q* x(QF)
0.99  0.0134
1.01  0.008

1.025 0.0075
1.037 0.0064

Table 1: The Q? dependence of xI(Q?) = H%f-,lﬁ-n}.";:.
K

We parameterise this decay by gs-xx and R = ¢2.,, /9% kx, then the S*
width becomes

Is+(Q%) = fg"g,{(q' 4m, )7 4 (Q — 4mks )/ + 2R(Q - 4m?)/?}

where the factor 2R is for charged and neutral pion deca.ys Physically we
-expect R << 1(R =~ 1/47) and we consider the range 0. 3-7—:.‘4& < 3tocovera
range of possibilities (Note Ref 5 quotes couplings in the range 0.3g%/472.3).

Although some of these coupling values would give a I'(S* — n7) >> 33
MeV, it is well-known that the effect of the nearby KK threshold distorts
the S* — mr shape, and if KK is more strongly coupled than mm one can
get a ‘cusp’ effect(®).



R\g . gg/4r 03 058 1.0 15 25 3.0

0.125 18 18.8 43.2 47 49 49.5
0.25 12.5 20 21 21.8 23 22.4
0.5 6.37 7.7 8.065 8.18 8.25 8.24
1.0 236 253 257 2.58 258 26

Table 2: T'(¢ — K°K®y) in units of 10~® MeV as a function of g*(SKK)
and R = ¢*(Snn)/g*(SKK).

[There are also possible interferences between § and S* and if
gs*K+K~ = J§K+K-
gs-KOR® = TYsK°RO
then we can compute I(¢ — 74(S*,8) — vK°K®) as a function of Rs-, Rs, g3. /4w, g2 /4r
where
RS' = gé'r«/g.zs‘KK
R6 = gézwn/gZKK

A representative sample is given in table 3.]

Rs., Rs\g2. /4, g2 /4r  (0.3,0.3) (0.3,1) (1,0.3) (1,1) (251) (1,25)

(1,1 3.5 5 4 46 4.6 47
(1/4,1) 20 40 20 40 40 44
(1,1/4) 0.8 4.4 0.9 09 1 1.4
(1/4, 1/4) 4.5 24 9.4 11 12 14

Table 3: The width (I'(¢ — K°K°y) including possible interference effects
in units of 1078 MeV.

Note that for many of the combinations the effects of the interference are
small (the § actually gives a larger contribution than the §* for many cases,
which is why we have

|4, 1% < |A,. + 45]% < |As)?



where A = amplitude).

(The conclusions to be drawn from these calculations are that the branch-
ing ratio is sensitive to detailed modelling, resonance coupling strengths and
interference effects. Predictions of branching ratios in excess of 107 are in
error (a conclusion that is reinforced by the subsequent work on ¢ — 4.5()
and described elsewhere in these proceedings). The process ¢ — yK°K° will
therefore pose no significant background to CP violation studies at DA¢NE.]

2 Probing the nature of the scalar mesons
below 1 GeV

Some of the ¢ — yK K will arise from the transition ¢ — 45 where S de-
notes the scalar mesons fo(975), ao (980) each of which couples strongly to
KK. There is considerable uncertainty in the literature as to the expected
branching ratio for ¢ — 45, estimates ranging from 0(10~3) [ref 2] to 0(10-¢)
[10]. These variations are in part due to errors and in part due to modelling.
We have studied the literature, identified which calculations are mathemati-
cally reliable and determined whether the relative and absolute magnitudes
of the branching ratios ¢ — 7f, and ¢ — ~ao can help probe whether the
scalars are for example g, g3g [9] or KK [8] systems.

In summary, we find that for the fo (975) the B.R. will typically be 0(1074)
if ¢>q%, 0(107°) if s5 and below 0(107%) for a spatially diffuse KK system.
If the aq (980) is ¢, it will be Zweig decoupled from the ¢. The production
rate via the K K loop, viz ¢ — 7K K — vao, may be calculated but has some
interesting points of principle which shed light on the role of finite hadron
size in such loop ca.lculatlons The relative size of ¢ — yag/vfo ~ 1 if they
are KK systems; for ¢ the ratio is sensitively dependent on the internal
structure of the states. If the state’s internal charge is distributed about the
centre of mass thus (¢3)(gs) - where g denotes u or d - the ratio ¢ — ~fo/vao
will be unity and only the absolute branching ratio will distinguish ¢’ from
KK. If it is (¢g)(s3) the process will be dominated by the KK loop and
the absolute rate will depend on the Zweig rule dynamics. However if the
structure is (¢s)(g3) the ratio of widths ¢ — vfy/va0 = 1/9. The absolute
rate depends on an unknown overlap for ¢ — K+*K~- — DD (where D
denotes diquark), nonetheless the dominance of ap over fo would be rather



distinctive.

We now survey the literature and evaluate the claims. This section is
based, in part, on work done in collaboration with Nathan Isgur and Shunzo
Kumano, which will appear in ref. 7.

Several papers!~3®l have computed the amplitude M(¢ — S*v) by as-
suming the decay to proceed through the charged K loop (fig 1), ¢ —
KtK- — S(k)+% — K°K% where the K* are real or virtual and S
is the scalar meson with four momentum k. The amplitude describing the
decay can be written

M(é(p,m) — S(k) +(g,¢) = ‘%g I(a b)(p-g)(en) — (p-€)(gm)]  (9)

where ¢(q),7(p) denote v and ¢ polansa.txons (momenta), the g4, g couplings
for K+ K~ and SK+* K~ are related to the widths by

2
- 94
(¢ - KYK™) = m(mi — 4m%,)*? (10)
and ) "
D(S = K*K™) = gorg{m} — dmic, )V (11)

The quantities a,b are defined as a = —-f- b= -—f- so that a — b = -2,3 is

proportional to the photon energy. .The loop mtegra.l I(a,b) is given m eq
(1-3); note that m% is in general virtual though we shall here concentrate on
the real resonance production where ms ~ 975 or 980 MeV.

First we summarise limitations and problems in the existing literature
concerning attempts to calculate the above. Refs (2,3) have made technical
errors; ref (1) obtains the I(a, b) correctly as above but has a numerical error
in computing the ensuing width; ref (5) uses a different approach (see later)
and obtains an expression which agrees with that of ref 1. We confirm this
result and its numerical value too - however we disagree with the physical
interpretation.

2.1 Calculation of the integral I(a,b)

Upon making the ¢ and K interactions gauge invariant, one finds for charged
kaons

Hipe = (eAu + 904)5" — 2e9s A*$ KT K (12)



where A¥ ¢, and K are the photon, phi and charged kaon fields, j# =
i K+(5u_

5“)1(. Upon recombining the two kaons to form a pointlike scalar field,
gauge invariance generates no extra diagram and the resulting diagrams are
in figs (1). Immediately one notes a problem: the contact diagram fig la
diverges. The trick has been to calculate the finite fig (1b) and then, by ap-
pealing to gauge invariance, to abstract a finite answer. This is done either
by .

a) [Refs 1-3], Fig la contributes, to A¥¢"g,, whereas Fig 1b contributes
both to this and to p,q,A*®”. Therefore one need calculate only fig 1b,
abstract the finite coefficient of the p,q, term and, by gauge invariance, one
is assured that this must be the finite result.

b) [Ref 5] Compute the imaginary part of the amplitude (which arises only
from fig 1b) and write a subtracted dispersion relation, with the subtraction
constrained by gauge invariance.

Wel”l have considered the case where the scalar meson is an extended
object, in particular a K K bound state. The SK K vertex therefore involves
a momentum dependent form factor f(k), where k is the kaon, or loop,
momentum which will be scaled in f(k) by ko, the mean momentum in the
bound state wavefunction or, in effect, the inverse size of the system. In the
limit where R — 0 (or kg — c0) we recover the formal results of approaches
(a,b) above, as we must, but our approach offers some possible new insights
into the physical processes at work. In particular there is a further diagram
(fig 2c) proportional to f'(k) since the minimal substitution yields

-0

f(k—eA)— f(k) = —eA'ké_fl; (13)

As we shall see, this exactly cancels the contribution from the seagull diagram

fig 2a in the limit where ¢, — 0, and gives an expression for the finite

amplitude which is explicitly in the form of a difference M(q) — M(q = 0);

this makes contact with the subtracted dispersion relation approach of ref.
5.

First let us briefly summarise the Feynman diagram in the standard point-

like field theory as it has caused some problems in refs (2,3). If we denote

M, = [p.qu — (p-Q)9u]H(my, ms, q) then the tensor for fig (3 ) may be
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written (compare refs 2,3 eqs 8 & 6)

d*k (2k — p)u(2k — q).
(2m)4 (k* — m?)[(k — q)* = m2][(k — p)? — m?]

We will read off the coefficient of p, g, after combining the denominators by
the standard Feynman trick so that

eggs 1-z / d*kk,k,
, = d d 15
M. (27r 8/ Z/ V)-w (kz—-c+ze)3 (15)

where ¢ = m? — z2(1— z)M} — 2y(M% — M}), and the p,g, term appears when
we make the shift k — k + qy + pz. One obtains

M, = eggy /

(14)

H— €99¢
472y

/ /1 zdy yz[m - Z(l - Z)M; — zy(Mg — Mz))"l (16)

Note that M2 < M; and so one has to take care when performing the [ dy.
One obtains (recall a = m}/m?,b = m%/m?)

€994 _(1-z1-2)a), z(1 - z)b
T 4n? niz(a {/ _[" (a — ) (l—z(l—z)a)]

T 1/n-

(a —b) Ji/ny

(1 = z(1 = 2)a)dz}{17)

where 72 = $(1 & p) with p = /1 — 4/a.

I have exhibited these manipulations in order to assess the existing liter-
ature. In ref (2), the (unnumbered) eq 8% has omitted the imaginary part -
the final integral above. In ref (3) at eq 7 one can see how this has arisen:
the coefficient of their term af(p? — u'?) corresponds to zy(M; — M%) in our
eq (2.8) i.e. it has the opposite sign. However, as ref (3) then proceeds to
neglect this term one might think that the discrepancy would not matter -
but there is no need to ignore this term as the integrals can be performed
analytically and one sees that the said term is not negligible.

In performing the integrals, take care to note that a > 4 whereas b < 4
(which causes p2 > 0,p2 < 0). Hence one confirms the I(a,b) as given in ref
(1) [our calculation above has referred only to the diagram where the K+
emits the v; the contribution for the K~ gives the same and so the total
amplitude is double that of eq (2.9), hence in quantitative agreement with
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eqs (3 and 4) of ref (1)]. Straightforward algebra confirms that this equals
the eqs (9-11) of ref (5).

Numerical evaluation, using m(fo) = 975MeV, g?/4r = 0.6GeV? leads
to

T(¢ — foy) =6 x 107*MeV (18)

in contrast to the value of 8.5 x 107*MeV (J Pestieau, private communica-
tion, confirms our value at eq 2.10). In ref (5) the rate for ¢ — foy is not
directly quoted, though as their expression agrees with ours, one supposes
that the value at eq (2.10) should obtain. Instead, ref (5) gives values for
¢ — vfo — vnw (for example) and claims that this depends upon the ¢
or ¢2§? structure of the f;. However, the differences in rate (which vary by
an order of magnitude between ¢§ and ¢?G? models) arise because different
magnitudes for the fK K couplings have entered. In the ¢23° model a value
for g*(fK K') was used identical to ours and, if one assumes 100% branching
ratio for fo — m, the rate is consistent with our eq (2.10) [ref 5 has inte-
grated over the resonance]: Ref 5 notes that in the ¢?G? model the relation
between g?(agK K) and g*(aomn) imply I'(ag — m7) ~275 MeV. In the ¢
model ref 5 uses as input the experimental value of I'(ag — 7n7) =~ 55 MeV
which implies a reduced value for g?(ao77) and, therefore, for g?(aoK K): the
predicted rate for ¢ — ~vao — y77 is correspondingly reduced.

Thus we believe that the apparent discrimination among models in ref 5 is
rather indirect and logically suspect in the case of § — 4S5. The calculation
has assumed a pointlike scalar field which couples to pointlike kaons with
a strength that can be extracted from experiment. The computation of a
rate for ¢ — KK — 4S5 will depend upon this strength and cannot of itself
discriminate among models of internal structure for the S.

Wel™ have considered the production of an extended scalar meson which is
treated as a K K system (following the work of ref 8). Our results numerically -
agree with the pointlike field theory as Rs — 0, and the branching ratio falls
for Rs # 0. A genuine K K molecule will have R2fm in order that two colour
singlet ¢ states are meaningful - the resulting width 10~5MeV . At the other
extreme, where the ¢23? are all contained within a single 1 fm confinement
domain one recovers the result of eq (2.10) and ref 5. Thus we suspect that
that large branching ratio corresponds to a P-matrix state (ref 9).



—12 —

2.2 The production of an extended scalar meson via
a KK loop

Suppose that K+ and K~ with three momenta +k produce an extended
scalar meson in its rest frame. The interaction Hamiltonian H = gqb(lk[) 1s
in general a function of momentum. Now make the replacement k—k—eA,
expand ¢(k — eA) to leading order in e and one finds a new electromagnetic
contribution

Hig+k-fy = —-egd)'(k)ic./.{ (19)

The effect of this form factor is readily seen in time ordered perturbation
theory. There are four contributions: (H, 4 are figs 2a, ¢, while H; 3 are
fig b where the v is emitted from the K or K~ leg). We write these (for
momentum routing see fig 3)

k)2€, . k(k.€p + 14€,
H2’3 — 2egg¢/d3k¢( ) €y ( €¢:t2q €¢)

D(E)D D(g) #0)
H = ,2egg,,5/dalst?il%lr—e-‘2 (21)
Hy = 2eggs / &Pk ——%"— (22)
where
Dy, = mg—q— D(E)
D(g*) = mg—2B(k£q/2) (23)
D(0) = my—2E(k) (24)
D(E) = E(k+4q/2)+ E(k—q/2) (25)

where E(P) is the energy of a kaon with momentum P. Note that H, is
the (form factor modified) contact diagram and H, is the new contribution
arising from the extended SK K vertex.

After some manipulations their sum can be written

o $R) R (RgP, 1 1 @' (k)|
H = 2eggyé,. 6¢/d k[ {1 + D(E) (D(q+) t D(q'))} + 3D(0() ])
26
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If limgs o0 (k*¢(k)) — 0 we may integrate the final term in eq (2.18) by parts
and obtain for it

¢k) | F - (Fg?
Hy =2 /& 1— —— 24l 27
4 €gg¢€~, €¢ ){ E(k)D(O) } ( )
This is identical to the § — 0 limit of H; + H; + Hj;, and hence we see
explicitly that the g,, term (i.e. the €,.€4 as calculated above) is effectively
subtracted at ¢ = 0 due to the partial integration of the ¢'(k) contribution,
H,.
If one now has a model for ¢(k) one can perform the integrals in eq (2.18)
numerically.
For the KK molecule the wavefunction

1 u(r)

= 28
v = 7= (28)

is a solution of the Schrodinger equation

d?
{—m—d—; +v(r)}u(r) = Eu(r) (29)
where (ref 13) one approximates
o(r) = —440(MeV)exp(—%(-:;)2) (30)
0

with rg = 0.57fm and hence E = —10MeV. This equation may be solved

numerically and, for analytic purposes, we find that the ¢(r) is well approx-
imated by('¥! (fig 4)

V3 (31)
2era
where R,m, ~ 1.2fm (thus ¥(0) = 3 x 10~2Gev%/?, see also ref 13). The
momentum space wave function that is used in our computation is thus
$(k) = p*/(k* + u?)? (32)

The rate for I'(¢ — Sv) is shown as a function of Rkxg in fig (5). The
non relativistic approximation eqs (2.12-2.19) is valid for R0.3fm which is

P(r) = ('f:—)" Pexp(—pr), p=
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applicable to the K K molecule: for R — 0 the fully relativistic formalism is
required and has been included in the curve displayed in fig 5. As R — 0 and
#(k) — 1 we recover the numerical result of the pointlike field theory whereas
for the specific K K molecule wavefunction above one predicts a branching
ratio of some 4 x 107° (width ~ 107*MeV'). This is only 1 of the pointlike
field theory result but is larger than that expected for the production rate of
a ¢ — 7S5(s3) scalar meson.

Note that at 1.2fm the system is in some sense a mixture between gen-
uinely separate K K (which require R2fm) and a compact ¢>§® system. These
results and their interpretation are still preliminary. Some of the questions
that they bear on are discussed in the next section.

3 The Zweig rule

If the a = %(uﬁ — dd) its production in ¢ — agy will vanish modulo
corrections from KK loop contributions - called Zweig violating processes.
In the pointlike field theory calculations one would expect a branching ratio
of order 10™* via this loop process. For the f, = 715(1“7 + dd) a similar
expectation obtains. However, if f = 33 it can be produced directly from
the ¢(s3) and the rate calculated rather reliably. One may scale('®) the results
of ref (11) for bb and c¢ to s3, or compare with calculations(!!) for light quark
states: independent of how one chooses to do this, the resulting branching
ratio is 0(107°) (between 0.5 to 2 x 107F).

Thus one has an interesting conundrum. Here is a process that can be
computed via the, supposedly dominant, s — s3 + 4 transition but which
is overwhelmed by an order of magnitude by a K K loop contribution. The
latter are known to be suppressed in the ¢ « w mixing and an ad hoc rule -
the Zweig or OZI rulel!? - has been invented to “legitimise” this. However, in
the present example of § — S+ one can calculate the loop diagram explicitly
and one finds that it can be dominant: what then for the OZI rule?

First we see an important message from our computation. If the KK
system is diffuse, R2fm, then the loop calculation gives a branching ratio
< 107° and the empirical OZI rule is good. Physically, the rate is suppressed
due to the poor spatial overlap between the K K system and the ¢ - intuitively
there is small probability to find the extended K K system “in” the small ¢

- wavefunction. The pointlike field theory does not allow for this - superficially
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the loops have large magnitude and the empirical result that the loops must
be small causes the OZI “rule” to be shouted. But shout as loud as you like
- such a “rule” needs justification and the present calculation may be giving
the essential clue that the confinement scale of 1 fm is important. ‘

If the size of the KK system is Agop =~ 1fm, then it is really a ¢?¢*
overall colour 1 and separate identifiable kaons are not present. The ¢ — 4§

branching ratio is then elevated above the 1075 barrier: there is non-negligible
amplitude for a compact ¢°3® intermediate state to cause ¢ — <vao for
example.

That the ¢ « w states are ideal (pure s3, pure n#i) is because there
are no compact s3nfi states with J? = 1~ quantum number. The KK
intermediate state that superficially has s3n#i constituents must extend over
2fm in order that meaningful kaons develop: this reduces the spatial overlap
and suppresses the K K loop. Thus, at low energies at least, the empirical
OZI rule is a statement that colour singlet states saturate at 0(1fm): a
collection of > 2 colour singlet hadrons requires spatial extent > 2fm and
hence has reduced overlap with the 0(1fm) state.

These remarks may have significant application for vy — 7#m, KK — §
and for the radiative interactions of (composite) Higgs scalars.

There is still much thought needed on the correct modelling of the KX K or
¢%3? scalar meson and the resulting rate for ¢ — Sv. There are interesting
interference effects possible between I = 1 and I = 0 states which have
not been examined in detail. At this state I would merely assert that the
¢ — Sv provides a great opportunity for probing the nature of the scalar
mesons below 1 GeV which will complement that of yy — S (e.g. refs 13,14).
The branching ratio will be between 10™* and 10~° ; the precise predictions
are still awaited but will (hopefully) exist before the data are taken.
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Figure 1. The contact (a) and loop radiation (b) contributions.
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Figure 2. As fig 1 but with an extended scalar meson. Note the new diagram
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Figure 3. Momentum routing.
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b2 3 r(fm)
Figure 4. Comparison between exact ¥(r) (solid) and the approximation of eq
(2.23). r is the KK molecule radius in fm, (r) is in (fm)=3/2
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Figure 5. ['(¢ — Sv) in MeV versus R(KK) in fm.



