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1 Introduction

ete™ machines allow for the measurement and observation of a purely quan-
tum mechanical process like scattering of light by light, in which the photon
acts not just as a beam and a probe as in deep inelastic scattering, but also

as a target.

The process which allows for the observation of photon-photon scattering

is shown in Fig.1, with the notation used throughout this section.

From the point of view of hadronic spectroscopy, photon photon scattering
is interesting since it complements the investigations of all the states which
are coupled directly to one photon, i.e. states for which J¥¢ = 1~ and which
proceed through the usual annihilation process [1, 2, 3, 4, 5]. Indeed since
the two photon state is C=+1 state, photon photon scattering gives direct
access to the study of JP¢ = 0%*,2%+. One can thus study the spectroscopy
of scalar and pseudoscalar mesons, and of their radiative width, as it has been
the case for the pseudoscalars, i.e. 7% 7 and 7’[6]. The scalar sector is less

well known, and it would be very interesting if in the near future we could



Figure 1: Photon-photon scattering through electron-positron collisions

reach some definitive conclusions regarding the parameters of the low-lying

scalar states 0.

One would expect that the portion of phase space which can be accessed
at a machine with 2F ~ 1 GeV to be rather small. As it turns out, however,
it will cover a region of great theoretical interest, i.e. the threshold region

for the reaction

- > n°x° (1)
through which one can test, as discussed later in this report [7], the loop

structure of chiral lagrangian theories[8, 9, 10].

To study the feasibility of photon-photon experiments at Daphne in the
threshold region(11], we shall start by discussing kinematics and luminos-
ity of the gamma gamma system and then examine which is the region ac-
cessible to experiments and the machine luminosity needed for a precision

measurement[12, 13, 14].
There are two general remarks worth making, from the start :

1. in 4 experiments at et e~ machines, the photons have a continuous energy

and ¢* spectra; both g2 ~ 0 as well as ¢2 # 0 can be explored.
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Figure 2: Photon-photon flux at DA®NE

2. for ¢ =~ 0 the number of events can be estimated from the expression

dL‘T‘I
W,

N =1L, o(yy — final state) € dW,, (2)

where L. is the machine luminosity, SVLV?_; the photon-photon flux, € the
detection efficiency, & the cross-section into a given final state. As discussed
in more detail later, integrating over the full phase space, the photon-photon
flux in the double equivalent photon approximation (E.P.A.) is given by [2]

Ly, _ 4
dW‘Y"I W‘T‘Y

where E is the beam energy,W.,, the photon-photon center of mass energy

Cnyie+ 2P - (1-AE+2)] @)

and z = —‘;%1 This function is plotted in Fig.2 for two possible beam energies

at DA®NE.

Integrating over 300 < W < 600 MeV, we get the vy luminosity given

by
Lovjee = Le / MY ALy 15 x 107 Le, (4)
b 300MeV dW-,-, kel




Assuming for simplicity a constant cross-section for the subprocess vy —
hadrons, with 6(yy — #°x°) ~ 5 nb[15] and an integrated machine lumi-
nosity of 5 x 10°nb~!, one obtains ~ 40000 events, for an (unrealistic) 100
% detection efficiency. With the same luminosity, the number of events col-

lected in the annihilation process at the ¢-resonance peak is 10° times larger.

These rough estimates are based on kinematics and luminosity functions

which we are now going to discuss.

2 Kinematics for head-on collision of two al-

most real photons

We consider the process
v(k1) + v(k2) — 7(p3) + 7(p4) (5)

In the ete™ center-of-mass frame, i.e. in the laboratory frame, let the

two photons have the following kinematics :

Bo= ¥2(2,0,0,2) (6)

2
B o= Ye0,0,-22) (7)
pg = (E3)ﬁ’p3coso3)=(m¢Chy3’I;"m‘8inhy3) (8)
Py = (E4, —Pt,pscosy) = (mecoshyy, —pt, mesinhy,) (9)

where m? = u? + p? (u is the pion mass) . In the two photon center-of-

mass the particles’ momenta are written as

kf = 4(1’07011) (10)
K = —{1(1,0,0,—1) (11)



75 = (E5i,p"cost) = (michy", fi, misinhy") (12)
Py = (E°,—pi,—p cosd) = (mcoshy™, —p;, —mysinhy*) (13)

with § = (ky + k2)? = sz,2; = W? The fractional photon energies z;

are related to the transverse mass m, and the lab rapidities y; 4 through the

relations
2m, - 2m,
2, = —(e® + e %) = —coshy, e" (14)
Vs Vs
2mt 2mt
z; = ——(e™¥ + e¥) = —=coshy, e™™ (15)
Ve Vs

with y;2 = E%Vi The rapidities y; and y, are respectively the rapidity of the
center-of-mass of the two photon system in the Laboratory and the rapidity

of either pion in their c.m.. This follows easily from the relations

P* = (k1+ kZ)“ = ?(zl + 272,0’ 0731 - 2:2) =

(2m¢coshy,coshyy,0,0,2m,coshy,sinhy,; ) (16)

and 8§ = 4m?cosh’y,. Changing notation to

Y = vy, =rapidity of C.M. in the Lab 17
¥y = 1y = rapidity of either pion in their C.M. (18)
Ya4 = rapidity of either pion in the Lab (19)

we have the following set of useful kinematical relations :

SEINA
3

24 = e = 2E = coshz'y =212, (20)
Y = tanh-1(8) = tanh-1 2 =22 _ 1121
anh™(B) = tan P nm2

so that

4p
* __ -1 * * _
y* = tanh™'(B8"cosb*) B*=4/1 F (21)

Y34 = tanh (B3 4c08034) withyz4=Y £y~
where 334, 8%, cos 83 4 and cosf* are respectively velocity and cosine of scat-
tering angle of either pion in the Laboratory and in the C.M., with E the

beam energy.



Lines of constant z=0.1,0.9 and Y=-3,+3
1.00 : -

0.50 —

0.20 |—

Xp=w,/E

0.05

T

T

ooz~ —

0.01 l "l'. 1 ] g 'i-.Ll | 1 1 1 <i“| L1
0.01 0.02 0.05 0.10 0.20 0.50 1.00

x;=w,;/E

Figure 3: Relations between z, and z,

Sets of independent variables are equally constituted by z;,z; and Y, 2.

The relations between these two sets are plotted in Fig.3.

In general the detector acceptance puts constraints on the pions’ rapidity,
i.e. a limited angular acceptance in the Laboratory becomes a rapidity cut
on both pions. In fact, assume a cut such that |y; 4| < yo has been imposed.
Then since y3 4 = y * 1Y, it follows that also y*,Y < yo, i.e. cosf* < cosby,
where 8, is the angular cut in the Laboratory frame. This is however not the
case for 7w production at DA®NE, for which the limitation on the rapidity
Y is due to phase space. For the KLOE detector, in fact, acceptance in the
sca.t;.e-l;ing angle of the final state pions is practically the full steradiant, i.e.
cosfy = 0.98, which in turn implies yo = 2.29. On the other hand, since
Y <inl and z > 0.3, final state pions will only be emitted with rapidity less -
than ymer = ln—;; = 1.2, which corresponds to cosf, = 0.85. In summary,
for mn production at DA®NE, the limit on rapidity is given by the phase
space, as long as the acceptance is larger than cosf, = 0.85. It should also

be noticed that the acceptance considerations are valid for two prong events.
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Figure 4: The relation between the electron scattering angle and the photon

energy for different values of ¢2.

The situation changes somewhat for a four prong event like 7%x°.

For the general case of virtual photons, we define the following measurable
quantities
E = initial e*e™ energy

{,Ey = final e* or e~ energy

(22)
61,8, = final e* or e polar angle
é1, P2 = final et or e~ azimuthal angle
and the following related photon energies
wi2=E—Ej, =Ez3 for each photon
@ =—-(p,—p) g =—(pr - p2)? absolute value photon momenta squared
wi,
2_ Y1,
g2, ~ 2EE] (1 — cosby2) + mg B E (23)

Wy = \/‘1“’1“’2 ~@E|/E for ¢ << gyme << E

The relations between ¢?,z; and 6, are shown in Fig.4. Notice that in

what follows we shall put W = W.,,.
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3 Cross-Sections and Luminosity

The amplitude for the reaction shown in Fig.1l can be written as

2
e . 1 . 2
A= 0 jeqm (24)
9192
where j,’s are the electromagnetic currents of the electrons and the tensor

T#" is related to the 4+ helicity amplitudes through
Taie = €P(A)eD(X2) T, (25)

where €()();) is the polarization vector for photon 1 or 2 for a given helicity
A; = £1. In a later section, we discuss the gamma gamma amplitude in
the helicity basis, here we are primarily concerned with the gamma gamma
luminosity. In principle the photons emitted by the electrons will be in a
state of transverse (T) or longitudinal (L) polarization and the cross section

for process 1, is written as

d3p7 d’p-’
do = T{*TéiLTT(UTT + e107L + €20LT + €1€20LL+

(26)
s€e162c08(2¢)prr + 2\/61(1 + 61)\/62(1 + €3)cos(@)prL)

with o’s being the transverse and logitudinal polarization cross-sections, p’s
the interference terms, the polarization coefficients ¢;’s are functions of the
particles’ momenta, and ¢ is the azimuthal angle between the outgoing elec-
trons. For most experimental situations, ¢ = 1 so that the cross-section
takes the simple form
do
o a7
E| E;

1
= Lrr(orr +orp + ot + oL + §C03(2¢)PTT + 4cos()prr) (27)

A further simplification obtains for the case in which the photons are almost
real. Since for real photons only transverse polarization states are allowed,
experimentally we must select events with V%;f small so that theoretically
we can neglect all longitudinal components which involve ¢*>/W? factors.

Then only or7 and prr will survive. The two terms orr and prr are linear
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combination of the two helicity amplitudes for real photon scattering. Thus
a measument of the azimuthal angle ¢ will allow for a determination of the
two amplitudes. We shall comment again in later sections on the theoretical

interest for this process and on its feasibility at DA®NE.

After integration over the azimuthal angle, and for no azimuthal asym-

metry, also prr will disappear and the cross section will become

dap'/‘ dap_/'
do = | Gy Ly =L P2 28
electrons angles e E{ Eé ( )

where L., is related to the photon spectrum. In particular, one has that a

given counting rate in a variable y is then written as

N _ g do
dy dy

(ee — eeX) = d§;7 o(vy — X) (29)

where L. is the machine luminosity. The photon-photon luminosity function
gﬂl contains the photon fluxes from the incoming electron beams, and it is a
function of the beam energy, the photon fractional momenta and the electron

scattering angles. In the double equivalent photon photon approximation,

neglecting all ¢/W? terms and integrating over ¢, the luminosity function

is given by
1 dLy,  _ N(21,Q%) N(5,Q3) _ (30)
L. dz,dz,dQ31dQ} z1 T2
where
a dQ2 z? 3m'n
N(e,@)dQ* = 255 |1-2+ 5 (-2 32| @D

with Q% = 7’;7 and Q%;, = Q%9 =0) = E—;"&’j:—) This expression has no
energy dependence and is dimensionless. The beam energy dependence will
arise through the integration limits. Before discussing them, let us illustrate
briefly other expressions which can be found in the literature and discuss

their use.

An expression often encountered for the luminosity[13] is obtained from

the Weiszacker Williams approximation and is given by

1 dL"/‘Y N(E,:cl,Gl)N(E,zz,Hg) _

- = 32
Lee d21d£2d91d02 T T2 ( )
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where

20 (sin8)z?(1 — z)i- 9—2 + (1-—=)° sin’8 (33)

N(E,=,0) = — Q|2 Ty @2

having already integrated over the azimuthal angle and where 8 is the elec-
tron’s scattering angle. This expression has the disadvantage of using a set
of variables, x,Q? and 4, which are not independent from each other. By
making a small angle approximation (cosf =~ 1), the above spectrum can

then be written as

dO? 2 2 2
N(E,z,8)d8 = N(z,Q?)dQ? = %% %+(1—2)(1— o) i gzl (39

2

z
2? + Q?
equivalent photon approximation, where one explicitely neglects terms of

order Q?/2% ~ Q?/z2.

which coincides with eq.(31) if one sets ~ 1, as requested by the

4 Integrated Photon Spectrum

Let us now discuss the integration of the single photon spectrum. To calculate
the number of electrons scattered within a given angle 8, the expression in
eq.(31) is integrated between Q? ., and Q? For 8 = 0, the lower limit

min mazx®

corresponds to

m2 2
2 e
[ - AR, 35
min Ez(l R :B) ( )

whereas for § # 0 one can neglect terms of order m./E and write Q* =
(1 — z)t? with t = 2sinf. Therefore the integration over § from 0 to Omaz
corresponds to an integration over Q? from Q2 to Q% .. = (1-z)t2,,,. One

min maz
has

a

Omaz
L7 N (=, @)4Q? = S(2,6mas) = -

((1 +(1- z)z)’"(mﬁel o tmas) = (1-2) {1 - (ﬁr:> ])
(36)
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. . gmoz . - .
with ¢, = Zszn(T). In the small angle limit, we can write

Fl—-=z

me

$(es0nes) = 2 [(1 b= P 2 ar) — (=)0 () )J

- z)ema:

(37)
or, for (m./E)? << [(1 — z)8)/z)}?,

1—1z

S(zyemar) = % [(1 + (1 - 3)2)171(% omar) - (1 - .’B)] (38)

Let us now add a few remarks concerning the range of validity of eq.(37).
The quasi reality condition involved in the E.P.A.is that Q? is negligible with
respect to W%/ E?. When that condition is satisfied, so that we can neglect

the mass of the quasi-real photon, one has
zsinb, = (1 — z)sind, for 2 =0 (39)

Since sinf, < 1, it means that for almost real photons one has sinf, < ;=

Therefore one must set

(2. mas) = 2 |(1+ (1= 2))(me) = (L= D)1= (=) (40)
with

nm = min(1, %—Eﬂm“) (41)

We show this spectrum in Fig.5 for various values of the angle 6,,,, over

which the electron’s polar angle is being integrated. These curves give the

photon spectrum, for the case in which all electrons scattered within an angle

0 maz are collected.

The quasi real 4-spectrum integrated over the full Q2,6 allowed range is
given by

S(z) =

AR

(140 = 2n(0) - (1 -2 = ()| (42

me
Eno
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Photon Spectrum
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Figure 5: Photon spectrum for different angles of the scattered electron, from

eq.(40).

with

1—
1o = man(l, i

) (43)

Using. eqs.(40) and (42), one obtains the probability of observing an
electron scattered within an angle § . This normalized v spectrum is shown

in Fig.6, for a set of values of the electron scattering angle 6.

The cut-off we are imposing here, obviously involves the neglect of the
contribution of highly virtual photons, the contribution of which remains
small and will be overevaluated when extrapolating E.P.A. in this range.
Let us also notice that the precise value of this cutoff is generally not very
relevant since the ;ﬁ— factor in the logarithmic term is the dominant one. For

small x, eq.(40) reduces to the expression often found in the literature

S(210mar) = = [(1 +(1 = 2)))in(

m

Z)-(1-a) (44)

i.e. 7o = 1. This is a good approximation for high energy (PEP,PETRA,LEP)
machines, but is not well adapted to the DA®NE situation, where x is quite
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Figure 6: Normalized photon spectrum for different values of the electron

scattering angle 6.

large, at least for 7m measurement.

To evaluate the so called 'tagging’ efficiency, one can integrate the spec-

trum over the polar angle 8 between 8,,;, and 0,0z For pmin < 8 < Opmas,

one gets

o a p) tma.r

5(2, maz: brmin) = S(2, 8miz) ~ S(2, brmin) & — [1+@-=2) 22 (45)
with ¢, = min(:%,0n). In Figs.Tand 8 we plot this function for a set of

values (8min,fmaz). Notice that this function is zero at x=0 and that it is

independent of the beam energy E.

The probability of finding a photon of energy E, when the electron has
been scattered to an angle between 8 and 6,4, is then obtained by normal-
izing the difference S(z,8maz,0min) to the full spectrum S(x). We show this
probability in Figs.9 and 10.
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Figure 7: Photon Spectrum, from eq.(40), for electrons scattered between

0., = 10 mrad and 4,,.
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Figure 9: Normalized photon spectrum for electrons scattered between
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4.1 Other Approximations

Notice that, had one used eq.(33) rather than eq.(31) for the differential

luminosity, one would have obtained

/08"‘" N(E,z,0)d6 = %[(1 +(1- z)"’)(logii::’ - %)+ (46)
22, 2(1-z) (2 —=z)? 2(1 - z)
+ —2'(log——— +1) + —T—log‘/ "+ (1-2) m“] (47)

1—
which coincides with eq.(37) for 29,,.“ << 1.

Similarly, for the tagging efficiency, the expression we have used is very

close to the one obtained from eq.(33),i.e.

N(:D, emin, emaz:) =

9_ (1 ( 2)2)1 0"‘01‘ (2 - z)zl z? + (1 - z)oma:r (48)

mm 4 9 z? + (1 - 2)) min

Notice that for small x values, the probability of finding an electron be-

tween 6y and 6,,,. is often aproximated with the very simple form

O rmaz 2E
Hma:r(ea 90) lOg 00 /lOg m. ( )

Finally, an expression often found in the literature[2] is the one for the

fully integrated spectrum, i.e.

N(w) [l dON(E,z=, 0)

E+E? & (E E')2 9F (E+EY. 2F
; TS _"‘) (IE 7Tt 5m lE—l—E'
(50)

which corresponds to the one integrated in Q? for Q2 __ =4EE'.

max
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5 Photon-Photon Luminosity Expressions for

untagged experiments

Knowing the expression of the Equivalent Photon Spectra (E.P.S.) integrated

over Q? , or 6., as we did in the previous section, one can define

do &Ly do" (W, Q%) (51)
dzidz,dQx  dz,dz, dQ*

with
d?Ly,  S(z1) S(z>)

dz,dz, 1 )

where S(x) is the total E.P.S. (integrated over the whole @? or 4, range).

(52)

Then, for x not too close to 1, one gets
a 2. E

which we can approximate with

S(z) = = [1 +(1- :::)2] [ln E_ 1] (54)
T e
so as to have \
d’L,, a\? E 1
dz,dz, (;) P(21,22) (lnaz B 5) (55)
Changing variables from z;,z; to 2z,Y, one gets
&Ly, (@)% P(z,Y) ( E 1)2
>y ~° (w) 2 " 73 (56)
with ..
P(z,Y)=[1+ (1 —ze""J[1 4 (1~ ze™")’] (57)
P(2,Y) = 4(1 — zcoshY)? + 2*(2coshY — z2)? (58)

Now, integrating P(z,Y)dY over |Y| < yr, one has

H(z,yL)=2 /;w, P(z,Y)dY = 2[(2® + 2)%y; — 42(2% + 2 — zcoshy)sinhyy)
(59)
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Therefore, integrating over the whole phase space, so that |Y| < y, where

Ys = ln%, one has
1
H(z,y,) = 2[(z" + 2)2171; - (1= 2°)(3+2%) (60)

and one then finds the expression previously defined in eq.(3), i.e.

e (2]} (2 ) Lol =004 o)

dz T me
The above expression is the one used to obtain the luminosity function plot-

ted in Fig.2.

However, as long as z < tan%‘l, where 6y defines the angular acceptance
of the two prongs in the laboratory ( |cos34| < cosfy), the limit over y is
not given by the phase space, but by this acceptance according to |Y| < yo,
where yo = tanh~!(cosfs) ). We then have

1 + cosfy
1 — cosby

z cosby

H(z,y0) = (2* + 2)%In ( ) —8z(2* +2 - (62)

sinby sinby
It results in particular that for z small with respect to 6, (as was the case for

low invariant mass 77 production at PEP and PETRA) one has

dL,, 2a.,,, E 1,2 1+4cosby
— 1 (XY (In— — =) -ln———— 63
dz (w)(nme 2) znl—coseo (63)
instead of
dL., 2a,, E 1,4, 1
— (— — — ) (ln- - 64
dz ( T ) (lnme 2) z(lnz 3) (64)

6 ~Tagged Experiments

The expressions derived in the previous section concerned untagged exper-
iments, for which the outgoing electrons are not detected. They can be
extended to tagged experiments rather simply for the case of small angle

scattering. Under the condition of validity of the expression

2 g
S(z,0m, O11) = ?5(1 —z+ %—)znbﬁ (65)
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one can simply replace (In£ —1)? in eq.(62) with (In £ — 1)(In ) for single
tagging and with (ln%‘}”’-)2 for double tagging.

It should however be noted that the previous derivations are valid only if
the cross-section for the process to be measured in the 4y system is a con-
stant, since the actual cross-section in the laboratory is obtained by convolut-
ing the v luminosity with the elementary cross-section for ¥y — final state.
One cannot integrate ﬁ} over Y independently of 2%, since the acceptance
in the center of mass obviously depends on cosfy and Y. From y = Y — yx,
where y < o, it results that the limit on Y is a function of y* given by
Y| < yo — y* with

. Iln(l + cosby 1 — cosf*
Yo—¥ = 2 ‘1 —-cosfy1 + cosb*

)

Therefore

1 + cosby 1 — cos8*
H(z,y0 —y*) = (2* + 2)’In ( cosoz 1 + cosb*

_ 8z(cosfo — cosf” ) 1 — cosBycosb* (66)
2 +2—2— .
sinfysind* sinfysind*

and in fact, one has

do dL.,., . do
awdae = aw &? )dﬂ' (67)
with .
dL,, ,2a,1
€(z,0") = H(z,y0 — ¥*) (69)

One notices that for previous experiments like those at DCI and PEP for

example, where z =~ 1072 and cosfy < 0.6, one simply had
. 14 cosbp\ {1 — cosb*
€(07)=41n [(1 - cosoo) (1 + cosa‘)] (70)

cos8* < cosby (71)

with
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The function €(8*) is seen to be peaked at cosf* = 0, and to strongly decrease
to reach zero for cosf* > cosfy. This obviously makes the helicity amplitude

analysis from the observed 8* distribution quite inefficient, since the shape

of the latter will reflect more about €(*) than that of .

The above remarks concern the case of a two body final state with ul-
trarelativistic kinematics. For the case of massive final state particles, the
relative expressions are discussed in ref.[11], where an intuitive, graphical

description of all these effects can also be found.

The situation at DA®NE can now be summarized as follows :

a)fory* <y, (cosb*< tanh(ln%) or tan% > z)
€(z,y*) = H(z,y,), i.e. eq.(59) independent of §*;

b) for Y, < y* < yo

e(z,y*) = H(z,y0 — ¥*), i.e. espression (65).

7 Cross-Sections : vy — 7w

In the double E.P.A. the general expression for a cross-section for a given

ee — ee + X process, in terms of L., is written as
/ dso(3)L. (72)

(i) Hadronic cross-sections. .A model independent estimate of the total

hadronic cross-section can be obtained, by assuming
Ohad(8) = constant = oy (73)

Then the cross-section can be obtained in closed form through

o(ee » ee+ X) = (—ln(—))200/ %iln% (74)
o(ee — eeX) = ———lnz( )in 2( ) o0 (75)

mm
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Isorate Curves for 077=5 nb
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Figure 11: Isorate Curves at DA®NE
R Sthresh
where §p = .
s

With op = 5 nb, and 8ipre,n = 4%, one obtains a total cross-section of

the order of picobarns.

It is a useful exercise to investigate the value of a machine luminos-
ity needed to obtain a typical number of 500 to 500000 events per year
at DA®NE. This is shown in Fig.11 where we see that the present design

luminosity (L =~ 10%?) will allow for a sizable number of events..

We shall now try to be more precise regarding the the photon- photon
cross-sections which can be explored. As one can see from Fig.2, the yy
luminosity function at DA®NE decreases very rapidly, almost by a factor
10, as one moves from the 27 threshold to the 4w threshold. This region,
W,, ~ 300 <+ 500MeV is precisely the one in which Chiral Perturbation

Theory applies and one can use ChPT estimates for this cross-section.

For the process

YAy -t 4w (76)
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the differential cross-section is calculated to be [9, 10]

do(W,,) wa?

432sin%6 43%sin'd
2—
dcosd 2W.$_7ﬂ 4la]” — Rea

1 — B2%cos?6 + (1 — B%cos?6)?

(77)

where 3 is the velocity of the pions in the center of mass frame and 4 the
scattering angle. For a = 1, the above expression for the cross-section is
simply the Born cross-section, with the well known contribution from the
pion pole in the crossed channel [16]. The contribution of Chiral perturbation
theory is included for a # 1, with

2

4W. i 1 3 1
f2‘1‘7 (L; + Llo) - W(§W37 + #21"'2(Q*) + Emi(lan?() (78)

a=1+4

and with

Q. V W2, - dm? + W,

\/W% —4m? - W‘Y“l

f = fr=134MeV (79)

Estimates of the measurability of this cross-section at DA®NE can be
found later in this report [7].

From the point of view of Chiral Perturbation theory, a process of par-

ticular interest is also
7+7-—+1ro+1r0 (80)

This process is discussed at length in the following sections of this chapter(7,
17], where comparison between existing measurements [18, 19] and various
models can be found, together with an analysis of possible backgrounds and

the question of tagging at DA®NE [20].

(ii)) Resonance Production. In photon photon scattering, only states with
JPC = 0%+ and 2%t can be produced and of these, in the case of DA®NE,
only the J=0 resonant states are kinematically accessible . The cross-section
for producing a scalar or pseudoscalar resonance in photon-photon scattering

can then be written as

or = o(yy = R — final state) =
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_ 8x'(R — y7)T(R — final state) (81)
ST G- MY MR
where I'(R — 47) is the resonance decay width into a two photon final state,

I'r the total decay width. If the narrow width approximation can be used,

the above expression folded with the photon luminosities takes the simple

form
64a?

Mg

As far as resonances in the vy system are concerned, at DA®NE energy

olec — ee+ f) = St Z) In(FINR =) (82)

and luminosity, there are no narrow J = 0 resonances which decay into
n's. Fits of the cross-section with broad enhancement are possible, but then
appropriate threshold factors and the Adler’s zero must be included in the
cross-section. The situation is rather unclear and will be the subject of more

in depth study in the future issues of this report.
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