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Luciano Maiani! and Nello Paver?

1. CP CONSERVING K — 3r DECAYS

Decay modes, branching ratios and expected fluxes

There are altogether five distinct CP conserving K — 37 modes: they are listed,
with their branching ratios {1} and the corresponding number of events obtainable at
a phi-factory with luminosity £ = 5 x 10*2¢m~2s71, in Table I. Actually, the numbers
there refer to “tagged” decays at a detector with 47 angular coverage such as the one
planned for Dagne (KLOE). In some channel “tagging” might not be needed, so that
the corresponding number of events could be larger. In the last column of Table I
we report as examples the typical statistics currently reached in K — 3w experimeats
for the different modes [1]. Indeed, the second figure in the K — 37° entry is the
statistics reached for this channel by the E731 FNAL experiment {1}, which appeared
in the literature quite recently.

Concerning the decay Ks — w*m~ 7, which has not been detected yet, the
“present statistics” entry In Table I simply means the number of K® — ntx~n" de-
cays analysed in an experiment, and actually the experimental upper limit is obtained
by combining such statistics of more experiments. Instead, for Dagne we report the
effective number of Ks — m* 7~ n0 events, as theoretically expected from the chiral

‘Lagrangian approach which indicates Br(K — ntn~7%) = (2 —4) x 107", These
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predicted numbers indicate that the branching ratio of this transition should be mea-
surable for the first time at the ¢-factory.

The decay Ks — n°n°n%, not listed in Table I, is purely CP violating, with
a predicted branching ratio of the order of 2 x 107™° and an experimental limit of

3.7 x 1075,

Kinematics and Dalitz plot

For the transition
| K(p) — m1(p1)m2(p2)ms(ps) (1.1)

one defines the following kinematical invariants:
si =(p—pi)’ = (mk ~mz)? —2mgTy,  (i=1,2,3) (1.2)

where T; are the pion kinetic energies in the kaon rest frame: pj + po + p3 = 0;

1
Ei+ Ey + E3 = my. Since 81 + 83 + 83 = 3s¢ with sg = —ém%{ +- mf,, there are only

two independent kinematical variables, which can be chosen as

33 — 8¢ 89 — 81
;X =

2 2
m2 m

Y =

(1.3)

where “3” indicates for a given decay channel the “odd charge” pion. We are neglecting

here pion (and kaon) mass differences except in the Q-values, that significantly depend

on them:*

3
RQ=Ti+T+Ts=mg — Y _m, (1.4)
i=1
and, in an obvious notation referring to the charges of final pion states:

Q**F =749 MeV; Q" =841 MeV; Qi71°=83.6 MeV; QY] =92.8 MeV.
. (1.5)
The Dalitz plot for K — 3 is the equilateral triangle with altitude @ shown in Figure
1, where the perpendiculars from internal points (representing the events) to the sides
are the pions kinetic energies, obviously satisfying the energy conservation Eq.(1.4).
Conventionally, the vertical perpendicular refers to the “odd charge” meson. The

centre of the diagram, representing the origin of the three axes at 120° along which

* In the experimental analysis, in addition to using correct pion and kaon masses,
one must account for isospin breaking and QED radiative corrections in order to extract

the values of transition amplitudes from the data.



one plots Ty, T, and T3, corresponds to the symmetric point Ty = T = T3 = %Q
Cartesian coordinates of a point relative to this origin are easily seen to be proportional
to the values of Y and of X/+/3 respectively. All points inside the indicated boundary
contour (resulting from three-momentum conservation) are kinematically allowed, and
represent possible decay events. The diagram is divided into “sextants” labeled I to
VI, which under permutations of indistinguishable pions are permuted into each other

by reflections in the corresponding triangle median.

T3
1V m
\% I
VII|I T,

Figure 1: Dalitz plot for K — 3.

To evaluate phase space integrals it is often useful to define Dalitz variables by

expressing kinetic energies in terms of polar coordinates r and ¢, with the origin at

T1,2=% (1 + 7 cos (-g—rq:qﬁ)) 16)

T = %(1+rcos¢).

the symmetric point [2]:

In Eq.(1.6): —7 < ¢ < mand 0 < r < 7(¢), with r(¢) the boundary curve in the
Dalitz plot, implicitly defined by the equation

1—(1+a)?—ar’cos3¢ =0, (1.7)



2Q Q\?

with a = — |2 — = . In the (non-relativistic) approximation of neglecting «,
mg mgKg

which actually is of the order of 0.1, the limiting curve in the plot would become a
circle. Moreover, the variables X and Y defined in (1.3) are expressed in terms of

polar coordinates as:

2
Y = —gm—KQrcos¢

2 mg
X——— T sin ¢,
V3 mz 9T e

so that the plot in terms of Y and X/+/3 is quite similar to Figure 1 (except from the

(1.8)

maximum radius of the contour of the allowed region, which in this case is obviously

not equal to one).

The decay rates are expressed in terms of polar variables as

(K — 37) = mﬁQz//r dr doé |A(r, 9)I?, (1.9)

where the integration is over the full Dalitz plot. This integration, as well as integra-
tions over the Dalitz plot with cuts, become particularly simple in the non-relativistic
limit, which in most cases represents a good approximation. Explicit calculations of a
set of relevant Dalitz plot integrals, also with cuts, can be found in the Appendix of
Ref.[3].

Since the maximum allowed kinetic energies are rather small (T} maqz >~ 50 MeV),

it is natural to expand Dalitz plot distributions in powers of Y and X as follows:
|A(K — 37))? < 1+ gY +jX + hY? + kX2, (1.10)

where actually j = 0 if CP is conserved. The available experimental data on T, g,
h and k for the different K — 37 modes do not require higher powers than included
here, and are listed in Table II [1]. As one can see, present accuracies are at % level
or better (depending on the different modes) for the widths I and the linear slopes g,
but are somewhat worse (larger than 10%) for the quadratic slopes h and k.
Consistent with Eq.(1.10), also the transition amplitudes with definite isospin
selection rules are expanded in X and Y, assuming the absence of nearby poles, up to
quadratic terms. Limiting to Al = 1/2 and AI = 3/2 transitions, as also consistent
with experimental data, there are three possible three pion final states with definite
isospin: |(37)s=1,symm. >; |(37)1=1, mized symm. > antisymmetric in m; and 7;

and finally |(37)r=2 >. Requiring Bose symmetry for the overall three-pion final state



wavefunction, the expansions of the amplitudes for the different decay channels take
the form [4,5,6]:

. 1 . .
AKT — 7r+7r+7r_) =(2a; — a3) eirs o [(ﬂl - §ﬂ3> gilm 4 \/5736“52] Y

#2(6+6) (Y4 337) - 6+ 6 - ) (7 - 1x7)

AKT — 7r+7r07r0) = % (2a; — a3) etf1s 4 [(ﬂl - %ﬁa) eifim \/gygeiaz] Y

— (G +G) (Y"’ + %X2> — (&1 + &+ ) (W - §X2>

A(Kp » ot 71%) = (a1 + 3) €5 — (By + B3) e1MY

#( -2 (124 3X) + (6 -2 (7 - 1)

A(KL — 7\'071'07l'0) = — 3((11 + a;;) €i615 - 3((1 - 2(3) <Y2 + %XZ)

2. . 4
A(Ks — nFx~x0) :g\/é7;,xe’62 - §§;XY. (1.11)

In Eq.(1.11) the subscripts 1 and 3 refer to AI = 1/2 and AI = 3/2 respectively,
while «, § and v represent transitions to the different isospin eigenstates introduced
above (analogous meaning has the notation for the quadratic coefficients ¢ and ().
Furthermore, 615, é1ar and 6, are the phases due to final state strong interactions (as
an approximation we omit the phases of quadratic terms). Actually, the representation
(1.11) is a simplification, because it is correct only at the centre of the Dalitz plot.
In general, different from K — 2w, due to the possibility of mixing between the two
I =1 states via strong interactions, each of the amplitudes & and 3 for the different
decay channels can have their corresponding phases [7]. Instead, for the amplitudes to
the I = 2 state, which does not mix with the others, the simple representation (1.11)
holds and the corresponding phase is unique for all processes.

The strong phases are expected to be quite small due to the smallness of the
available phase space. Typical theoretical estimates, either in the non-relativistic ap-
proximation (8] and in chiral perturbation theory at one loop [9], numerically give for
the relative phases at centre of the Dalitz plot:

615 — 62

515 - 4511u = T ~ 0.08. (1.12)

If CP is conserved all coefficients in Eq.(1.11) can be chosen to be real numbers, so that
the amplitudes for Kt and the charge-conjugated K~ decays are the same. In the case



of CP violation those coefficients will be complex, so that amplitudes for K~ decays
are obtained from Kt by complex-conjugating the coefficients «, 3, etc. (but leaving
the strong phase factors unchanged), and moreover the amplitude for Ks — 777~ =°

can acquire an additional (imaginary) constant term.

Experimental determinations

Since both kaons and pions are spinless, all observables for K — 37 (and there-
fore the decay dynamics) are embodied in the Dalitz plot distributions, i.e. in the decay
rates I' and in the linear and quadratic slopes for the various channels as in Eq.(1.10).
From these, one has to reconstruct the coeflicients of the amplitude expansions in

Eq.(1.11). The relation is simply that, for any amplitude of the form
A=a+bY +c¥Y? +dX?, (1.13)

as in (1.11), the corresponding coefficients in the Dalitz plot (1.10) are given by:

2b 2 2 2d
g=— h:g——-{»——c, k= —.
a 4 a a

(1.14)

One can see vnat in the CP conserving case there are 15 experimentally measurable
numbers from Dalitz plots (four for each of the modes K* — ntnt7~, KT — 7t x%#°
and K —» mtn~ 7%, two for the case K, — 37° and one for K — ntr~7x%). On the
other side, in Eq.(1.11) there are 10 independent real isospin amplitudes, as displayed
in Table III, plus the strong interaction relative phases §;5 — d;ar and 615 — §5. An
analogous counting of the number of observables and of independent isospin amplitudes
can be done quite easily also for the CP violating case. It is interesting to notice that
the measurement of Br(Ks — 3m) will allow the direct experimental determination of
the AT = 3/2 amplitude v; (in modulus).

A recent fit of (1.11) and of the analogous decomposition of the theoretically
related K — 7w amplitudes to the experimental K — 37 and K — 27 data, updating
the analysis of [5], has given for the different isospin amplitudes the results reported in
Tables IV and V [10]. In Table IV are also reported, for a comparison, the theoretical
predictions for K — 3x resulting from calculations based on chiral symmetry and
chiral perturbation theory, which we briefly review in the next section. In the fit
of Ref.[10] it was assumed that the (3r) final state phases are negligible. Also, the
apparent discrepancy in Table V between |§; — §,| and the value obtained from the
measured 77 phase shifts is probably connected to the neglect of isospin breaking

effects in the K — wr amplitudes.



Actually, the authors of Ref.[10] could not include in their fit the new E731 de-
termination of the quadratic slope in the K — 37° Dalitz plot, which was published
later. Thus, in principle the overall fit should be repeated by taking into account also
this data, which would lead to improved determinations of the quadratic amplitudes
(1 and (3. Nevertheless, for the time being we still keep the results of [10] in the first
column on Table IV, to give an impression of the phenomenological situation concern-
ing the complex of K — 37 amplitudes. One can still read out from Table I the level
of uncertainty affecting the amplitudes of Eq.(1.11) and notice, in particular, that the
Al = 3/2.1inear coefficient (3 is not as accurately determined as we would wish, and
that knowledge of quadratic coeficients is somewhat poor. Also, as discussed later,
being the K; — 37° quadratic slope uncorrelated from either linear or constant am-
plitudes, it should still be possible to attempt the comparison of present experimental
findings (including E731) with general results from chiral perturbation theory, which

is one of the main points of interest in the following sections.



Theoretical predictions

In the Standard Model the non-leptonic weak Lagrangian for AS = 1 transitions
is originally written in terms of quark fields as [11,12,13,14]:

Lw(AS =1 :———uV* Ci(p ' 1.15
W( S ) guark 4 Z ( )
where C;(u) are numerical coeflicients calculable in perturbative QCD and Q;(u) are
local four-quark operators, with the selection rules AS =1 and AI =1/2, 3/2. Both
C; and Q; separately depend on a renormalization scale p, but their product must be

p-independent. At the scale g < m. the relevant independent four-quark operators

can be chosen as [15}:

Q1 = §7u(1 — vs)duy* (1 — ¥s)u; Q2 = 57,(1 — vs)uay"(1 = v5)d
Qs =57u(1—75)d Y v (1 —75)q
q
Qs = 37,(1 —75)d Y av* (1 +75)%; Qs = —2 Z 5(1+v5)qq(l — s )d
q
Q7 = gsmt(l - 7s)dzq: eq@7* (L +7s)g Qs = —326 5(1 +73)aa(1 — 75)d,
(1.16)

where g runs over the light flavours u, d and s, and e, is the corresponding quark charge.
The operators Q; and Qg are induced by the electroweak (y and Z°) penguin diagrams
and, as being suppressed by a small coeflicient of order agep, they are important
only for the CP violating case. The non-leptonic Lagrangian thus involves both left-
handed and right-handed quark fields. Under separate SU(3) rotations of left-handed
and of right-handed fields, i.e. chiral SU(3)r x SU(3)r symmetry transformations,
the operators Q; and Q. behave as (8;,,1r) + (271,1g) and thus contribute to both
AI = 1/2 and AI = 3/2 transitions; @3, @5 and Qs transform as (87,1r) leading
to AI = 1/2 only; finally Q7 and Qs transform as (81,8g), and contribute to both
AI =1/2 and AT = 3/2.

To make theoretical predictions, and thus to compare the constituent-level tran-
sition Lagrangian (1.15) with experimental data, one must estimate matrix elements
of the four-quark operators between initial |K > and final < 37| hadronic states. The
problem is that such matrix elements crucially depend on the non-perturbative struc-
ture of QCD, so that such a calculation can depend quite strongly on the particular

hadronization models.



In this regard, great interest has been given recently to meson Lagrangian models,
exploiting the notion of approximate SU(3)r x SU(3)g chiral symmetry of the strong
interactions. In principle, this framework offers the possibility of evaluating hadronic
matrix elements with a minimum amount of model dependence. In fact, vie current
algebra and PCAC, spontaneously broken chiral symmetry implies low energy theorems
which are completely general, and rigorously valid for transition amplitudes involving
SU(3)-octet pseudoscalar mesons (the would-be Goldstone bosons) at vanishing four-
momenta. The low energy theorems allow to relate K — 37 to K — 2w amplitudes,
making use only of the SU(3)r x SU(3)r transformation properties of the non-leptonic
weak Lagrangian (1.15). For instance, neglecting in (1.16) the electroweak operators
Q+: and Qs (which are relevant only for CP violation), Ly (AS = 1) behaves as a
right-handed singlet leading to [16,6]

lim < (p)n” (po)" (p0) L | K >= 5 < w* (o) (m)lCw| K >, (117)

and to similar relations for the other pions becoming soft and for the other decay
channels. F, is here the pion decay constant (Fr = 93.3 MeV).

Although the soft-pion points are somewhat away from the kinematically allowed
region of the Dalitz plot, these low energy theorems turn out to be in a reasonable
qualitative agreement with the data on K — 37. However, for a really quantitative
calculation, these relations should be turned into predictions for physical (i.e. with
finite mass and momentum) pions and kaons. By a procedure analogous to the deriva-
tion of the strong interaction meson-meson lagrangian [17], this is implemented by
translating the weak four-quark Lagrangian (1.15) into an effective Lagrangian made
of pion, kaon and eta fields, with the same transformation properties under chiral
symmetry transformations. Such a weak non-leptonic Lagrangian thus accounts for
the most general, and fundamental symmetry properties of non-perturbative QCD (in
particular, it has the current algebra and PCAC soft pion theorems automatically built
in), and is used as a computational tool to evaluate the relevant hadronic matrix ele-
ments of Lyw(AS = 1) by means of Feynman diagrams. The resulting predictions then
depend on a limited number of phenomenological constants (counterterms), so that
the scheme is expected to be both predictive and economical at the same time. These
constants cannot be predicted by the Lagrangian itself, but should be taken from ex-
periment. Actually, the comparison of the values so obtained with those resulting from

Lattice QCD simulations, which should allow determinations of weak matrix elements



— 10 —

from first principles, should represent a powerful consistency test of this theoretical
description, and more in general of the effects of non-perturbative QCD.

The Goldstone-boson nature of pseudoscalar mesons naturally leads to the sys-
tematic expansion of transition amplitudes in powers of mesons momenta (chiral per-
turbation theory), which is quite suitable to the expansions of Eqs.(1.10) and (1.11).
Another important aspect is represented by the inclusion in the chiral Lagrangian
framework of vector mesons and vector dominance, which on the one side would en-
rich the theoretical description by accounting also for the role of resonances, and on
the other side should lead to a determination from first principles of some of the phe-
nomenological constants [18]. Thus, K — 3w can represent quite a significant (and
detailed) test of the current ideas underlying the realization of the non-leptonic weak
interaction Hamiltonian in terms of meson fields.

In the following we briefly sketch the basic features of chiral perturbation theory
(xPT), also in the imit N, — oo with N, the number of quark colors, and of chiral
Lagrangian models including vector meson dominance. Predictions from Lattice QCD
calculations, coupled to chiral perturbation theory expansions, are reported for CP

violating K — 3w in Ref.[7].
a) Chiral perturbation theory

Neglecting the electroweak penguins @7 and Qs, the non-leptonic Lv(AS = 1)
behaves under SU(3)r x SU(3)r as (81,1r) or as (27r,1r). Operators in xPT re-
producing these transformation properties involve, at the lowest order, two powers
of meson momenta or meson masses, i.e. are O(p?). At this order there is only one
(8L, 1Rr) operator and one (27r,1R) operator, and the weak lagrangian takes the form
[19]:

LE(AS =1) = ca(NeLuL*) + catly (QEL,)(QF LM, (1.18)

where L, are the “left-handed” currents L, = iU'8,U, and U = exp (iv2®/F,) with
$ the familiar SU(3) octet matrix:

0

T i + +
—=t+ —= —-n -K
V2 V6 X
$ = _— T T ko (1.19)
v2 V6 )
K- ~-K° —

\/—617

In (1.18) { ) means trace, and Ag and (Q;)H = §;16;x are 3x3 matrices in flavour space

projecting out, respectively, the octet and (with the help of the numerical coefficients
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tf,‘c) the 27-plet parts of the interaction. The explicit form of the matrices, as well as
the values of tf,lc, can be found for example in Ref.[20]. ¢; and ¢; are the corresponding
octet and 27-plet weak coupling constants.

By expanding the effective Lagrangian (1.18) to the right number of meson fields,
one can easily derive the O(p?) contributions to the K — 27 and to the K — 3«
amplitudes and linear slopes (the quadratic slopes being zero at this order, as they
need operators with four derivatives of meson fields). In practice, the terms so obtained
correspond to the “tree” diagrams depicted in Figure 2. As one can see, in the case of
K — 3r there are “pole” diagrams, for which also the expression of the meson-meson

strong interaction Lagrangian is required. At the same order p?, this is fixed by chiral

symmetry to be {21]:

F2

£ = - (8. U8 U") + (MU' + 1)), (1.20)

where M = diag(m2,m2,2m% — m2) is the meson mass matrix, explicitly breaking

chiral symmetry.
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Figure 2: Lowest order diagrams (O(p?)) for K — 2w and K — 3m:

the weak vertex is represented by e, the strong one by o.
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Defining the K — 27 amplitudes 4y = ial/gei‘sf’ and A, = ~ia3/gei62, with &g
and §, the mr phaseshifts in I = 0, 2 at s = m%,, such that:

2 2
A(Ks — m°n°%) = \/jAO + —A,
3 V3

2 1
AKs »ntn™) = — §A0 +

AKT »atrn’) = —\-/2—§A2,

A, (1.21)

one easily obtains for the AI = 1/2 amplitudes:

1 2
01/2 :E—%F—K\/é (TTL%{ - mf‘.) <Cz - ‘3‘C3>
1 mi 2
aq :FT?FK -———-3 (Cz - gCg) (122)

1 2
B1 :F,fFK (—mi) (Cz - §Cs> ’

and, for the Al = 3/2 amplitudes:

1 20
as/2 “TF2Fg (m%( - m7) ("7—5“)

1, /(20

= m —C

W T K\ g
1 m?2

- 5
Bs T (5m¥ — 14m?%) <§Cs>

F2Fy my —m2

(1.23)

1 m?2 2 ~15
= u m2. — 2m? .
1 F3Fg mﬁ{ —m2 (3 K ") (2\/§cs>

These simple equations manifestly contain the current-algebra and PCAC soft pion
theorems relating K — 37 amplitudes for vanishing pion four-momentum to K — 2,
plus finite pion mass corrections extrapolating those relations back into the physical
Dalitz plot.

The values of the coupling constants ¢, and c3 are free parameters, not fixed by
chiral symmetry. Their values are obtained phenomenologically by fitting (1.22) and
(1.23) to the experimental values of K — 2r amplitudes, and then used to predict
K — 3m. The results for cy and c3, clearly displaying the AI = 1/2 enhancement in
K — 27, are reported in Table V. The corresponding O(p?) predictions for K — 3 are
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listed in Table IV. Although, in principle, at this level Fr = Fg = Fy, SU(3) breaking
has been phenomenologically included by using in (1.22) and (1.23) Fx = 1.22 F;.

One can see that there is agreement (or disagreement) at the 20-40% level, which
1s the kind of uncertainty one naively expects at this order in xPT. If, conversely, one
would attempt to fit ¢; and ¢3 from K — 37 data, the determination of ¢, would
remain consistent with that in Table V, whereas that of ¢; would change considerably.

One can notice that the amplitude «; is so well measured that it really represents
a challenge to the theory. Also noticeable is the discrepancy with the central value of
the AI = 3/2 slope (3. For this reason it would be of great importance to increase
the experimental accuracy on this parameter. Furthermore, we remind that final state
strong interaction phases vanish at this order in yPT.

Recently, the general form of the O(p*) contribution to the AS = 1 non-leptonic
Lagrangian has been worked out in Ref.[20]. It turns out that the number of new inde-
pendent weak operators contributing in general to .ng,)(AS = 1), and whose coupling
constants are not determined by chiral symmetry alone, is unfortunately unmanageably
large. As an example, to give an idea of the form of these operators, we show below a

set of independent O(p*) (81,1r) operators with four derivatives in the pseudoscalar
meson fields [22]:

0y =(X¢L,L"L,L") Oz = (AL, L, L' L")

(1.24)
03 =(\¢L,L,L"L") O = (A\¢L,L*)(L,L").

Notice that operators of this form vanish for K — 37 at the soft pion points, hence
they do not contribute to K — 27 and therefore change at O(p*) the relation between
K — 37 and K — 27 from the form given at O(p?) by Eqs.(1.22) and (1.23). They
also generate terms of order Y? and X? and thus determine the quadratic amplitudes
in (1.11). In addition to operators of the form (1.24) there are a multitude of operators
containing higher derivatives of meson fields, which would contribute to both K — 3=
and K — 2.

However, in the specific case of K — 2w and K — 37 decays, the situation
simplifies considerably. To just emphasize the main aspects, symbolically denoting

any of the K — 27 and K — 37 amplitudes by A;, we have up to order p*:

A = AP 4 AW, (1.25)
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where, as pictorially represented by the diagrams in Figure 3, the O(p*) correction

term can be further separated into

AP = ATT(u) + A7 () + AT (1.26)
AST represents the tree diagram O(p*) weak counterterms: it is found that in prac-
tice only seven linear combinations of O(p*) weak counterterms, to be determined
phenomenologically, are effective for K — 27 and K — 3w. In addition, there are a
number of strong meson-meson interaction O(p*) counterterms, which determine L',(;)
appearing in the pole diagrams, but their values are already available from previous

analyses [21] and therefore they do not add anything unknown.
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Figure 3: O(p*) contributions to K — 27 and K — 3m: e and o as in Figure 2.
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A:-OOP are the contributions of chiral loops which, among other things, account
for rescattering corrections, and are essentially governed by Cg) X E(‘ir). Both coun-
terterms and loops separately depend (logarithmically) on a renormalization scale g,
but their sum is p-independent.

The strategy followed by the authors of Ref.[10], to empirically determine the
seven O(p*) weak coupling constants, was to fit the full chiral structures found for the
K — 27 and K — 37 isospin amplitudes to the experimental values in the first column
of Table IV and in Table V. Basically, still neglecting the K — 3w strong phases, there
are twelve experimental isospin amplitudes, plus the K — 27 relative phase, to fit
in terms of the seven constants plus the octet and 27-plet couplings ¢; and c3 (of
course the latter have to be redetermined at this p* order). Although not including,
in the sector of quadratic amplitudes, the latest E731 determination of K — 37,
we nevertheless report in the third column of Table IV the results so obtained in {10]
(corresponding to the choice for the renormalization scale 4 = m, to minimize the
logarithmic dependence and negiecting the strong phases of K — 3m).

It is interesting to notice from these numbers that, although this order in chiral
perturbation theory is not quite sufficient to account for the K — 2x phase 8y — 63,
the constant and the linear amplitudes for K — 37 are now well reproduced and
that, in general, phenomenology requires the O(p*) corrections to be somewhat larger
for the AI = 3/2 transitions. Also, it appears that the situation for the quadratic
amplitudes is not as well-defined as it is for the linear ones and for the widths, due to
large uncertainties.

In fact in this regard, since the number of fitted parameters is anyway smaller
than the number of isospin amplitudes, one can go beyond this global fitting proce-
dure and derive parameter-free consistency conditions among amplitudes [23]. These
constraints would represent specific predictions of chiral perturbation theory at O(p*).
Basically, two of the seven weak counterterms are reabsorbed in the definition of the
coupling constants ¢, and c3 at this order. The remaining five can be isolated by

defining, for each of the ten K — 37 amplitudes A4;:
fii — A?zp B A£2) . A:.oop . Afole, (127)

which are known completely. The chiral relations derived in [10] then imply the five

consistency relations (to order m2/m%.) [23]:

< 9 m? - 3 m2 .
20w & -_——1j3 1.28
Cl — 4 1 ag, {1 2 P) 1 ( )
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for the Al = 1/2 amplitudes, and

- 9 m? ~ 3m2 - ‘ z 3v/3 m2
— _ TA ; N ; = T4 129

for the amplitudes with Al = 3/2.

Thus, once the Al = 1/2 and AI = 3/2 weak counterterms are extracted from
the experimental determinations of the constant and linear amplitudes a;, #; and
a3, B3 and 7; respectively, the quadratic amplitudes are predicted, so that (not sur-
prisingly) the test of the chiral method at order p* is determined in practice by the
amplitudes (i, (3 and £;, &3 and ;. The predictions are reported in the fourth column
of Table IV, and clearly indicate that the situation concerning the “chiral test” is much
more favorable for the AI = 1/2 relations than for the AI = 3/2 ones, the theoretical
uncertainty being quite large in this case.

Specifically, for the K — 37" quadratic amplitude (referring to Eq.(1.11)) the
chiral symmetry prediction is [10,23]:

¢ — 23
ap + ag

=—(6+2)x 1073, (1.30)

and the corresponding Dalitz plot quadratic slope h = —(1.2 £ 0.4) x 1073, Although
of the same sign, this prediction appears to be in contradiction with the recent E731
measurement h = —(3.34£1.14£0.7) x 1073, reported in Table II. However, due to the
large uncertainty mentioned above, the significance of such a disagreement between
the two values might be not fully significant at the.present stage.

Identifying the source of the disagreement should certainly be an interesting
problem. Indeed, combining their result with charged kaon experiments, the E731
collaboration suggests a sizable violation of the Al = 1/2 rule in the quadratic term,
connected to an unexpectedly large value of the ratio (3/(;. Thus, as anticipated, the
AT = 3/2 has a crucial role for xPT.

All this calls for improved experimental determinations of K — 37 amplitudes,
in particular of the Al = 3/2 ones and of the quadratic slopes, hopefully leading more
accurate (and more stringent) tests of the theoretical framework. In this regard, also
more accurate phenomenological determinations of the strong interaction countert-
erms, involved in the pole term contributions of Eq.(1.26), would be useful in order
to reduce the theoretical uncertainties on K — 37 amplitudes to the lowest possible

level.
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In closing this section, we finally remark that an experimental determination of

the strong relative phases §;5 — é1ar and 815 — 82 should also be of relevance to the
chiral test.

b) Calculations in the N, — oo ezpansion

A definite prediction of O(p*) terms can be obtained using the framework of
chiral perturbation theory in the leading 1/N. expansion (N, — o), N. being the
number of quark colors {24,25].

Basically, in this approach a “bosonization” prescription is applied to the quark

left-handed “currents” J, = gy,(1—7s)q in Eq.(1.16), which leads to a chiral expansion
of the form:

N. ..
Jp = iF,f L, + GAZ (terms cubic in L,,) NI
X

, (1.31)
where L, has been defined previously, and A, is a scale characterizing chiral symmetry
breaking that is expected to be of the order of 1 GeV. An analogous “bosonization” is
written for the right-handed current operators. Assuming for Ly (AS = 1) the form

of a currentx current product analogous to (1.18)
Lw(AS =1) = ch{eJuI*) + 45 (QiT.)(QF T*) (1.32)

and using (1.31), one reobtains the leading Lagrangian [,({‘?,)(AS =1) of Eq.(1.18), plus
the correction Eg,)(AS = 1). The latter is expressed by a sequence of four-derivative
meson field operators of the kind represented in (1.24), with coupling constants numer-
ically determined. Instead, the couplings cj and c} are left as undetermined degrees
of freedom. These are fit, as in the preceding section, from the experimental K — 2,
and in this way the amplitudes of K — 3w can be predicted to O(p*) without extra
parameters.*

The numerical results obtained in the 1/N, approach are reported Table IV.
The comparison of theoretical predictions with experimental data looks encouraging.
Concerning the needed significant accuracies to make a test of the AT = 3/2 sector, the
same comments hold, as made previously with regard to the results of {10]. Certainly,
a nice feature of this theoretical framework, which is inspired by the principle of

factorization and the vacuum saturation approximation of hadronic matrix elements,

* Actually in [25] the possibility is considered of different chiral symmetry break-
ing suppression scales for the O(p*) operators, leading to two such parameters to be

extracted phenomenologically.
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is the fact that the O(p*) operator coupling constants are calculable (once ¢} and cj are
extracted phenomenologically from the data), so that there is a substantial reduction
in the number of free parameters to order p*. However, there is the difficulty to
conceptually justify the use of the experimental values of ¢, and ¢} (otherwise the
AT = 1/2 enhancement would not be accounted for), instead of the actual 1/N, values
of the coeflicients in Eq.(1.16). Also, it should be interesting to quantitatively assess
the next-to-leading 1/N, corrections for finite N. = 3, in order to test the convergence
of such an expansion. One can notice that, since there are no chiral loops at the leading
order in 1/N,, strong phases vanish so that eventually they must be included by hand.
In the absence of the mentioned meson loops, the operators coupling constants become
mass-scale independent, and consequently at his order it is ambiguous to compare with

the results obtained in the full theory in Ref.[10].

c) Vector meson dominance models

A suggestive way to overcome the difficulties with the order p* discussed above,
and to dynamically estimate the counterterm coupling constants from first principles,
should be the inclusion of vector mesons in the chiral Lagrangian framework. Using
the strong chiral Lagrangian for vector and pseudoscalar mesons, it has been shown
in Ref.[26] that the couplings of the strong. interaction p* counterterms calculated
from vector meson exchanges are in good agreement with the values determined phe-
nomenologically from experimental data in [21], if the scale p is chosen between m,
and | GeV.

In Ref.[18] it has been assumed that the same kind of vector dominance holds
also for the non-leptonic weak Lagrangian. Working out all lowest order (8.,1r) weak
couplings between vector and pseudoscalar mesons, which are not known, it turns
out that the O(p*) corrections induced by vector meson exchanges on the K — 37
amplitudes in the AI = 1/2 sector depend on only one unknown constant. These
corrections affect only #, and £; because vector mesons can contribute only to final
states antisymmetric under the exchange of two pions. Therefore, in this framework
corrections to the symmetric amplitudes are determined just by the loop contributions.
In fact, for a; these turn out not to go in the right direction [10].

Nevertheless, the antisymmetric amplitudes are the ones for which the discrep-
ancies between experimental results and O(p?) predictions are the largest, so that it
is still sensible to investigate the corrections from vector exchanges.

The unknown constant mentioned above can be determined by the current x cur-

rent hypothesis of Eq.(1.32), using for J, an expression in terms of vector fields. The
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consequence of this hypothesis, which follows directly from the vacuum insertion ap-
proximation, is that the weak contributions of vector mesons to the K — 37 amplitudes

with AI = 1/2 vanish, leaving only the strong contribution of the pole terms in Figure
4 (18],

: T
K P O/ K x p o/n
—0/ N~ ' ——-O—o/ \
T \ T
T T
K ,fii""/’n K ’2”’0’,,—n
—-—0\ \n ——-o\ \11',
n h K °C
T
s " x
* P ° K _—
_IS_.OK/./ \1: K_'o\/OK\.\
\n T n
(a) (b)

Figure 4: Vector meson exchanges for K — 3m: diagrams with

weak vector meson couplings (a) and pole diagrams with vector meson exchange (b).

In the last column of Table IV we report the results for the AI = 1/2 amplitudes
to order p*, calculated with the vector meson counterterms plus the pseudoscalar
meson loops (the latter are taken from [10]), for the scale parameter p between m,
and 1 GeV. One can see that the chiral corrections calculated in this framework
significantly improve the O(p?) predictions for the amplitudes §; and ;. In conclusion,
vector meson dominance seems a good model to determine the p* counterterms for the
antisymmetric K — 37 amplitudes, but cannot cannot solve the problem for the
symmetric ones. The latter would be determined by e.g. scalar and pseudoscalar
resonances, whose weak couplings, however, are not known so that in practice there
would be no reduction in the number of parameters. Therefore, attempts to evaluate

those couplings would be of great interest in this regard.
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K — 37 studies at a ¢ factory

According to the considerations made in the previous sections, accurate mea-
surements of K — 37 Dalitz plots would allow a stringent test of the chiral lagrangian
description of AS = 1 non-leptonic weak interactions to order p*. A desirable accuracy
should be the knowledge of linear slopes to (much) better than 1 % and the quadratic
ones to about a few %.* It would also be quite interesting to measure the strong
phases, related to the chiral structure of the pion rescattering interaction.

Present experimental K — 3w Dalitz plot analyses rely on samples of about
10* — 10°® events, depending on the particular decay modes (see Table I), while at
the ¢-factory one expects in principle a substantial improvement in the statistical
accuracy, assuming high detection efficiencies. However, the experimental accuracy
is mostly controlled by the systematic error, which must be decreased accordingly.
Moreover, due to correlations, reducing the error on one parameter of the Dalitz plot
(1.10) automatically requires a corresponding reduction in the uncertainty on the other
parameters. Thus, a fit procedure is necessary in any case.

To give an example of these correlations, one can see how the request for a
good determination of the linear slope g implies having a better precision also on
the quadratic slopes h and k, and that conversely linear slopes affect quadratic ones.
This is made clear by considering that the linear slope can be defined in principle by
weighting the distribution (1.10) with the variable Y, i.e. through the relation:

R MCOE NS

where dI' = r dr d¢ is the phase space element, and R is the ratio of integrals:

_ JY¥dr 1 fX%dD

= 1.34
Jdr 3 [dT (1.34)
From (33), by making an expansion, one obtains for the relative uncertainties:
§g 6% ( h) §(k+%)
—~-—=—+\k+ - )| R—/—75, 1.35
g ¥ 3 (k + %) ( )

so that errors on linear and quadratic slopes are correlated. Inserting numerical values

in (1.35), the indication is that in order to reach an accuracy of (say) 107 on g the

* It should be noticed, especially concerning quadratic slopes, that some channels

might possibly be affected by the presence of significant QED radiative corrections
[27].
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error on the quadratic slopes must be of the order of 5 x 1072, Clearly, in the special
case of K; — 37° the correlation above does not exist, because the quadratic term
in the Dalitz plot is not contaminated by the linear amplitude which is zero for this
mode (see Eq.(1.11)).* However, the determination of isospin amplitudes requires in
general the combination of data for both K* and K° decays. Thus, although possibly
not unsurmountable, these difficulties, and in particular the systematic errors, should
be carefully taken into account in studies of K — 37 Dalitz plot distributions at the
¢-factory.

On the other hand, the measurement of the rate of Ks — wF 7~ m° certainly
represents a very significant achievement, as it could be done for the first time at
Da¢ne. Asindicated in Eq.(1.11), this decay can occur via a CP conserving interaction,
however it is suppressed by the AI = 3/2 rule (the three pions are in I = 2), and by
an angular momentum barrier (recall that CP(r*m~7%)=(-1)! = (-1)*Y, where
[ is the orbital angular momentum of 7% and ). The predicted branching ratio,
Br(Ks — mtm~7%) = (2 — 4) x 1077 makes it well accessible at this facility, with
many hundreds of events as shown in Table I, and would allow, as previously pointed
out, the direct test of the AI = 3/2 part of the transition Hamiltonian.

As an alternative to the direct width measurement, one could try the measure-
ment of the CP conserving Ks — 777~ 7% amplitude via the observation of the time
dependent interference of this decay channel with K; — wtm~x° at the ¢-factory,
in analogy to the time asymmetries discussed for CP (and CPT) violation involving
K — 27 and K — 7ly; {28,29,30]. An appealing aspect of this method is that such
interference depends linearly on the (expected small) final state interaction K — 3w
phases as ~ sin(Am -t + §), while the width depends quadratically as cosé ~ 1 — %
Thus one might expect to have access to these phases also, and be able to make a
direct determination or at least to set an upper limit on their values. This would
be particularly desirable in view of the previous dTééhssion and of the fact that these
phases determine the size of direct CP violation asymmetries in K — 3.

The basic idea uses the fact that the initial KK state, immediately following ¢

decay, is represented by the superposition of K1, and Ks (assuming CPT conservation):

1+ le]* |[Kr(2)Ks(—2) > —|Ks(2)KL(-2) >
1-—-¢€ V2 ’

* Also, electromagnetic corrections are not needed for this channel.

li >= |K°K°(C = odd) >= (1.36)
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so that the subsequent K and Ks decays are correlated, and their quantum interfer-
ences show up in relative time distributions and time asymmetries. In (1.36) 2 is the
direction of the momenta of the kaons in the c.m. system, and € is the CP violating
K°-K° mass mixing parameter,

Ks 5= —— (K > +elK2 >),  |Kp>= e (K2 > +elK1 >),

with |K; 2 > the CP even and odd eigenstates respectively.

(1.37)

Specifically, we consider the transition amplitude for the initial state to decay into
the final states f; at times ¢; and f, at times ¢, respectively and, in order to maximize

the interference effect we are looking for, we choose f; = #*[Tv and f, = nT7~n°

(simply denoted as f; = 37 in the sequel). Defining the ”intensity” of time correlated
events I{At) as:

e o]

I(At) ;-;- / dt | < fi(ts, 2), falta, —3)|T)i > P (1.38)

lat]

where t = t; +1, and At = t, —t;, and making use of the exponential time dependences

of the mass eigenstates K5 and K, one easily finds in the CP conserving case € = 0:

|A(K® — =wlv)|?
8y

I(nt1Fu,3m; At < 0) = AlA(KL — 371.)128—75!&1

+]A(Ks — 3r)|2e 118t 4 2~ 1A Re(A(Kf — 37m)* A(Ks — 3m)) cos(Am|At])
+Im(A(KL — 37)"A(Ks — 3r))sin(Am]|Atl])]} (1.39)

and
A(K® — mlv)|?
I(xE1Fu, 37 At > 0) = I ( 8 miv)l {|A(KL — 3r)|Fe” 1At

+|A(Ks — 37)[2e” 752 + 2¢7 " [Re(A(KL — 3m)* A(Ks — 3m)) cos(AmALt)

—Im(A(Kp — 37)"A(Ks — 37))sin(AmAt)]}. (1.40)

Here v = (’Y_L_‘%‘_;YS_); Am = m — mg; and Eq.(1.11) must be used for the isospin

decomposition and the pion momentum dependences of K — 3w amplitudes.

From Eqgs.(1.39) and (1.40) one can notice that in the intensity of events for time
differences At < 0 the |A(Ks — 37)|? term is enhanced by v < 7vs with respect to
|A(Kp — 37)|?, a situation which is complementary to that of K — 27 [31]. The total
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number of events is obtained by integrating (1.39) in |At¢| and over the full K — 3=
Dalitz plot (in this case the interference term drops). Taking to a good approximation
the non-relativistic limit, so that the allowed domain in the Dalitz plot reduces to
the unit circle, the integration in the polar coordinates Eq.(1.9) becomes trivial. For

example, taking (1.11) into account:

1 V3

e =)= o 1

Q% _,mlal?, (1.41)
with |a| = |a; + a3| = 8.5 x 1077 from Table IV. The integration of (1.39) gives:

1
N(x:1Fu,3mAL < 0) = N¢_,K0KO§BR(KL — wlv)

2 (1.42)
X [(%) BR(Kp — 37)+ BR(Ks — 37)| x Q,

where, with the assumed luminosity, N, , gogo ~ 7.5 x 10° /year. In (1.42) Q < 1
is a factor which accounts for the experimental acceptance. For the predicted values
of the Ks — 37 width, the two terms in (1.42) have indeed the same size and we
expect about 1600 x ) events/year. The Kg — "7~ 7" amplitude v; and the strong
relative phases §; — ;5 and 8, — 81ar (in the approximation siné ~ §) appear linearly
in the interference terms of (1.39) and (1.40), and are there multiplied by typical time
dependent coefficients. In particular, the sin(AmA¢t) time dependent term is the one
containing to the K — 3x strong phases. To extract the interference terms one can
integrate the intensities (1.39) and (1.40) over the K — 3w Dalitz plot, with suitable

cuts.

Specifically [32], one can can make a cut in the Dalitz variable X, by defining:

1 V3

Bx(At) = (47)3mg 18

Qi_o / /r dr d¢ sign(X) I(xt1F v, 3m; At), (1.43)
or a cut in XY by defining:
1 V3,

Zxy(At) = (an)omg 18 O+

—0 / /7‘ dr dé sign(XY) I(rtiFv,3m; At).  (1.44)

Explicitly using (1.11), with o defined as for (1.41) and 8 = §; + B3 (we fix the strong
phases at the centre of the Dalitz plot):

2 : 2 —
Dx(At <0) ==+ %:I;BR(KL — wlv)BR(K — LAkt m\;{g?n;r 0 )X

1693 —latlcos(Am|AL]) + (8 — 615) sin(Am|At])], (1.45)

3V3|a|r
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EX(At>O):jZﬁBR(KL—’WIV)BR(KL _">7V+W*WO)(—22—I£—Q——+—-O—)X
b v3m2

1
073 —VAt{COS(AmAt) — (62 — b15) sin(AmAt)], (1.46)

——e
3v/3|alr
and

Sxy(At < 0) i7—iBR(K W)BR(K + = x0)( 4————m§<Qi‘0)

-y = — — — X

Ay 4~ L i Lo 3\/§m‘fr
21873 e—7i/_§£|r

V3|altr [cos(Am|AtL]) + (82 — 1ar) sin(Am|At])], (1.47)

047 + - oy 4mEQ%
Z‘YY(At > O) =+ Z‘;BR(KL — WlV)BR(KL - T T T )(—W)X
2873

TR T eos(Am — (85 — 81p7)sin(Am . .
Tapn’ | (cos(AmAt) = (& —ua)sin(AmAL)l. - (1.48)

For the expected number of events at the ¢-factory, obtainable by integrating the
above relations in |At|, one can use input values for 43, a and 8 from Table IV, and the
value (1.12) for the final state interaction phases at the centre of the Dalitz plot. By
taking appropriate sums and differences of number of events we would find from (1.45)
and (1.46) about 245 x  and 35 x Q events/year available to the determinations of v;
and §; — 8,5 respectively, where Q is the acceptance factor introduced in (1.42), and
analogously from (1.47) and (1.48) about 4 x Q events/year for the determination of
8y — 81a1. Thus, for ) not much smaller than unity, it might require a couple of years
integrated luminosity (or alternatively the full 10%? luminosity) to measure §; — 615
and to bound 85 — §;5s to the level of Eq.(1.12). In any case, also experimental bounds
on those phases would represent a progress over the present situation, specially having
in mind the applications to CP violating asymmetries in K — 3.

An additional nice feature is that Eqs.(1.45)-(1.48) are essentially free from the
background decay ¢ — K°K%v, leading to the C = even state:

_ |Ks(2)Ks(—2) > +|K1(2)K1(-2) >
= 7 .
In fact, besides being suppressed by the small branching ratio of the originating process
¢ — K°KO [33], the contribution of the |KsKs > state is still further suppressed by
the small K7 branching ratios, while that of the |K K} > state is cut out.

|IK°K°(C = even) >

(1.49)

In conclusion, it should be useful to study the mentioned interferences described
above as an alternative means to measure the CP conserving K® — 37 amplitude.
Clearly, this possibility directly relates to the explicit Dalitz plot distributions which

enable to make appropriate cuts.
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2. K —» 3m: CP VIOLATING EFFECTS

The observation of CP violation in K — 37 would greatly enrich our under-
standing of this, still mysterious, phenomenon.

CP-violation in Ks — 3w decays, even at the level where mass-mixing effects
only are observed, is very interesting, for any deviation of €5 from € is a direct signal
of CPT violation. On the other side, CP-odd charge asymmetries in K* decays would
give a univocal sign of the milliweak nature of CP violation. If current Standard Theory
estimates are correct, the direct CP-violation parameter for K — 2w, €' /¢, tends to
be small because of a cancellation of the dominant penguin diagram contribution with
the one arising from the electroweak penguin diagrams, made relevant by the large
value of the t quark mass. The same two classes of contributions do not cancel in the
asymmetry of K* decays, which then could provide the crucial test of the scheme.

Unfortunately, it turns out that Dagne is still a long way from the crucial region,
with presently foreseen luminosities. As we shall see, the predicted Dalitz-plot slope
asymmetries are in the order of few units per million (subject to a theoretical error
which could be perhaps of a factor 10), while, on purely statistical grounds, Da¢ne
experiments can reach the level of a few units in 10™*. On neutral kaons, Da¢ne
experiments can observe a few Kg — 37" decays [34], enough to establish the effect,
but to a precision unlikely to reveal any CPT anomaly in €5.

Nonetheless, Dagne will improve a great deal on presently existing data (reported
in Table VI limiting to K*), and it is appropriate to discuss in this Report the present
status-of-the-art of this field.

In the following, we review in detail the Standard Theory estimates of CP vio-

lation in charged K decays. Neutral K decays will be considered briefly in the end.

K* decays

One can study CP-odd charge asymmetries, in the total rates and in the linear
slope of the Dalitz plot:

AT  T(K* —3m)-T(K~ — 3n)
o  T(K+ —3m)+ (K~ — 37r)’

and

Ag g(Kt — 3r) — g(K~ — 3r)
29 g(K* —3n)+g(K~ — 3r)

for both 7 (i.e. #¥w¥x¥) and 7' (7t7°7x") decay modes.
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In the presence of direct CP violation, the coefficients in Eq.(1.11) are complex

numbers, and the asymmetry at the center of the Dalitz plot is easily seen to be:

Ag\
(37) -
Im[(201 — a3)*(B1 — 38s)sin(815 — b1nmr) + (201 — @3)* /373 sin(b15 — 82))]
(21 — a3)(B1 — 383 + v/373) ,

(2.3)

A 1 , :
(3%) = -3 X (same expression with y3 — —v3).
9/

Quantities in the denominator are taken in the CP-exact limit and therefore are un-
derstood to be real.

To make contact with the notation of Ref.[7], we set:

(2&1 - (13) = —ac. (24)
1 m2
(,Hl - 5/33) +V3y3 = —#bc (2.5)
K
1 mfr
(,31 - 5,@3) - \/3‘)’3 = ;gb]v (26)

When phases are neglected, ac and bc (any = ac/2 and bn) are the constant and the
linear terms in the K+ — ntatn~ (K* — ntx%#x%) amplitude. The sign convention
adopted in Ref.[7] and in the following corresponds to replace: A(K* — atntn™) —
—A(K* —» mtx*t7x~) in Eq.(1.11). With this convention, the isospin relations are:

bc +by =0; (AI = 1/2) (2.7)
and .
an — iac = 0. (AI < 3/2) (2.8)

Furthermore, lowest order in chiral perturbation theory and the AI = 1/2 rule give:

ac + gbc = 0; (AI =1/2 and O(p?) xPT) (2.9)

Specializing to the 7 slope asymmetry, we obtain:

(ﬂ)r _ sin(815 — 81m) [g_c_ Imfbo —bn) _ - (be = bN)]

2g ac be 2 2bc (2 10)
N sin(81s — 62) a_cIm(bc +bn)  Ima (bc + bw)
ac be 2 < 2bc .
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The r.h.s. of Eq.(2.10) and the analogous asymmetry for 7' decay vanish explic-
itly in the limit in which relations (2.7) to (2.9) are obeyed, since then there is only
one amplitude whose phase can be transformed away [6,35].

The effective Hamiltonian at the constituent quark level consists, in fact, of
various components, transforming according to the (8z,1r), (27.,1r) and (81,8R)
representations of chiral SU(3)xSU(3) (see Eqgs.(1.15) and (1.16)).

For small values of the ¢ quark mass the (8,,85) component, which arises from
the electroweak penguin diagrams, can be safely neglected. In lowest order xPT, a
non-vanishing result for the asymmetry arises from the interference of the (81,1r) and

(271,1r) amplitudes, so that, in this limit, the asymmetry is necessarily suppressed
by the small ratio (see Table V):

w= 212 _ 0045, (2.11)
ay/2

similarly to € /e. When m; increases above 150 GeV or so, the effect of the electroweak
operators becomes non-negligible. The rise of the (8.,8g) contribution is in fact
responsible for the decrease of the Standard Theory prediction of €' /¢, which tends to
vanish for m; ~ 200 GeV. As for the asymmetry, it turns out that the contribution
of the (81,8R) operator increases the prediction of xPT for the Dalitz plot slope, and
decreases the prediction for the asymmetry of the widths. Another source of corrections
to the lowest order xPT prediction is the isospin breaking u-d quark mass difference,
which feeds contributions proportional to the (large) coefficient of the (81,1g) into
the Al = 3/2 channel.

We describe now with some detail the lowest order xPT calculation, accounting
for the electroweak penguin diagram contribution and for isospin breaking corrections
[7,36,37,38]. The first ingredient is the evaluation of strong interaction rescattering
phases. At the centre of the Dalitz plot one finds in xPT [7,9]:

qo0

2 ~/
615 = oz (200 + m3) = 013 (2.12)
Sing = —6y = 32‘;—0&(30 — m2) ~ 0.048 (2.13)
where 3¢ is defined in (1.2) and
4m?2
go=4]1— —=x (2.14)
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The (81,8r) component of the effective Hamiltonian is accounted for by adding in
Eq.(1.18)

L) (5.8 = 2es F2 (AU QU) (2.15)
with @ = diag(2,-1,-1).
In terms of the coefficients c3, c3 and cg defined in Eqgs.(1.18) and (2.15), one

has:*

1 9 2 N 24 12 (2.16)

= ——mgx | —zc2+ —c¢ .

T TR K\ T3 T 9% ) T R
1
be = mm} (co + 26¢3), (2.17)
1 9 9

by = ———mki | - 19¢3 — —=w} -— 2.1

N F;:'FKmK< ¢z + 19¢3 2\/502 IBCZ> e (2.18)
where ;5 ~ 0.25 represents the effect of isospin breaking.
Introducing the dimensionless quantities:
m%
ImL, = Fi Imecs (2.19)
m3, 10

ImLg = FiFy 3 —Imecs (2.20)
ImLs = F.,‘-FK ITTLCS (221)

one can express the asymmetry as a superposition of the ImL; with coeflicients de-
termined by the experimental (real) amplitudes. In turn, the ImL; are derived from
a theoretical determination of the matrix elements of the various components of the
effective Hamiltonian (1/N. expansion [37], or Lattice QCD [39,40,41,42}).

The final expression is then:

A
2_g =sin(é15 — b1a1)— Z ImL;A; + sin(61s — 52 Z ImL;B;, (2.22)
g 4C 538 Cao3s
with: 9 b ;
ac c —bn 2
14+ —=w -~ 67 x 10 2.23
A, <+4\/—w IB)bC+3 bo +7.67 x ( )

* Normalizations are such that ca, —c3 and cg are equal to the coefficients c3, c3

3
F
and cg of Ref.[7], multiplied by TK
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Figure 5: Combined behaviour of the slope asymmetry for K* — =

of € /e as functions of the ¢t quark mass.
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21ac  2bc —bn
g 220 TON L. 2.
As 0bc 5 be 70 (2.24)

9ac | b —by
Ag = 1 be +3 be ~ +5.58 (2.25)
9 ac  lbc +bn
By = ———wp— + -——— ~ —0. .
5 4\/§w IBbc +3 be 0.12 (2.26)
27 ac 2bc + by
=218 227N L 461 2,
B = b 75 e 6 (2.27)
9 b b
Bg = —22C 1 3%C TN | L g.49 (2.28)
4 be be
ImL;

In Table VII we report the values of

. obtained in [7] by combining the
calculation of the short-distance coefficients percf'ormed in [43] (m: = 140 GeV), with
the B-factors computed in Lattice QCD. The two lines correspond to the two possible
solutions for cos § [42], where § is the imaginary phase of the CKM matrix. In Table
VI are reported the corresponding results for the CP violating asymmetries, with the
+ representing the 1o interval (while in Table VII only the central values are shown as
an indication). Also, on the same Table is reported, for a comparison, the asymmetry
resulting in the 1/N¢ treatment of [37], by using there as an input the same value of
€' /€ (for m; = 140 GeV, cos§ > 0) as used in [7]. Finally, Figure 5 shows the combined
behaviour of the Dalitz plot asymmetry for the 7 mode and of € /¢ as functions of the
t quark mass.

As one can see from Table VI, total width asymmetries are estimated to be much
smaller than slope asymmetries.

Eq.(2.10) also allows a simple discussion of possible higher order xPT effects,
which have been advocated in [38] as the source of a two orders of magnitude enhance-
ment of the asymmetry. Essentially, we follow here the discussion of Ref.[44].

Higher order chiral corrections can be important, because they can introduce
further octet effective operators, to give independent phases to the amplitudes of the
two I=1 states. CP violating interference of these two amplitudes would avoid the sup-
pression factor w, Eq.(2.11). Therefore one could naively hope to gain an enhancement

factor F x —.

w
Indeed, with reference to Eq.(2.10), we consider the first term only (the second
one may be neglected as it involves the AI = 3/2 Hamiltonian in an essential way),

and after using Eq.(2.7) we rewrite it as:

Ag 1 ac 2 2
=7 ~ — L Lz I 2.9
(2 )T__ sin(d15 S1nm) [(b + 3) Imbe (3Imbc+1mac>} (2.29)
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The first term in the square bracket is anyway suppressed by the combination of
experimental amplitudes (see Table IV), which give:

ac 2
— 4+ =1 ~0.04 ~ w.
(bc+3> d=w

We can expand the second term according to xPT as:

2 2 (2) 2 (4)
(gfmbc—+-1mac> = <§Imbc+Imac> + (glmbc+1mac> + -

Therefore, the relative size of the correction is represented to a good approximation

by the factor F:

N (%Imbc + Imac)(i)

F (2.30)
(%Imbc + Ima,c)(z)
Coeflicients are such that:
9 (2)
(glmbc + Imac> ~w (Imac)(z) ,
and therefore one derives:
(Imac)(4) 5 31
h w([mac)(z). (2:31)

More precisely, it can be seen that in the decomposition (1.26) of the O(p*) K — 3w
amplitudes, only weak counterterms are relevant to (2.31).

Chiral corrections are seen to be quite reasonable for CP conserving amplitudes,
introducing in that case effects of the order of 40% or less (Table IV). We can make
the assumption that the chiral expansion similarly works also for the CP violating
amplitudes (although not yet verified experimentally, this assumption seems quite
plausible). Thus, the order p* enhancement factor in (2.31) should be expected to be
of the order of F ~ 10 — 20 or so (the upper figure corresponding to the extreme case

(Imac)(4) = (Imac)(z)), which would bring the predictions in Table VI from the 1078
level to the 1075 level at most.

K?° decays

The 777~ 7% decay of the K is in principle not forbidden by CP conservation.
It is so, however, at the centre of the Dalitz plot, where symmetry in pion momenta
forbids the appearance of odd values of the relative angular momenta. 37° decay of
K is altogether CP violating.
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Taking into account the mass-matrix mixing effect, one writes:

A(Ks —» ntr~n% I =1) )
— = 6+6+_0,
A(Ky — ntm—x0)

Nt—0 = (2.32)
and similarly for the decay Ks — 37°, with an analogous definition of 7999 and €000-

Theoretical analyses of the direct CP violation parameters, €}, can be found in
[6,36,37], and they proceed along much similar lines to those discussed previously for

charged kaon decays. In lowest order xPT, one finds:

€} _o = €00 = —2€5. (2.33)

The more recent discussions of [36,37,45] include the electroweak penguin contribu-
tions, as well as higher order chiral corrections. Analogously to the charged kaon case,
it seems unlikely that the lowest order prediction (2.33) can be increased by more than
one order of magnitude. In this case, the K¢ — 37° branching ratio is predicted to
be:

BR(Ks — 37°) = |es2 > BR(Ky — 31°) = 2.52 x 107° |£2|? (2.34)
TL €

For Ks — 7wTn~m°, the problem is the presence of the CP conserving ampli-
tude which can obscure the CP violating one. Since CP conserving and CP violating
amplitudes do not interfere in the total rate due to their different dependences on
the kinematical variables, the effect of (mass-mixing) CP violation in the rate for this
channel is of order |¢|?, bringing it down to the level of ~ 1.2 x 107°.

A possible strategy to search for this effect at the ¢-factory should be the mea-
surement of the interference between Ks and K amplitudes via the proper time
distributions of combined decays of K° and K° into 37 and wlv, at negative time
differences At. This kind of approach was introduced in the previous section with
regard to the determination of the CP conserving amplitude. As emphasized there,
the advantage would be that for At < 0 there is enhanced sensitivity to the K, in
contrast to fixed-target experiments. The expected statistical sensitivity on 73, at
the ¢-factory can be assessed by making appropriate changes in Eq.(1.39), and the
relevant formulae can be found in Ref.[31]. It turns out the statistical sensitivity to
nsx at the ¢-factory is of the order of (7 — 8) x 10723, which is rather far from the
expected value |93.| ~ |e|'2 2.3 x 1073.* Nevertheless, it should still be worthwhile

* Actually, this is not so far from the sénsitivity to 73, of the order of 5 x 1073,
which should be reached at the FNAL E621 experiment [46].
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to make an attempt to improve by this method the experimental upper limits on 73,
which presently are |74 o] < 0.35 and |ng00| < 0.32 [1].

In the decay K — 777~ 7° the mass-mixing CP violating amplitude is sup-
pressed by an angular momentum barrier and by the Al = 1/2 rule, analogously to
the CP conserving amplitude of the Ks decay into the same channel. This CP vio-
lation should manifest itself in the coefficient j of the Dalitz plot (1.10), arising from
the interference between CP-even and CP-odd K; — wt7n~ 7 amplitudes. According
to the estimate of Ref.[47], the order of magnitude should be j ~ 1.2 x 107*, while the
present determination is 7 = (0.11 £ 0.08) x 1072 [1]. Thus, the statistics at Da¢gne
would be somewhat marginal to the predicted value for this parameter. Nonetheless,

a significant improvement of the experimental value should be possible.
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Table captions

Table I: Branching ratios of K — 37 decays, and number of decays at Dagne (in
107 s).

Table II: Experimental value of Dalitz plot parameters in Eq.(1.10) (from Ref.[1]).
Table III: Isospin amplitudes for K — 37 (Eq.(1.11)).

Table IV: Experimental values of isospin amplitudes for K — 3, and comparison with

theoretical predictions from chiral perturbation theory (xPT).
Table V: Values of isospin amplitudes for K — 2.

Table VI: Experimental values and theoretical predictions for the CP violating asym-

metries in 7 and 7' decay modes.

Table VII: Theoretical predictions (from Ref.[7]) for the CP violating parameters de-
fined in Eqgs.(2.19)-(2.21).
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TABLE I
Integrated Luminosity : 5 x 10%%cm 257! x 107s
channel BR 1 yr Dagne present statistics
K* - r¥rEin¥ | 5.59 +.05% 5.0 x 108 108
K - nxx%20 | 1.73 + .04% 1.5 x 108 5x 101
K, —»ntr nY [12.38 +.21% 1.4 x 108 5 x 10°
K — ©°x’z% | 21.6 +.08% 2.4 x 10° 10°
Ks—mtrmn’ | <4.9x 107° | (3.4 - 6.8) x 102 6 x 10°
TABLE II
[ channel (++-) (+00) (+-0) (000)
T(10°s"1) | 4.52+0.04 |1.4040.03|2.39+0.04 | 4.19 & 0.16
g —.2154.0035 | .594 £ .019 | .67 +.014 -
h 012 +.008 |.035+.015 | .008 + .007 —
Tk .01 £ .003 - .01 £ .002 -
TABLE III
constant | linear | quadratic
Al =1/2 ay B 1, (1
Al =3/2 as B33 | €3,65,(3
TABLE IV
Units 1078
exp. fit xPT O(p*) xPT O(p*) 1/N O(p*) VMD O(p*)
Ref.[10] |Egs.(1.22),(1.23) | Ref.[10] | Ref.[23] | Ref.[24] | Ref.[25] | Ref.[18]
a;| 91.7+.3 74.0 91.8 input 88.8 92 68 ~ 65
B | —25.7+.3 —16.5 —25.6 input -26.5 | —26 | —24~ —26
¢ | —.47+.15 — ~.6 —~.47 + .18 —~.2 —~.2 -2~.0
6] -1.5+.3 —~ -1.5 | -1.58+.19 | -.9 -8 | -1.3~-09
az | —T74+ -5 -4.1 ~7.6 input —5.6 -5.9 -
B3| —2.4+ .4 ~1.0 -2.5 input -1.9 1.4 —
3 2.3+.3 1.8 2.5 input 2.5 2.4 -
G| —.21£.08 - -.02 [ -.011£.006] —-.01 —.01 —
&3] —1%+.2 - —~.05 | .092 +.030 .02 .00 -
T —2%+.5 | — —-.08 | -.033+£.077| .08 - -
TABLE V
exp. fit - xPT O(p?) | xPT O(p*)Ref.[10]| Units
4699 + .0012 .4698 .4698 KeV
a/2 :
_TSJ/T 0211 +.0001| .0211 0211 KeV
8, — o -61.5+4 0 -29 degrees
ca/F2 .95 .662 + .005 107
s/ F2 —.009 —.0083 + .0002 1077
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TABLE VI

exp. data

Ref.[7] cos(8) <0

Ref.[7] cos(8) > 0

Ref.[37]

(-1.40 + 1.06) x 1072

(-.8+£.3)x10°°

(-1.54+.5) x 107°

(=1.8%.6) x 10°°

(.07 + .12) x 1072

(-2.7+£1.0) x 1078

(-5+£2)x10°8

- (.54 .2) x 1075 (L.0+ .4)x 107° —
(0.0 4+ 0.6) x 102 (11+.4)x 1077 | (2.0+£.8)x 1077 —
TABLE VII
ImLyj/ac | ImLs/ac | ImLg/ac (Ag/29)-
cos(6) < 0[31x107°[1.9x 1077 | -22x 1077 | —.8x 10°°
cos(6) >016.1x107°[3.8x 107 7| -43x 1077 | —1.5 x 107°



