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ABSTRACT

The problem ol the possibility of testing Bell's type inequalities in @ — K-K is
diccussed. A comparison with EPR-Bohm type experiments for the singlet state and
with Aspect’s experiments with optical photons is made. We show that, due to the
specific features of the two mesons system, no violation of Bell's type inequalities 1s
imphied by quantum mechanies. Finally, the deviations [tom quantum predictions

which are implicd by the assumption ol “spontancous tactorizaton” are analyzed.



In 1964 BellD) derived a tamous inequality which allows to test quantum
mechanics versus any local realistic theory for the case of the Einstein-Podolsky-
Rosen-Bohm(?) Gedunkene.xp'erinwnr. Bell’s type inequalities apply to any correlated
measurement on two correlated systems. In this paper, following the general discussion
of ref. (3), we will analyze whether in the case ot the K= K mesons system produced
in the decay of the vector meson ®, J'C = 17, such inequalities can be used to test the

predictions of quantum mechanics versus those of an arbitrary local realistic theory.
1. Bell’s inequalities for the singlet-spin case.

Let us consider a system of two spin 1/2 particles in the singlet state, which
propagate in opposite L (left) and R (right) directions. At left an observer cun measure
the spin component of the particle in arbitrarily chosen directions (“at free will”™) a; or
a, respectively. Similarly, at right, o measurement of the spin component in the
directions b, or b, can be pertormed. Let A(a) and B(b) be the observables which take
the value +1 if the spin is found “up” in the measures in the chosen directions at left and
at right respectively and -1 if the spin is found “down”. Let E(a,b) be the correlation
observable which assumes the value + 1 if both spins are found “up” or both are found
“down” and -1 otherwise. In any local realistic theory the correlation function E(a,b)

must satisfy the Bell’s type inequality(®):

E(a;,by) -E(a;,by)l + [E(ay,b ) + E(ay,by)l < 2. (1.1)
We remark that according to quantum mechanics, in the case of the singlet state, the
probability of finding, in a simultaneous spin measurement of the two particles, spins

“up” (T) or “down” (i) along two chosen directions a and b is given by

P(a,T:b, Ty =Plad;bd) = 174(1-cos0,,)
P(a,T:b,d) = P(a, d;b,T) = 1/ 4(L +cos8 ), (1.2)

where 0, is the angle between the two directions a and b. From equations (1.2) it

follows
E(ab) = - cosB,,. (1.3)

The predictions (1.3) of gquantum mechanics for the correlations E(a,b) lead to a

violation of the Bell inequality (L.1). In Fig. 1 we plot the values taken by the



expression at the left hand side of eq.(1.1) for 8,,,,=8,,,,;=0,202=4. 0,(p2,=3A, with

A varying in the interval (0°,90°). For A = 45" one gets the greatest violation (2V2) of
the considered inequality.
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Fig. 1. Violation of Bell's inequality for the singlet state of two 1/2-spin particles.
The continuous line represents the Lh.s, of eq. (1.1) as a function of A (see the text).

2. Aspect’s experiments.

The most important experiment testing quantum mechanics against local realistic
theories looking tor a violation of a Bell inequality is that performed by Aspect and
coworkers®3) in 1982. In the experiment they measure correlations of linear
polarizations of pairs of optical photons (produced in an atomic radiative cascade
(J=0)—(J=1)—(J=0)) with time-varying analyzers. In each leg of the experimental
apparatus there is an acousto-optical switch followed by two linear polarizers. Each
analyzer amounts to a polarizer which jumps between two orientations in a time short
compared with the photon transmit time. This experiment is more decisive than the
preceding ones(®) with static orientations of the polarizers because it satisfies to a higher
degree of accuracy the condition that the choice of the directions in which the
measurements are performed is made at “free will”. The photon propagating in one

direction cannot be “informed” by a “luminal” or “subluminal” message about the



orientation of the polarizer in the opposite direction. For experiments with optical
photons, to take into account the low photoelectric etficiencies, one must use the

Clauser, Homne, Shimony und Holt® Bell's type inequality

to test quantum mechanics against local realistic theories. In eq. (2.1) P(a.b) is the
probability of detecting both photons with the polarizers in the directions a and b,
respectively, and P(a) is the probability of detecting both photons when one polarizer is
removed and the other has orientation a. Let E(a,b) be the correlation function which
assumes the value + | when both photons are detected or when neither of them is

detected, and -1 otherwise:
E(a,b) = | -2(P(—a,b) + P(a.=b)) (2.2)

where, e.g., P(a,mb) represents the probability of detecting the photon after the
polarizer with orientation a and of not detecting the photon after the polarizer with
orientation b. As in the case of the spin, in any local realistic theory the correlation
functions E(a,b) must satisty inequality (1.1). Inequality (2.1) follows then trom eq.
(1.1) when one replaces P(a,—b) with P(a) - P(a,b) and P(—a.b) with P(b) - P(a,b) in
the expression (2.2) tor E(a.b).
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Fig. 2. Experimental values for P(a,b) found by Aspect and his coworkersS). The
dashed line represents the prediction of quantum mechanics.

Aspect and his collaborators, in their experiment, have chosen a set of
orientations leading to the greatest predicted conflict between quantum mechanics and
Bell’s inequalities ((a;,b;) = (az.by) = (a5,by) = 22,5% (a;.by) = 67,5°), obtaining for
the expression S at the left hand side of (2.1)



Sexp = 0101 £ 0.020 : (2.3)
violating the inequality S < 0 by 5 stundard deviations. This result is also in excellent
agreement with the value Sqy, predicted by quantum mechanics when one takes into
account the geometrical teatures of the experiment and the real elficiencies of the

polarizers. Furthermore, the agreement between the probabilities P(a,b),,, found for

exp
various angles 6, with those predicted by quantum mechanics for the actual

experiment is very good, as shown in Fig. 2.

3. Testing quantum mechanics versus local realistic theories at the

d-factory.

In connection with the problem of Bell’s type experiments at the ®-factory, we
follow the detailed discussion ot ret. (3) and we consider the strong decay of the
$(1020), JPC = 1", vector meson into a pair of neutral pseudoscalar mesons KO, K°.
Let us denote by

)\.S = lns - (1/2)’Y5, XL = lnL - (1/2)YL (31)

the eigenvalues of the non-hermitian hamiltonian Hy, which describes the K —K
strangeness oscillations and also the loss of probability in the decay channels.

We consider, as in ref. (3), the correlation functions E(t),t,) defined in the
following way. E(t},t,) tukes the value +1 when either two K® mesons or no K°
mesons are tound at the measurements at right and at left, and -1 otherwise. In a local

realistic theory these correlation functions® must satisty a Bell type inequality:
(E(t),t3) -ECt t)l + [E(G.R) + E( el €2 (3.2)

when the instants t;, t. (1 = 1.2; r = 3,4) correspond to the lett and right mesons being at
space-like separated points. It is important to remark that, would a violation of the
inequality (3.2) be found, this would not necessarily imply a conflict with the locality
assumption. In fact, if one identifies t; and t. with the instants in which the mesons
decay, the times in which measurements apt to detect K" mesons are pertormed would
not be chosen arbitrarly (at “tree-will”) by the experimenter. Then, e.g., the meson at
left could “carry”, without entailing non local eftects, “information” about the instant of

the measure at right.



To make evident the similarities with the case of the singlet state of two spin-
1/2 particles, we consider only the strangeness oscillations, disregarding the meson
decays. One has:

E(t.t) = -cos6,, (3.3)
where

For 08,3 = 0,3 = 6,4 = m/4 und 8,4 =31/4 one would have the greatest violation (2V2)
of the inequality (3.2), as in the case of the singlet state of two spin-1/2 particles. If one
takes into account the decay of the mesons, the correlation function (3.3) becomes

E(t.t) = 3 (L=e 7)1 =e M) 4 2 e - eI

_c‘(Ys*‘YL)(‘lHr)/z COSAm(lI '—[r) (3.5)

‘where Am = m;_ - mg. From eq. (3.5) one sees that, if ygt, (k = L) is appreciably
larger than 1, the terms describing the strangeness oscillations disappear. As a
consequence, the times which have to be considered must be such that ygty 1s smaller or
of the order of 1. Since v = 582y, , one can then put in expression (3.5) v = 0. With

. these approximations, substitution of (3.5) in (3.2) gives

g~ Ys(hi+ta)/2 cos(Am(t; —t3)) -~ e TstuFte/2 cos(Am(t; =t )l

HleTVslatt)/2 cos(Am(t, —t3)) + e Tstatta)/2 cos(Am(t, =, N2, (3.6)

Due to the specific values of the parumeters yg and Am, there is no possibility of
choosing the four times appearing in eq.(3.6) in such a way that the inequality be

violated. In analogy with what has been done in Fig. 1, in Fig. 3, putting
Amt; =0, =0, Amt, =8, =24, Amt; =0, =A, Amty =8, =34, (3.7)
and taking into account that
~JIsg -9 3.8
Vst = 200k = 2,116, (3.8)

we plot the values taken by the lett hand side of eq. (3.6) when A varies in the interval
0, =/2).
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Fig. 3. Plot of the [hso ot e (3.0) for various A (see the text). Due to the specific
values of 75, 7 and Am, no violation of inequality (3.6) can be observed.

For those values of the times (i.e. for A = n/4) which would entail the maximum
possible violation of the inequality, it all the exponential tactors in eq. (3.6) would
equal 1, one gets the value 0.438, which is much smaller than 2.

For very small values of ty the expression at the lett hand side ot eq. (3.2) tends
to 2. Thus, this region too deserves attention. It is, however, easy to prove that the
value is attained from below. In fact, tor very small t; and t,, the correlation function
E(t,.t,) takes, at tirst order, the form:

1 | 1 1
E(t,t,)=-1+ FYsht 3 Tsh YLl 5 YL (3.9)
Substitution of (3.9) in eq. (3.2) gives, tor the left hand side, the expression

1 i 1 1
FYsta+t VLl —5Ysty ~5 VLl +2

1 I 1 1
“Ysham YL —5Ysh — 5 Yl 5 ¥ste =5 VLl (3.10)
which is obviously smaller than 2.
To stress that the fact that the quantum correlations E(t,t.) do not give rise to a

violation of the Bell's type inequality (3.2) is a specitic feature of the system under



investigation, i.e. it originates from the actual values tuken by vy, ¥ and Am, we plot
in Fig. 4 the lelt hand side of eq. (3.2) (tor the same choices of the angles made 1in Fig.
1 and in Fig. 3) assuming Am=107y (y=y¢=Yy)- It is seen that, would such a relation
between the decay widths und the mass difference hold, one would have a neat
violation of inequality (3.2), even though not as relevant as tor yg=y = 0.
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Fig. 4. Plot of the Lh.s. of eq. (3.2) for a hypothetical meson-antimeson system with
the decay widths and mass dilference satistying the relation v = yp =Am/10. In this
case one could actually observe a violation of the Bell's type inequality (3.2).

4. The “spontaneous factorization” hypothesis.

As pointed out in ref. (3) (see also ref. (7)), the “spontancous factorization” or
Furry's® hypothesis meets serious conceptual difficulties. However, it has been
suggested® that the state of the K — K mesons system

1/V2(Kg > 1Ky >, =K >1Kg>)) 4.1)

could collapse, shortly after the decay of the & meson, in the two factorized states

IKg >IKp >, 1K >1Kg >, (4.2)



with equal probabilities (1/2). The predictions of quantum mechanics tor double

under Furry’s hypothesis, so that one could test its validity.

The K"and K" mesons can be identified by their characteristic semileptonic
mode of decays: KY = 1'vr™, K” — 17Vn" ,where | denote the lepton. We consider
the parameter R(T) detfined as tollows:

N,.(T)+N__(T)

R =] M+ N,

(4.3)

where N, (T) represents the number of double K’ decays in the interval (0.T); N_(T)
the number of double K" decays, N, (T) the number of K’ decays on the left
associated with K" decays on the right and N_(T) the number of K? decays on the left
associated with K" decays on the right. (in the same time interval). The quantities Nj

(1,)=%1) are given by
T T
N, = N()}\zJ'OdtlJ'OdtzPii(tl,lQ} (4.4)
where, e.g., P, (t,.t5) is the joint probability of finding K" mesons on the left at t; and
on the right at t,, respectively; Ny is the number of K - K systems produced in the @

decays and A is the semileptonic width of K" decaying into an 1% (equal to the
semileptonic width of K’ decaying into a 1'). In the Furry’s hypothesis one has:

Rp(T)=1, VT, (4.5)

which has to be contronted with the prediction of quantum mechanics:

(- e_Y‘T)(l - c'YLT) —(YsYL/ az)(l +e 2 26 oy AmT)

Ry (T) = — — R (4.6)
QM = )= ) 4 (yey, 701 +e 2T =27 cosAmT)
where 02 = Am?2 + 2 with ¥ = (Y, +yy)/2. For T = e Rop(T) tends to
R -1"YSYL/a2 993 4.7
Qu (o) = —3k = = (.993, (4.7)

P+ygyL /o

which is very close to 1 (i.e. to Rp). In Fig. 5 we plot the values of Rom(T) for T
varying in the interval (0, 20/yg).
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Fig. 5. Plot of Ryy (continuous line as a function ol T/ty. The dashed line
represents the Fuery's prediction Reg = 1.

As one can see, tor T < 577, Rou(T) 1s appreciably different from Rg. Therefore, as
noted in ret.(9), it an appropriate number of semileptonic decays are collected in such a
range, one could test the Furry’s hypothesis against quantum mechanics. At any rate
we think that Fumry’s mechanism does not deserve too much attention since it meets
serious difticulties in its theoretical description (3) and, moreover, appears to have
already been experimentally disproved!? for analogous processes, typically B-meson
decays.
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