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The aim of this article is threefold. Firstly, to discuss briefly why two photon
interactions are interesting and then to review what is presently known about them
experimentally. Thirdly, to consider how we may predict what DA®NE may measure.
The channel of particular concern is vy — 7%#%. The cross-section for this process can
be readily calculated in chiral perturbation theory, but the lowest order prediction is not
in good agreement with existing data. However, general principles relate this process
to other reactions with = final states that allow a more general calculational scheme.
This predicts cross-sections in much better accord with experiment. The reasons why
are analysed in detail. Moreover, we are then able to show how precision measurements
of the vy — =7 cross-section, both for #¥7~ and #%%% would in turn constrain our

knowledge of nx phases.

1. Introduction : existing data and chiral perturbation theory

A beautiful feature of an e*e™ machine is its ability to study two photon processes.
The cross-section for e*e™ — e*e~X is dominated by the exchange of two almost real
photons, so that one can really extract information on vy — X, where X is hadronic,

as seen in Fig. 1 [1].

In the low energy region, such information not only sheds light on the structure
of hadrons, but can provide insight into the workings of hadron dynamics. At low
momenta, 7w, having the lowest threshold energy, is naturally the most abundantly
produced hadronic final state. What this can teach us can be seen by considering
¥y — nrw from the t-channel point of view, Fig. 1b, where we think of the photon
scattering off a pion. At low energies, the photon, having long wavelength sees the
whole hadron and couples to its electric charge. Thus, the photon sees the charged
pions, but not the neutral, so the cross-section for vy — x+x~ is large compared to
that for 7%x% production, see Fig. 2 [2,3]. However, as the energy of the photon increases
and its wavelength shortens, it recognises that the pions, whether charged or neutral,

are made of the same charged constituents, namely quarks, and causes these to resonate.



t
Y 115
X § —
Y TC

(a) (b)

Fig. 1: (a)ete™ — ete™X when dominated by two photon exchange ;
(b) vy — wr showing the s and t-channels.

Consequently, the cross-section for both vy — m*7~ and #%#% are dominated by the
well-known ¢g tensor meson, the f,(1270) resonance. With complete data, these cross-
sections can be separated into individual spin components [4] and the couplings of not
just the tensor f,(1270), but also those of any underlying scalars, can be extracted [5] —
scalar and tensor states are readily produced by two real photons with no need for any
relative orbital angular momentum. The extraction of such v couplings is especially
useful since it can teach us about the make-up of these hadronic states. This is because
the coupling is proportional to the fourth power of the charges that the photons see
and to the probability of the annihilation of the ha&ron’s constituents. Thus for scalar

states made of ¢, KK /qqqq or gg, we may expect quite different couplings [6,7].

Here, we will concentrate on what we can learn about hadron dynamics at low ener-
gies towards threshold. This is not only valuable for anchoring the Amplitude Analysis
needed to extract resonance couplings, but, as we shall see, may aid our understanding

of Chiral Dynamics. First we shall review existing data.

The earliest results on charged final states are from four sets of experiments :

DELCO (8] and TPC/v~v [9] at SLAC, PLUTO [10] at PETRA and DM1/2 [11] at
DCI-Orsay. The first three have most.data in the f,-region, but PLUTO were able
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to measure a cross-section (with large errors) near threshold. This cross-section is

somewhat bigger than naive expectations from the Born model we discuss in section
2. This PLUTO result (Fig. 3a) seemed to be confirmed by the Orsay experiments,
which suggested a cross-section twice as large as the Born estimate. In fact, the DM1/2
experiments never presented cross-sections, but rather a comparison of their event dis-

tributions with the Born estimate passed through a Monte Carlo of their detector (Fig.

3b).

However, more recently, Mark IT at PEP have measured the 7+ 7~ cross-section, with

much higher statistics (Fig. 2) revealing a low energy cross-section much smaller than

DM1/2 and indicated by the central values from PLUTO. That the earlier low statistics
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Fig. 3 : (a) Experimental results on vy — w+#~ cross-section from the PLUTO

group [10] do/dcos@ for | cosf |< 0.2 as a function of M, .. The
dashed curve, B, is the Born cross-section — sect. 2 ;

(b) Experimental spectrum on vy — 7+ 7~ as a function of M, from
the combined results from DM1 (| cos6 | < 0.64) and DM2 (| cosé | <
0.71) [11] again compared with the reported Born spectrum, B.

results may have sizeable systematic uncertainties is readily seen from the way DM1/2

separate their 77~ events. Their detector sees charged particle final states, which at
low energies can only be ete™, utu~ and n*x~. The lepton pair cross-sections are, of
course, calculable in QED and the #t7~ component is merely identified as the surplus of
charged pairs above these calculable backgrounds. As seen from Fig. 4, small statistics

make this separation far from exact.

The main 7%7% detector to date is Crystal Ball, which, while running at SPEAR,
only studied the f,-region of 7 production {12]. On its removal and reconstruction at
DORIS, Crystal Ball took much higher statistics data [3], which extended these studies
right down to threshold (Fig. 2). Indeed, these Crystal Ball results provide the only
normalized low energy n’x® cross-section. Above 800 MeV, there are now twice as

much data, which within a 15% normalization uncertainty [13], are in agreement with
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Fig. 4 : The charged pair spectrum as a function of the mass squared of
the pair from the combined DM1 and DM2 experiments [11].
The solid line shows the best fit including electron, muon and

pion production. The dashed line is the fit without the pion
contribution.

the older data. In addition there are results on 7070 from threshold to 2500 MeV from
JADE [14], but these are merely raw events uncorrected for acceptance and efficiency.

These we shall discuss later.

The pion, by the far the lightest hadron, has long been regarded as the (mass-
less) Goldstone boson associated with the spontaneous breakdown of chiral symmetry.
Moreover, its emission in any process is controlled by the divergence of the axial vector
current. In a world of massless pions, this current would be conserved. This leads to
low energy theorems that require the amplitude for the emission of a pion to be equal
to its Born amplitude, when the pion has zero momentum [15]. Such consequences of
a conserved current will be met again in sect. 2 in the context of QED, so essential for

photon reactions. In a process, like 7w — #w, where G-parity allows no Born amplitude,



such consistency conditions impose a zero at threshold — the Adler zero. Since the real
world is very close to the massless pion one, this zero appears near threshold for physical
pions. This smooth extrapolation is embodied in the folklore of the Partial Conservation
of the Axial Current (PCAC), where the extrapolation parameter m2/16x%f2 is very
much less than 1 (f, being the pion decay constant). Remarkably such zeros are very
much a feature of the real world explored by experiment. Consequently, while pions
obviously interact strongly, the presence of such zeros mean that their interactions are
surprisingly weak near threshold and so one can imagine a perturbative expansion in
powers of g*/167% f2, where q is the pion 4-momentum [16]. This idea has been system-
atically developed in the extensive technology of Chiral Perturbation Theory by Gasser
and Leutwyler [17]. This expansion is underpinned by a most general Lagrangian, but
like many an effective theory, it is not renormalizable in terms of a finite number of
constants. Thus the perturbative expansion acquires new parameters at every order,

which require an increasingly large number of experimental facts to fix.

Y 1

Fig. 5: Lowest order contributions to vy — #°x? in Chiral Perturbation Theory [18,19].

However, the reaction vy — n97? is of particular interest because it can be exactly
predicted in Chiral Perturbation Theory, at least at lowest order. The one loop contri-
butions shown in Fig. 5 have been computed by both Bijnens and Cornet [18] and by
Donoghue, Holstein and Lin [19]. These graphs have cancelling divergences and as a
consequence the predicted cross-section is, to this order, finite without renormalization.

In Fig. 6, this prediction is compared with the Crystal Ball data [3] (Fig. 2). The



Crystal Ball experiment only covers | cos§ |< 0.8 and the data have been scaled to
the full angular range by simply multiplying by 1.25. This is justified, as we discuss in

detail in sect. 2, since the 7%x°

cross-section is overwhelmingly S-wave in this energy
region. Clearly, Chiral Perturbation Theory predicts a cross-section of the same order
of magnitude, but the shape is quite different. The data rise from threshold and are
then essentially flat for hundreds of MeV (Fig. 2), while Chiral Perturbation Theory
at lowest order gives an almost linearly increasing prediction. Reassuringly, this crosses
the data around 500 MeV, which is still where we might expect low orders in Chiral
Perturbation Theory to apply. Of course, the prediction beyond one loop is expected
to be modified at higher energies. Bijnens, Dawson and Valencia [20] have estimated
this by including the effect of quark loops and find that while near threshold these are
negligible, above 400 MeV they flatten the cross-section, Fig. 6. Similar effects are
generated by other higher order contributions, like vector mesons, Fig 6. These compo-
nents have been computed by Ko [21] and more recently by Babusci and Bellucci [22]
for the DA®NE workshop. The implications of these studies is that higher orders must
be large above 400 MeV, but near threshold a definite prediction is made that disagrees
with existing experimental results from Crystal Ball by at least a factor of 2.

We must therefore conclude that either

(1) the Crystal Ball data, or

(ii) the predictions of Chiral Perturbation Theory,
or both of these, are not correct near threshold.

As already mentioned 7#%n% data have been taken by the JADE group [14] during
the final runs at PETRA, with comparable statistics to the first Crystal Ball results
at DORIS. The spectrum, Fig. 7c, has a somewhat different shape to the Crystal Ball
cross-section, Fig. Ta, and has been used to suggest, by normalizing the JADE events
in an ad hoc way to the Crystal Ball cross-section on the f,(1270), that the Crystal Ball
results are inaccurate at low energies by factors of 2 or 3 [22,23]. This is, of course, to
misjudge the critical importance of the angular and energy efficiency corrections that
have been applied to the Crystal Ball data, but not to those of JADE. In Fig. Tb,
the Crystal Ball spectrum, before these corrections, is displayed. One sees immediately
how such raw spectra can not be used as a guide to the relation of the cross-section at
1300 MeV to that at 300 MeV. Consequently, with no man-power available to correct
the JADE events, we have to live with the fact that the Crystal Ball experiment is the

only one to provide a normalized cross-section.
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Fig. 6 : Integrated cross-section for vy — 7%70 as a function of the 77 invariant
mass, E = ,/s. The data are from Crystal Ball {3], as in Fig. 2, scaled
to the full angular range by a factor of 1.25. The line marked xPT is
the prediction of lowest order Chiral Perturbation Theory [18,19]. The
dashed line illustrates the effect of adding quark loop contributions
to the Chiral Perturbation Theory result as calculated by Bijnens et

al. [20], while including vector mesons instead gives the dotted line
computed by Ko [21].

To attempt to resolve whether either of low orders in Chiral Perturbation Theory
or the Crystal Ball data are correct, we need an independent way of modelling the
amplitude for vy — 7n and this is what we are going to discuss next. Fortunately,
there are a number of general properties any description of this process must satisfy
and these allow us to predict the low energy cross-sections from first principles. We
will see, for instance, that the prediction of Chiral Perturbation Theory that the cross-

section for vy — n%x0 is proportional to that for 77~ — #%%% [19] only holds in rather

special circumstances.
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(¢) Raw spectrum from JADE [14].
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2. vy — w7 from general principles and PCAC

We consider dipion production by real photons. The Mandelstam variables are .
defined as in Fig. 1b, so that s = M2_. As is well-known [1,24,4], the amplitude for
this process has two independent helicity components M, ,, M _, which contribute

incoherently to the unpolarized cross-section :

do B :
- 7 M 2 2 1

dQ  128n2s My P+ I M ] (1)
where 8 = /1 —4mZ/s. The helicity amplitudes M, and M, _ correspond to
photon helicity differences of A = 0, 2 respectively. These have partial wave expansions

involving even J > A :

M(3,6,0) =e?V16r DY Fio(s) Yyo(6, )

J>0

M, _(s,6,¢) =e?V16m Z F1o(8) Y 5(6, ¢)

J>2

(2)

where the factor of e2v/167 has been taken out for later convenience. With this nor-

malization the integrated cross-section is

a=27raz—€-z | Foa 2 (3).

J>A

Like all reactions vy — w7 must have a description that is relativistic and causal
and conserves probability. This means that the processes vy — nn and y# — 47 are
represented everywhere in the Mandelstam plane, Fig. 8, by an analytic amplitude,
we denote generically by F(s,t). f Moreover, since the process involves photons, this
amplitude is constrained by current conservation and it is with this property that we
begin. The fact that the photon at threshold in v# — 7 sees the whole hadron and
couples to its electric charge gives a low energy theorem [25]. Low’s theorem states that
the amplitude F for yw — 7 tends to its Born amplitude, B, as s — 0, t,u — m2 :

F(s,t) — B(s,t) ass —0, t—m? (4).

For charged pions, the Born amplitude is given by the graphs of Fig. 9. This involves the

simplest gauge invariant contributions to F, namely one-pion-exchange in the ¢-channel,

t this can be the s-channel helicity amplitudes M 4, or the invariant amplitudes.
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Fig. 8 : Mandelstam plane showing the three related physical regions,
s-channel : vy — nw, t & u-channels : y7# — vx.

one-pion-exchangein the u-channel plus a éeagull graph to ensure gauge invariance. This

amplitude we denote by B,. For neutral pions, the Born amplitude is, of course, zero.

Though the theorem states that the y# — 7 amplitude eguals the Born result
at just one point in the Mandelstam plane, it, in fact, approaches this limit smoothly
along any line at fixed scattering angle [26]. Thus away from ~7 threshold, we can
write the amplitude as 7 = B + £, where L, the left-over part, vanishes as s — 0,
t,u — m2. Now L will receive contributions from other ¢, u-channel exchanges, like p,w
exchange. Let us consider the effect of these poles by looking at the Mandelstam plane,
Fig. 8. Drawn to scale we see the three physical regions related by crossing : ym# — &
in the f,u-channels and 94 — 77 in the s-channel. We see the pion poles very close
to these physical regions passing close to both the forward and backward directions.
The only point at which they actually cross the physical region is at ym threshold. It
is here that Low’s theorem applies — the amplitude is equal to the Born contribution.
In comparison, the vector meson exchange poles are far from the vy — == physical
region at low energies and, as these exchanges have couplings no larger than pions have,
we expect them to make a rather small perturbation to the charged pion amplitude.
Thus when we are near 7t 7~ threshold, the pion poles are so very close and these other

exchanges so far away, that we expect the Born amplitude, B,, to continue to control the



—_12 —

vy — ntn~ amplitude. However, at higher energies, like 5-600 MeV, though the pion
poles are still very near the forward and backward directions, the vector meson poles
are no longer disproportionately far from the middle of the scattering region and so they
start to have an increasingly important role. Thus only in the near threshold region do
we expect the known Born amplitude to fix the vy — #t#x~ cross-section absolutely.
The closeness of the pion poles has yet another effect on the yy — n7 process. Crossed-
channel poles are built from an infinite number of direct-channel partial waves. Thus
the s-channel vy — #*n~ amplitude must have sizeable higher partial waves. So
while the S-wave always controls the near threshold behaviour, D-waves very rapidly
become important, being only suppressed by a factor of (1 —4m?2/s). Thus, the angular
distribution for vy — w¥tx~ scattering is not expected to be flat above 500 MeV or
so. Indeed, this means that acceptance correcting the observed event distribution is
highly sensitive to the near forward and backward regions not detected in two photon
experiments. In contrast, the lack of a Born component for 7%7? production and the
fact that near threshold its crossed-channel exchanges are far away means the n%7°

angular distribution must be much flatter and hence S-wave dominated [27,5].

tl ul

Y M 1T
T I ' '
Y T

Fig. 9: QED Born amplitude for vy — #+ 7~ is the sum of these three
Feynman diagrams.

In hadronic processes, it is a feature of nature, readily explained by the quark
model, that I = 2 cross-sections are much smaller than those with I = 0. However,
here in vy — 7w, because of the importance of the pion exchange contributions, the
amplitude with I = 2 for the final state pions is just as important as that for I = 0.
Indeed, the large wtn~ cross-section results from a constructive interference of the
I = 0,2 amplitudes, while the very small 7%7° cross-section comes from their destructive
interference. Thus an Amplitude Analysis requires the measurements of both the 7t~
and 7070 distributions to make the separation of I = 0,2 components at all feasible
[4,5,27].
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To proceed, we need to be more precise about the meaning of the non-pion exchauge
part of the amplitude F. In a relativistic, causal description, we can quite generally
separate it into two parts. One we continue to call £, which is generated by all ¢,
u-channel exchanges other than the picn. The other, we call R, is generated by final
state interactions. These make the whole amplitude = B + £ + R complex. To
see how we can determine these pieces, it is convenient to separate our amplitude into
components with definite isospin, spin and helicity in the v centre-cf-mass, as given
in Eq. (2). To avoid a proliferation of indices that may obscure the discussion, we
continue to denote the partial wave components of our amplitude and its contributions
by F, B, £ and R, though now these will just be a function of the single variable s. In
a relativistic causal description, each such spin amplitude is analytic in the cut s-plane,
with a left hand cut for s < 0 and a right hand cut for s > 4m2. The nearby part of
the left hand cut, starting at s = 0 is associated with pion exchange, while £ has the
left hand cut expected to be associated with p,w and all other exchanges, starting at
s = —(m% — m2)?2/m? (where my is the mass of the exchange). Cousequently, its S-
wave, £, would then be s2/(s+m%)? : 1 when compared to that of the Born amplitude
B,. Experiment will check if this is so. Final state interactions give R a right hand cut.

Thus quite generally we can write

F(s) = HM(s) + R(s)

\ (3)
= B(s) + L£(s) + R(s)

where H contains the complete left hand cut of 7 and R the right hand cut and Low’s
theorem, Eq. (4), is satisfied by

L(s) — 0, R(s) — 0 as 8 —0 (6)

— indeed they vanish at least linearly with s [26].

Let us note that even if there were no other left hand cut contributions than given by
one pion exchange (i.e. £ = 0), final state interactions would make the 7°7° amplitude
non-zero, since vy — wtw~ — w0z, If the first step is given by the Born amplitude,
one may imagine calculating this process, as we shall describe below, and obtaining a
first estimate of the 7%70 cross-section. We shall see it will give an answer in the right

ball-park of tens of nanobarns.

Final state interactions are indeed calculable at low energies because pions scatter
universally regardless of how they are produced. This is a consequence of the conser-

vation of probability. The fact that one cannot get more out in a scattering process
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than one puts in requires that the S-matrix be unitary. The consequences of this are
most readily expressed in terms of amplitudes with definite spin and isospin — hence.

our introduction of these.

Im =

Fig. 10 : Unitarity condition for 77 — n7 amplitudes with definite I and J.

First, unitarity says that for a hadronic reaction, like #x — #x, the imaginary part
of each of its partial wave amplitudes, 7, is given by the relation of Fig. 10, where one
has to sum over all intermediate states, n, that are kinematically allowed. Now, in the

low energy region, there is only one intermediate state possible, namely nn itself. There

the relation simplifies to
Im7T(rx — 7w) =|T(xw — nx) |2 (7)
which is satisfied by the well-known phase-shift relation
T(rr — 7x) = sind e’ (8).

The non-linearity of Eq. (7) means, as seen in Eq. (8), that measuring the modulus of
the 7n elastic amplitude tells us its phase and measuring its phase tells us its modulus.
While strictly speaking, elastic unitarity applies up to 4n threshold, in practice mul-
tipion channels are known to be quite unimportant until we reach pp, ww thresholds,
so KK is the first strongly coupled inelastic channel. Consequently, Eqs. (7,8) hold
up to almost 1 GeV. Above that energy the unitarity relation becomes more compli-
cated, but nevertheless just as constraining. Thus from measurements of the 77 — 77
and 77 — KK differential cross-sections one can in turn determine the corresponding
phase-shifts for each partial-wave amplitude. We shall see shortly why these are impor-
tant for y4 physics. The I = 0 S-wave phase indicates two dynamical features : the
broad € and the narrow S* close to KK threshold. The I = 0 D-wave is controlled by
the £,(1270).
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Now the same unitarity conditions require that in the low energy region the ampli-

tude F for vy — nr satisfies a similar constraint, Fig. 11 :
ImF(yy — nr) = F(yy — nn)*' T(nmw — ©w) (9),

again for amplitudes with definite I, J. Eq. (9) ensures that any resonance in #r — 7w
also appears in vy — 7w and vice versa, as they must. This condition, which is linear
in F puts no constraint on the strength of vy — wr scattering, but it does require that
if F has phase ¢(s), where F(s) =| F(s) | ¢4(%), then Egs. (8,7) imply Watson’s final
state interaction theorem [28] :

¢(s) = &(s) (10)

for each spin and isospin. We are, in fact, allowed to add multiples of 7 to either side of
Eq. (10), but the behaviour at #n threshold ensures these are absent, as ¢(s), §(s) — 0
as 3 — 4m2. This theorem ensures that the two pions scatter in the same way however
they are produced. Above inelastic threshold, again unitarity is still powerful, it says

that all #7 amplitudes have the same right hand cut structure.

Y T Y T L
Im = § ?/
Y T Y T T

- Fig. 11 : Unitarity constraint for vy — 77 in the energy region below
the first inelastic threshold, effectively 1 GeV.

Thus, we have learnt that up to 1 GeV or so, the universal scattering of final state
pions means we know the phase of each yy — =n partial wave amplitude, F, from
purely hadronic data. To implement this knowledge, let us assume we know the phase
#(s) of F for all s > 4m2. Then we can construct an analytic function, £(s), the
Omnés function [29,4] that has exactly this phase by defining :

Qs) = |\n(s)| e08) = exp [i /4 ” ds’—M—] (11).

T Jymz  8'(8' —3)

The dispersion relation for InQ2(s) has to be subtracted to converge and this subtraction
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is conveniently made at s = 0. Eq. (11) corresponds to choosing 2(0) = 1. Such a
relation as Eq. (11) exists for each partial wave amplitude. Unlike the amplitude F,
2(s) has only a right hand cut, but it is constructed so that g; = F(s)Q(s)~! is real
for s > 4m? and so g; has no right hand cut [30,31].

We can then write a dispersion relation for g, by integrating over its left hand cut.

Let us first assume (wrongly) that this satisfies an unsubtracted dispersion relation, so
[30]

(12).

F(s) = 9%’4) /_ : ds' ImH(;,')_Qs—l(sl)
This tells us that if we know Q(s) everywhere and we know the discontinuity across the
left hand cut (i.e. we know the details of all of 7, p,w, pp, ww, ... exchange), then we
would know the vy — w7 amplitude everywhere, Fig. 12. Indeed, this would mean that
all resonances in vy — w7 would have their couplings determined by the intricate details
of the ¢t and u-channel exchanges. While this is in fact true, it is not exactly useful,
since it i1s only the nearby part of the left hand cut, generated by the Born amplitude,
that the low energy theorem guarantees is known. If we were to approximate by B in
Eq. (12), then we would find that the resulting amplitude F would in fact have a zero
at the first expected resonance in each partial wave. That is, for instance, for the I = 0
D-wave such an approximation with no ¢, u-channel exchanges than the pion would
have an f,(1270) with no coupling to vy — =nw. Figs. 2,3,12, if not common sense,
tell us that to determine resonance couplings one must know more than the details of
the nearby left hand cut. However, if we just want to predict the low energy vy — #w
cross-section ( as we do here ) then this is dominated by the nearby part of the left
hand cut, which we know all about (Fig. 12). Embellishments like form-factors, Fig.
13c, or elementary p-exchange only change the discontinuity (ImH) for s < —-m% (Fig.
12).

Thus, below 500 MeV each partial wave amplitude is expected to be well determined
and the vy — wtn™ cross-section predicted to a few percent or so. Calculation (see
later) reveals that final state interactions enhance the naive Born cross-section below
350 MeV and depress it above. Refs. [32,33] show how these general principles do not
permit the large enhancement indicated by the PLUTO and DM1/2 results. Moreover,
this prediction is well confirmed [5] by the Mark II data, Fig. 2. In contrast, the
vy — w070 amplitude involves an exact cancellation of the nearby part of the left hand
cut. Thus the prediction for this cross-section is much more sensitive to the more distant

part of this cut (Fig. 12).
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Fig. 12 : Complex s-plane for the partial wave amplitudes, F, with a
typical contour for a dispersive integral. The positions of the
cuts are drawn to scale. The m and V show the start of the
7 and the vector exchange contributions to the left hand cut.
The arrowed numbers along the right hand cut mark the c.m.
energy in GeV.

To proceed to a detailed calculation of vy — 7%70, let us note that the unsubtracted
relation of Eq. (12) can be re-expressed in terms of a dispersive integral over the right

hand cut (seen by considering a dispersion relation for g, = (F —H)Q7! ):

F(s) = H(s) — 9;";) /4 : gyt T IO (13).

8 —s

If no subtractions were indeed required the low energy theorem, Eq. (4), would automat-
ically be ensured by the integral in Eq. (13) vanishing as s — 0. However, subtractions
are necessary and the fact that we have an exact low energy theorem makes this deter-
minable. It is the form of Eq. (13) that illustrates how this works. We first write an

unsubtracted relation for g3 = (F — H)Q~!/s , which the low energy theorem ensures
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Fig. 13 : Examples of other than one-pion-t-channel exchange contribu-
tions to yy — 77 : (a) wp exchange, (b) w exchange, (c) form-
factor effects.

is finite at s = 0. This gives :

’ 32(s * NImQ (s
F(s) = H(s) - —‘%1/4 ds 1) ImQ” (') (14).

m2 3,(3’ - 3)

While the integral along the cut undoubtedly converges, the contour at infinity (Fig.
12) will only give a negligible contribution provided the difference F(s) — H(s) ~ 7
with v < 0.3 for I = 0, since | Q71 |~ s#()/* where Regge considerations [4] give
#(o0) ~ 121°. Thus a careful matching of the behaviour of the left hand cut amplitude
to that of the full amplitude must occur, if this is to converge. We relegate to Appendix
A the details of evaluating Eq. (14). Diagrammatically Eq. (14) with H = B gives the
contribution to vy — 7%7® shownin Fig. 13a. This gives a low energy n%x? cross-section
~of 30 nb or so, which is roughly in the right region — recall the #+#x~ cross-section is
400 nb at low energies ! However, a detailed knowledge of the vector meson exchanges,
Fig. 13b, is essential to get a more precise prediction and this is detail we do not really

know. See Appendix A for a discussion of this.

Now one effect such contributions must have is to impose a PCAC zero in the
vy — 7%7% S-wave amplitude for s = O(m?), much as current conservation of QED
imposes a zero at s = 0. This PCAC zero results from a fine cancellation of the
small w-exchange component (Fig. 13b) with the small m-exchange plus final state
interaction term (Fig. 13a). One can eliminate the need to know the details of how
such a cancellation actually occurs by the use of twice subtracted dispersion relations,
as stressed by Maiani [23]. The details of the more distant left hand cut is traded
for knowledge of the positions of the PCAC zeros. Moreover, having two subtractions
highlights the known low energy contribution to the dispersion relations. Thus we write

a subtracted dispersion relation for g4(s) for the I = 0,2 S-wave amplitudes, F/(s) ;
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the higher partial waves of both helicities satisfy unsubtracted dispersion relations when

suitable threshold factors are divided out, as we have previously discussed [4].

Subtracting at s = 0 we have [34] :

Fls) = HI(s) + d;sQf(s) - iz—QT:(—") /4 °°2 g5/ TN Im(@(s)7) (15).

s2(s" —3)

In terms of these isospin amplitudes, the S-wave amplitudes for the physical processes

vy — ntn~ and vy — 7%70 are, in an obvious notation,

F = \/gﬁ ; \/gﬁ A —\/gf" + \/gﬁ (16).

The H!(s), having only left hand cuts, are given (not as incorrectly stated in Ref. [34])

by ‘
2 1
H0(s) = \/28,0) - CPS) SNOwe a
1) = \[18,00 + 220

H+—(3) = Bx(s) - \/g‘cp(s)
HO(s) = \/g L,(s) + Lu(s)

where £, £, denote the contributions to the left-hand cut generated by exchanges with
p and w quantum numbers, respectively. Using Eq. (3), the cross-sections can then be

deduced from these partial wave amplitudes.

According to Low’s theorem

Lys) =0 , L,s)—0 ass — 0.

Recalling 8 = /1 —4m2/s (Eq. (1)), the S-wave Born amplitude is [24,4]

1-—p2 1+
B,(s) = 25 1n(1_ﬁ) (18)

with a cut for s < 0. Using Eq. (3), the cross-sections can then be deduced from these
partial wave amplitudes. £,, £, can be modelled explicitly by p and w exchange [21]
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to give
2
m 1+ 8+ 3y/s )
Ly(s) =G | —=—2¥VLT )~ 19)
‘/() V{B (1"“ﬁ+sv/s, 8 ( /
where sy = 2(m% — m2), with my the vector meson mass. £y has a cut for s <
2

—(m? — m2)?/m%. The decay rate for w — 7y [35] fixes * G, = (1.34 £ 0.10) GeV~2
and vector meson dominance suggests G, > G, ~ G,/9. Elementary vector meson
exchange has a well-known fixed pole at J = 0 in the complex angular momentum
plane [36]. Reggeization can be achieved by comparing the simple pole forms with their

equivalent Veneziano amplitudes. Noting that for | ¢ [,| u | < m¥%

. ‘: 1 4 1 } N 'l —a(t)) T — a(u))
2 - I'(1 - aft) — a(u))

m%,ﬂi my —u

where oft) = 2 + (t—mi)/sy =1+ (t - m?%)/sy. Then we can alternatively use

_ Gym s 1 1 s(1-p82) 1 s(1+02) o
ﬁv(S)————Z‘;:/—'"—V/O d..«B §+T,§+—;—‘ (..0)

as the S-wave of a Reggeized amplitude, where B(a,b) is the usual beta-function. Note
that the two forms of Egs. (19,20) have quite different values for the subtraction con-
stants d; corresponding to different forms for H(s). Having different asymptotics, these
two forms do not give exactly the same results when substituted in Eq. (15). The
variation gives us an idea of the range of uncertainty in our calculations associated with
high energy behaviour and a measure of the effect of more massive exchanges in the ¢

and u-channels. This will be displayed in the plots of our results below.

This leaves just the two subtraction constants dy,d, to be fixed by PCAC. For
massless pions, the CAC conditions are imposed at s = 0. For physical mass pions,
PCAC still sets Ft—(s) = B(3) + O(s?) as s — 0, but for the 7%z zero it requires that
F(s) = Oonlyfor s = s, = O(m2). Lowest order Chiral Perturbation Theory [18,19]
places this zerc on-shell at the same position as that for lowest order #tn~ — 7070,
namely at s, = mZ2. Though = data indicate this is roughly right [37,38], it would be
too restrictive to impose this exactly. We shall thus just require s, = O(m?) and show

results accordingly.

* note that in [34] an incorrect comparison of the formulae of Refs. [24,4] with those

of Ko [21] was made and so G, was there half as large as it should have been.
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That lowest order Chiral Perturbation Theory puts the Adler zero in the vy — 7970
S-wave at the same position as that in the #t7~ — 7920 is a consequence of the
proportionality of | F(yy — #%2%) | to | T(xt7~ — #%7%) | at all energies as noted by
Donoghue et al. [19]. However, in general, this can only be true if the sole effect of final
state interactions is to give the lowest order real vy — wm amplitudes phases, leaving
their moduli still proportional. However, the calculations we present in sect. 3 show
that these phases in turn enhance the modulus of the I = 0 amplitude (via | Q° |, Eq.
(11)) by 60% at 400 MeV and decrease the I = 2 amplitude (via | 22 |) by 10%. The
S-wave amplitude for #%#° production in v+ reactions and in 7+ 7~ scattering are then

no longer simply proportional.

How a particle responds to external electromagnetic fields defines its polarizability.
In external electric and magnetic fields an object has an induced dipole moment. These
moments are proportional to the strength of the applied fields : the proportionality
constants a, 8 define the object’s electric and magnetic polarizability (8 is not to be
confused with the relativistic velocity in Eqs. (1,3.18-20)). This idea is familiar in
nuclear physics, where static approximations apply. This concept has been generalized
to relativistic particles in Ref. [39]. For the pion, a and 8 are related to the rate at
which the ym — ~vx amplitude approaches its Born limit at threshold. Thus for the #°,
using the definition of Kaloshin and Serebryakov * [31] :

2 fOO
(@ = B)p = 2 i T08)
m, §—0 8

4e? 1 2 1 (21)
L Y < JE /
= [ \/;do + \/;dz + \/;CP(O) + Ew(O)]

where the result is expressed in fm3, by convention. Thus the polarizability is determined

by the subtraction constants and we tabulate the predictions for this quantity at the

end.

* note that this definitionis 47 larger than that used in [22].
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3. Predictions for vy — w%x°

In this section, we discuss the predictions obtained using the dispersion relation of
Eq. (15) for the I = 0,2 S-waves and Eq. (14) for the other waves on dividing out their
threshold behaviour as detailed in [4]. To make these predictions we need to specify

each of the following inputs :

IN1 : phases ¢(s) to determine the Omnés function through Eq. (11) ;

IN2 : the left hand cut function H(s) ;

IN3 : the position of the Adler zero, s, in the vy — 7%7% S-wave. We set

s, = mZ, unless otherwise stated.

3.1 Weinberg phases

For orientation, we begin by inputting phases (IN1) predicted 25 years ago by
Weinberg in his classic paper on wr scattering [40]. In that model, the I = 0,2 S-wave
amplitudes in the neighbourhood of nn threshold are given by forms which embody

Adler zeros : —

1 m? 1 3 )
0 _ 2 _ 2
v= 167 f2 (8 B -21) » 1= 167 f2 (m" - 5)’ (22)

We assume these determine the low energy phases by identifying

tl(s) = ,/;—_h 81(s) (23).

This gives the S-wave phases shown in Fig. 14, which are also those of lowest order
Chiral Perturbation Theory {17,41]. In a channel with a large number (even an in-
finite) number of resonances, phase shifts increase indefinitely with energy, while the
amplitude’s phase, ¢(s), does not, in general — indeed because of the onset of inelas-
ticity, | ¢ |< w. We therefore cut off the phases predicted by Eqs. (22,23) at the value
they have reached by 800-1000 MeV, where inelasticity sets in. The predictions do not
depend critically on the exact asymptotic phase.

For IN2, we first let X = B, i.e. the Born amplitude of Eq. (18) in Eq. (17).
This gives the prediction shown in Fig. 15 labelled “x”. We see it reproduces the
results of lowest order Chiral Perturbation Theory for vy — 7%7°. However, since our

formalism ensures unitarity by guaranteeing Eq. (10), the predicted cross-section does
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Fig. 14: I = 0,2 S-wave 77 phases as a function of invariant dipion mass,

M., /3 predicted by Eq. (23) from the Weinberg amplitudes
of Eq. (22).

not continue to increase but slowly turns over. The corresponding polarizability, (a— ),
of the w° defined by Eq. (21) is listed in Table I.

Next, we include in the left hand cut function, H, not just wm-exchange, but p, w
using either Eq. (19) or Eq. (20). These give the dashed curve in Fig. 15, which is
hardly different from the solid curve below 400 MeV , and above looks rather like the
results of Ko [21] and Bijnens et al. [20] of Fig. 6 (though a little lower), who compute -
similar dynamical effects. The shaded region illustrates the range given by using Eq.

(19) or Eq. (20) for vector meson exchange.

These results show how our calculational scheme and the more specific one of given
orders in Chiral Perturbation Theory are in excellent agreement. However, neither is
in accord with the Crystal Ball data near threshold, where lowest order Chiral Pertur-

bation Theory, being an expansion in powers of momentum is expected to work best.
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Fig. 15: Integrated cross-section for vy — #°x? as a function of the 77 invariant

mass, E = ./s. The data are from Crystal Ball {3] scaled to the
full angular range by a factor of 1.25. The line marked xPT is the
prediction of lowest order Chiral Perturbation Theory [18,19]. The
curve marked 7 is the dispersive calculation using Weinberg phases
and just m-exchange for the left hand cut. The dashed curve includes p
and w exchange — the band delineates the range produced by different
asymptotics for these vector exchanges.

So why this disagreement ? Let us start by comparing the input Weinberg phases with
those measured in experiment, which come from two sources. The first is from a series
of experiments on high energy diplion production by pion beams. At small momentum
transfers such processes are dominated by pion exchange and by Chew-Low extrap-
olation [38] the physical nm cross-section can be determined. The highest statistics
experiments on both 7#*7~ and ntn* production are by the CERN-Munich collabo-
ration [42,43]. The S-wave wm phases from several partial wave analyses of their data
are shown in Fig. 16. A source of near threshold information is provided by studies
of K,, decays [44], which measure the interference of the S and P-waves, which by
Watson’s theorem allows the I = 0 77 phase to be extracted [38]. While these agree
with Weinberg phases very close to threshold, they very soon differ (Fig. 16).
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Fig. 16 : I = 0 and 2 S-wave n7 phase-shifts, 5(1;, as a function of 77
mass, M,, = /s. The data are described in the caption for
Fig. 17. The curves are the extrapolation of the Weinberg
predictions of Fig. 14.

3.1t Ezperimental mm phases

Let us now for IN1 input these experimental 77 phases. The analyses of the CERN-
Munich experiments fix these above 500 MeV. Above KK threshold, we continue to
choose the phase to be that of 7w — mm, where, of course, it need not be. However,
as discussed in Refs. [4,27], this choice makes very little difference to the low energy
prediction for vy — wm. Here with twice subtracted dispersion relations, Eq. (15),
the higher energy region is more strongly suppressed. Much more important is what
is happening down towards threshold. There we have two constraints on the S-wave
phases : the measurements inferred from K,, decays [44], Fig. 17, and the constraints
imposed by the Roy equations [45] that embody the analyticity and crossing of the

7w system. Study of these equations [46] teaches us that there is essentially a one



— 26 —’

120

of

100

T
i

80t | iﬁ% .

P
@ 60F s .
o
© - 4
(7]
3‘ LO ~ //' Q: b
% L e 01
] 14 / 0 2 ]
20t 5 T 03 |
0

=20+

0-4 0-6 08 1-0
Mrrn (GeV)

Fig. 17: I = 0 and 2 S-wave nw phase-shifts, 55, as a function of 7wwx mass,
M., = /s. The data on §) are from the K,, experiment [44] (open
squares), the rest are from different analyses of the CERN-Munich ex-
periment [42]. The open triangles below 620 MeV are from the analysis
of Estabrooks and Martin ( averaging their s and ¢-channel treatments ).
Above 610 MeV are shown the results of the energy-independent (open
circles) and energy-dependent (solid triangles) analyses of Ochs [42]. The
I=2 phases, 62, in 100 MeV bins are the results of the two analyses of the
data of Hoogland et al. [43] : method A (open circles), method B (solid
squares). The solid line marks what are referred to as “central phases”
and their extrapolation to threshold using the results of the study of the
Roy equations with a = 0.2, the dotted line has a3 = 0.1 and the dashed
line a) = 0.3. '
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parameter low energy extrapolation of the CERN-Munich phases for both the I = 0
and 2 S-waves. This parameter is naturally taken to be the I = 0 S-wave scattering
length af, the Weinberg prediction [40], Eq. (22), for which is 0.15 for a pion decay
constant of 93 MeV, or 0.20 in the Chiral Perturbation Theory treatment of Gasser and
Leutwyler [17]. In Fig. 17 three such extrapolations with aJ = 0.1,0.2,0.3 are shown.

In Figs. 18-21 are the resulting predictions for vy — x%%x0 integrated over the full
angular range. Fig. 18 shows the prediction for a given I = 0 scattering length of 0.2
— the central line of Fig. 17. The curve marked “x” is with H = B for IN2. The
other curves include p, w exchange ; the band illustrates the range according to whether
Eq. (19) or (20) is used (as with Fig. 15). The experimental I = 0 phase is larger than
what we call the Weinberg phase at low energies (Fig. 16) and this naturally leads to an
increased vy — 7970 cross-section, but this is not because this cross-section is simply
proportional to sin?(6] — é2) as it is in lowest order Chiral Perturbation Theory [19].
As discussed at the end of sect. 2, this is not the sum total of final state interactions.
The moduli of the I = 0 and I = 2 amplitudes are, in fact, affected quite differently,
being enhanced and suppressed, respectively, and it is this that is also responsible for

the difference between the results of Figs. 15 and 18.

In Fig. 19 we fold in the sensitivity to changes in the I = 0,2 S-wave phases above
520 MeV, which typically have errors [42,43] of £ 3° and % 2° respectively ( Fig. 17 ).
The band delineates extremes. The upper (lower) boundary corresponds to increasing
(decreasing) all the I = 0 phases by 3 — 4° and decreasing (increasing) all the I = 2
phases by 22, simultaneously — bigger variations will be considered below. Fig. 20 shows
the prediction with fixed phases above 520 MeV, but different Roy equation inspired
extrapolations [46] of these down to threshold for a = 0.1 to 0.3. Again the bands
added to the highest and lowest a predictions illustrate the effect of different treatments
of p, w exchanges. All the corresponding 7° polarizabilities are given in Table I. Fig. 21
shows the result of varying IN3 the Adler zero position from s, = m2, the results for
which are bordered by the dotted lines, to %mi (the lower band) and 2m?2 (the higher
band). All three of these are for central CERN-Munich phases and a} = 0.2. As is clear
from Figs. 8,12, the closer to s = 0 the Adler zero appears on-shell, the smaller the 7%’s
polarizability, (a — 3) of Eq. (21), as seen in Table I.

Fig. 19 highlights how the use of #7 phases from experiment, rather than from
low orders in Chiral Perturbation Theory, predicts a rather different vy — 7°#% cross-

section. Moreover, all the curves using experimental phases are reassuringly in general
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Fig. 18 : Integrated cross-section for 7v — n%z’ as a function of the

7w invariant mass, E = ./s. The data are from Crystal Ball
(3] scaled to the full angular range by a factor of 1.25. The
curves depict our dispersive calculation using phases of Fig. 17
with a) = 0.2, that marked 7 uses just m-exchange for the left
hand cut. The shaded region includes p and w exchange — the
band delineates the range produced by different asymptotics
for these vector exchanges.

agreement with the Crystal Ball data, with a x? of 1 per datum. Indeed, we see that
precision data on vy — 7%7% near threshold have the ability to pin down both the mm
scattering lengths (Fig. 20) as well as teach us about the on-shell appearance of the

Adler zero in the yv reaction (Fig. 21).

As a further test of the sensitivity to mm phases, we present one last calculation.
Schenk [47] has developed a parametrization of the experimental w7 phases that is
designed to match on to the low energy predictions of Chiral Perturbation Theory [17].
The range of phases his parameters allow is illustrated by the curves in Fig. 22. We
see they permit a larger variation than we considered before and they have a different
extrapolation to threshold. Above 850 MeV, these parametrizations have been smoothly
continued to our form of Fig. 17. These new phases give the 7%z predictions of Fig.

23. The dashed lines delineate the range of possibilities and the shaded region the
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Fig. 19 : Integrated cross-section for vy — 7%70 as a function of the 7x
invariant mass, £ = /3. The data are from Crystal Ball [3]
scaled to the full angular range by a factor of 1.25. The band
depicts our dispersive prediction using the central phases of
Fig. 17 with a = 0.2. The range, described in the text, is a
reflection of both the experimental uncertainty above 500 MeV
in the S-wave 77 phases shown in Fig. 17 and the different
asymptotics for the vector exchanges. The line marked y PT
is the prediction of lowest order Chiral Perturbation Theory
[18,19].

prediction of the phases of curve 2 of Fig. 22. It will be seen that near threshold, these
predictions of the Schenk phases do not rise as steeply as those of Figs. 18, 19, 21.
Careful comparison of the curves through the phases of Figs. 17 and 22 reveals that the
Schenk I = 0 phase, Fig. 22, does not rise quite as sharply between 300 and 400 MeV
as those of Fig. 17, even though the scattering length is 0.2 for both the central line of
Fig. 17 and of Fig. 22. Indeed, Schenk’s rise is closer to the 0.1 curve of Fig. 17 and

so, as indicated by the results of Fig. 20, predict a smaller 770 cross-section.

While such differences are immaterial for present data, one sees how precision mea-
surements at DA®NE may tighten up our knowledge of the 7n phases. Precise data on
dipion production in both 4+ reactions and K,, decays would really pin these down.
Such data would provide a particularly powerful constraint if both vy — #%%% and
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Fig. 20 : Integrated cross-section for vy — 7979 as a function of the
77 invariant mass, E = /3. The data are from Crystal Ball
[3] scaled to the full angular range by a factor of 1.25. The
lines, labelled by the value of the I = 0 7w S-wave scattering
length in steps of 0.05 from 0.1 to 0.3, illustrate the effect of
different extrapolations of the central phases above 520 MeV
(the solid line in Fig. 17) down to threshold on the dispersive

prediction. The bands above 500 MeV on the @) = 0.1 and
0.3 curves mark the range generated by different asymptotics.

xtn~ were measured accurately. The prediction for these are closely correlated. In Fig.
24 is shown the dependence of the charged cross-section on the scattering length, af, as
for Fig. 20. Note that here is shown the 7+ 7~ cross-section integrated over the whole
angular range. Experiment inevitably only covers a limited region and the expectation
for that is not simply obtained by scaling from the full range. This is because for 7t~
production, as discussed in sect. 2, the cross-section is not dominated by its S-wave
much above threshold. When experiments have been designed and set up [48], then will

be the time to take their acceptance into account in these predictions.
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Fig. 21 : Integrated cross-section for vy — n%#? as a function of the ==
invariant mass, £ = /s. The data are from Crystal Ball [3]
scaled to the full angular range by a factor of 1.25. The three
bands show the effect of varying the Adler zero for vy — 7%x°

from s, = %—mﬁ, (the lower, horizontally shaded region) to m?2

(the unshaded region bounded by the dotted lines) to 2m?2
(the higher, vertically shaded region). Again the bands mark
the uncertainties in the calculations.

4. Conclusion

What we have learnt from this analysis is that our general formalism based on
dispersion relations, crossing and unitarify allows predictions to be made for low energy
vy — wtx~, 770 scattering with inputs from Chiral Perturbation Theory and from
nw experiments. Lowest order Chiral Perturbation Theory is found not to reproduce
the Crystal Ball results on vy — #%7? — the only experiment that at present provides
a normalized cross-section. Whilst Chiral Perturbation Theorists have regarded their
finite calculation for this process as a gold-plated prediction, we have seen here that
experiment teaches us that low orders in perturbation theory are not sufficient even
at threshold. Higher orders are essential. This has lead to a variety of resummation
techniques — both K -matrix approaches and Padé approximations have been advocated

by Truong [49] to ensure Watson’s theorem is fulfilled, or more recently a 1/N; expansion
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Fig. 22 : I = 0and 2 S-wave 7w phase-shifts, 55, as a function of 77 mass,
M,. = /s. The data are as in Fig. 17. The curves marked
1,2, 3 are the phases given by the parametrizations 4,B,C of
Schenk [47], which continue towards threshold according to the
predictions of Chiral Perturbation Theory [17,41].

by Im [50] — and hybrid approaches marrying perturbation theory with resonance
physics by Goble, Rosenfeld and Rosner [51]. The surprise is that even at threshold,
higher orders are important enhancing both the vy — 7%7% cross-section and the 7%’s

polarizability by factors of two.
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Fig. 23 : Integrated cross-section for vy — 770 as a function of the
7w invariant mass, £ = /3. The data are from Crystal Ball
[3] scaled to the full angular range by a factor of 1.25. The
curves depict our dispersive calculation using phases of Fig.
22. The shaded region is the result using the phases of curves
2 in Fig. 22. The dashed band marks the region allowed by
phases between curves 1 and 3.

Low energy nm interactions are weak — a consequence of the spontaneous breakdown
of chiral symmetry. However, within a few hundred MeV of threshold these interactions
become so strong that the unitarity constraint of Eq. (7) is only true non-perturbatively.
While a perturbative expansion formally satisfies this constraint order by order, as
soon as | T |~ O(1), a non-perturbative approach is essential and that is what is

automatically included in our formalism of sect. 2.

DA®NE holds out the prospect of precision measurements of both charged and neu-
tral dipion production in two photon reactions. Together with results on K, decays,
these experiments will aid our understanding of how nature implements Chiral Dynam-
ics. This will not only be useful in colouring in our picture of GeV physics, but, if the
interactions of the weak gauge bosons become strong, will give us an important guide

to what to expect at TeV scales.
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Fig. 24 : Dispersive predictions for the integrated cross-section for the
vy — wtn~ cross-section as a function of the w7 invariant
mass, E = /s. The lines, labelled by the value of the I =0
mw S-wave scattering length in steps of 0.1 from 0.1 to 0.3,
illustrate the effect of different extrapolations of the central
phases above 520 MeV (the solid line in Fig. 17) down to
threshold (cf. Fig. 20). The curve marked B is the Born
cross-section given by the graphs of Fig. 9 [1,4,24].
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Appendix A

In this Appendix, we discuss very briefly the difference in practice between the
results using a once-subtracted dispersion relation, Eq. (14), and a twice subtracted
relation, Eq. (15), for the S-wave amplitudes. As discussed in sect. 2, if the once
subtracted relation converges, then in principle it will contain all the information about
4y — 7©w scattering provided, of course, we know all the inputs into such a relation, H
and 2. As emphasised in sect. 2, the use of the twice subtracted relation, Eq. (15),
obviates the need to know the behaviour of the distant left hand cut, particularly if one

is interested in what happens in the low energy region for v+ scattering.

Let us assume that the once subtracted relation of Eq. (14) converges for both
I = 0 and 2 S-wave amplitudes — higher waves cause no problem [4,5] so we do not
discuss these in such detail. We will not enter here into the conditions for the vanishing
of the contribution from the contour at infinity (Fig. 12), but suffice it say that the
integral along the right hand cut in Eq. (14) does converge without difficulty. With the
inputs of sect. 3, in particular the phases of Fig. 17, we evaluate the v+ amplitudes
in the neighbourhood of threshold assuming just one-pion-exchange for the left hand
cut,i.e. H = B,. We use each of Eqs. (14, 15) and form the modulus of the charged
and neutral pion amplitudes. These are .plotted in Fig. 25. We see that the once
subtracted dispersion relation gives a 797% amplitude below n threshold that is very
small, compared to the charged one. Since we have only included the dominant one-
pion-exchange component in the left hand cut of each isospin amplitude, the neutral
S-wave does not know that the effect of the small contribution from all the non-pion
exchanges is to enforce an Adler zero at s, = O(m2). One sees from Fig. 25 how
very tiny this contribution has to be — particularly compared with the full one pion
exchange effect that occurs in the charged amplitude. The twice subtracted dispersion
relation imposes the Adler conditions and we see gives vy — wm amplitudes that are not
really very different on a global scale. Thus the predictions presented in Refs. [27,33]
are in the same ball-park as the more detailed results, using twice subtracted dispersion

relations and chiral symmetry, discussed here.

The polarizability of the pion is a useful measure when considering the low energy
Compton scattering process, i.e. vy — nw as s — 0, {,u — m2. As seen in Eq.
(21), the quantity (o — ) for the #° is simply related to the slope of the amplitude,
FO(s), at s = 0. Fig. 25 highlights how this slope is not trivially related to what is
happening in vy — 7% for s > 4m?. Consequently, great care must be taken in using
oversimplified forms to infer the slope at £ = 0 from the value of the cross-section for £
between 300 and 500 MeV. Dispersion relations used here, of course, provide the ideal

vehicle for such extrapolations.
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Fig. 25 :

0-1 0-2 0-3 0-4 0-5
E(GeV)
The modulus of the charged, F*~, and neutral, 7%, dipion

production S-wave amplitudes as functions of c.m. energy E.
The solid (dashed) curves are the result of evaluating the twice
subtracted dispersion relations, Eq. (15) (once subtracted Eq.
(14)) with H = B,_ as input, together with the central phases
of Fig. 17. The solid curve for % vanishes at £ = m._.
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Phases Lh. cut s, 70 Polarizability (a — 38)
IN1 IN2 IN3 1073 fm?
Weinberg (Figs 14,16) 'y m2 0.7
T, pyw m?2 1.3+0.1
phases (Fig. 17)
ad = 0.2 ™ m? 0.9
ad = 0.2 T, p,w Im? 0.74+0.1
ad = 0.2 T, P,W m2 1.5+0.2
ad = 0.2 T, Pyw 2m? 3.44+0.3
ag =0.1 T, 0w m?r 14+0.2
ag =0.3 T, P,W m,2r 1.5+0.2
phases 1,2,3 (Fig. 22) T, p,w m2 1.440.2

Table I : #0 Polarizability, (a — 8) of Eq. (21), evaluated with different

inputs IN1-3.
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