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Abstract

Starting with a most general N = 3 superfield extension of KdV equation and requiring
the existence of both a higher order conservation law for it and a proper reduction to
N = 2 super KdV equation we deduce a new N = 3 super KdV equation which is a
unique candidate for being integrable. Upon reduction to the N = 2 case it yields the
recently discussed “would-be” integrable version of N = 2 super KdV equation. It can
be interpreted as a Hamiltonian flow on some contraction of the direct sum of two N = 3

superconformal algebras.
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1. Integrable supersymmetric extensions of the KdV hierarchy are expected to have
important applications in 2D supergravities and the related matrix models (see, e.g. [1]).
They can also bear an intimate relation to superconformal (super Virasoro) algebras via
their second Hamiltonian structure, like the ordinary KdV equation is related to the
Virasoro algebra [2].

In refs. (3-8] N =1 and N = 2 supersymmetric KdV equations have been constructed
as Hamiltonian flows on N = 1 and N = 2 superconformal algebras, and their integrability
properties have been studied. In the N = 2 case the Hamiltonian approach gives rise to a
one-parameter family of equations, however only for two selected values of the parameter
the relevant equations have been found to be integrable (7], that is possessing a Lax pair
representation and an infinite set of the conserved quantities. For one more value of the
parameter the N = 2 KdV equation still admits higher-order conserved quantities, but
no Lax pair in the standard form [8]. Despite the latter circumstance, this case was also
conjectured to be integrable.

It is interesting to construct and analyze along similar lines higher N superextensions
of the KdV equation. Some preliminary results for the N = 3 and N = 4 cases (however,
without any discussion of the integrability issues) have been given in [9, 10].

In the present letter we address the question of existence of the first non-trivial higher
order conservation law for the most general N = 3 super KdV equation. We show that
requiring the existence of such a conservation law together with assuming a reducibility
to the N = 2 super KdV family upon the reduction N =3 — N = 2 unambiguously fix
all the unknown coefficients in this equation. The resulting equation, in contradistinction
to the lower N cases, cannot be obtained as a Hamiltonian flow on the relevant (N = 3)
superconformal algebra. After the reduction to N = 2 it yields just the special would-
be integrable case of the N = 2 super KdV equation discussed in [8]. It contains, as
its bosonic core, the coupled system of the ordinary KdV equation for the dimension
2 scalar field u(z) and a matrix modified KdV equation for the SO(3) triplet of the
dimension 1 fields v*(z). We show that the N = 3 super KdV equation constructed can
be given a Hamiltonian interpretation with a contraction of a direct sum of two N = 3
superconformal algebras as the second Hamiltonian structure.

2. As the basic object of N = 3 super KdV equation we choose a dimension 2 spinor
N = 3 superfield J(Z2)

J(2) = $(2) + 8'0'(2) + 6°7°¢(2) + 6%u(2) (1)
where Z = (z,8%),i = 1,2,3 are the coordinates of N = 3, 1D superspace,
3 _ 1 kjinigiok 3-i _ 1 kjigiok
6° = =€7'0'0°6" |, 6° = —€*'470 (2)
6 2
and the components ¥(z), v'(z), £(z), u(z) constitute a minimal N = 3 supermultiplet

containing the KdV field u(z).

Under natural assumptions of N = 3 supersymmetry and SO(3) symmetry the most
general N = 3 super KdV equation is of the form

Je=A(J) (3)



where A is a linear combination of all possible terms with proper dimension (7/2) which
can be constructed from the superfield J(Z) and covariant spinor derivatives of the latter.
Explicitly, it is the six-parameter family of equations

Jo = —Jewet a1 (JDY)_+a;D*(JU,) + asD° (DD
+aq (D'J) D*7J + asJ (D'IDY)_+ aele (D'IDY) (4)
where . d | . 0 . ..
Di=om—fo {D, D'} = ~28%5, , (5)
D3 — %eijkD:'DjDk , D3—i — _;_eijijDk , DS-l'j — eijka

In order to reduce the number of parameters we from the beginning impose the re-
quirement that upon the reduction to the N = 2 case eq. (4) goes over to the known
N =2 KdV family

a-—1

B = ~Beee +3(ED1D28), + —— (DID@?): +3a3%®, (6)
which is integrable for a = —2,4 and “would-be” integrable for ¢ = 1 [8].
This requirement amounts to the following relations between the parameters a,, .. ., ag:
1—
ai=3 , az= 20, , ag=0 , 2a5+ag=3a |, (M

Thus the N = 3 super KdV equation we will consider contains three undetermined pa-
rameters

l1—a

2
+%(3a — ag) J (D'UD)_+asle (D'JDYJ) . (8)

Jo = —Juwa+3(ID)_+a:D*(JL) + D* (D'JD'J)

Now we wish to inquire whether this three-parameter family of equations yields in-
tegrable systems for some specific values of the parameters. Here we do not concern
the question of the existence of the relevant Lax pair. Instead we search for the first
non-trivial higher order conservation law.

The simplest candidate for the higher order conserved quantity is an integral of dimen-
sion 5 over N = 3 superspace with the integrand constructed from all possible independent
densities of dimension 9/2, each multiplied by an undetermined coefficient

Hs = / dzd*0{A1JD* T, + ApJ D I D I,y + Asd Judos + A J DD
~ +AJI. DD + A JD ID' IDYT + J (D‘JD‘J)z} . (9)

The coefficients are then fixed by requiring the integral to be time-independent when J(Z)
is subjected to the equation (8),

(H5)t - 0 .



This also must fix the values of parameters a, a;, ag in (8).
After tedious though straightforward calculations one finds that all coefficients in the
integral (9) and in eq. (8) are fixed at the unique values
5 5 5 20

A1=—-5,Az=—§,A3=§,A4=10, A5=§, A6:'3— (10)

(1:1,(12:0,(13:0 , (11)
thus implying that in the N = 3 supersymmetric case there exists only one superfield
extension of the KdV equation which possesses a nontrivial higher order conservation law

Jo = —Jeaa +3(JD%J) + %J (piypiy) . (12)

It is curious that after reduction to the N = 2 case this equation goes over just to the
exceptional N = 2 super KdV equation with parameter a = 1.
For completeness we write also the first two lower order conserved quantities of eq.

(12) !
H = / dzd8J
Hy = [dzd (JD3J+%JD‘JD‘J) (13)

Passing to the discussion, let us first stress that we have started from the most general
N = 3 superfield equation (4) with the only extra demand of a proper reduction to
the N = 2 case. It seems very intriguing that under such general assumptions we were
eventually left with the unique candidate for the integrable N = 3 KdV equation.

Secondly, recall that even for the N = 2 super KdV equation the integrability at
a = 1 is an open problem due to lacking of the standard Lax representation in this case.
The problem of proving integrability remains, of course, in our case too. Up to now we
know only the first non-trivial conservation law for the equdtion (12). Let us point out,
however, that the set of equations that must be satisfied by the coefficients a, a;, A; is
highly overdetermined. There are about five times as many equations compared to the
unknowns. So the very existence of this first nontrivial conserv ation law is a strong
indication of the complete integrability of the corresponding equation.

Finally, we write down the bosonic core of our N = 3 super KdV equation (12) (by
putting all fermions equal to zero)

U = —Ugzz+3 (u2 - '1)"11;,:B + uv"v") ‘
o= —vi__+3 (uv‘) + 3vivivl | (14)
where ' '
v =DJ| , u=7DJ|

We see that the bosonic subsector of our N = 3 super KdV equation consists of the
two coupled equations — the KdV equation for the scalar field v and a three-component
generalization of the mKdV equation, both with the extra mixed terms in the r.h.s. These



equations cannot be decoupled by a redefinition of u. While the first equation is a kind
of the perturbed KdV equation, the second one can be viewed as a perturbation of the
equation

vy = Vg, + 30 (v7)s, (15)
which is a particular case of the general SO(3) matrix mKdV equation

Vg = —Vzgz + Al[v: vzz] + B, (vZ) + Cv (vz)z y V= v'rt ’ (16)

7* being Pauli matrices and A, B, C arbitrary numenca.l coeflicients. Eq (3.11) arises
under the choice 3

A=B=0, C=§. (17)
Note that in ref. [11] the integrability has been shown for another particular case of
eq.(16) corresponding to the option

A=1, B=-C= -

=1, B= =5

Our consideration suggests that, being extended to a coupled system including a KdV-
type equation, this matrix mKdV equation can be as well integrable for the choice of
parameters as in (17).

3. Our last topic will be the discussion of how N = 3 super KdV equation (12) can
be reproduced in a Hamiltonian approach.

It is a crucial novel feature of this equation compared to the N =1 and N = 2 super
KdV ones that it cannot be obtained as a Hamiltonian flow on the relevant, i.e. N =3,
superconformal algebra. Indeed, the only conserved quantity which has the appropriate
dimension for being the Hamiltonian in the case at hand is Hj defined in eq. (13). The
equation produced for J by this Hamiltonian via the Poisson structure forming an N = 3
superconformal algebra [10]

{J(2),5(2)}, = [-;—D‘"’ - %Ja + %D‘JD‘ + 8.]1 AZ -2 (18)

where we denoted

A(Z - 2') = é % (g — 67)(67 — 67')(8* — 6%')8(z — )
is as follows o
Jo = —Jeee + 3 (JD°J)_+D*(JOJ)+ (JDUDT) . (19)

But this does not coincide with (12) and is just one of the non-integrable cases of N = 3
super KdV: though Hj is still conserved quantity for eq. (19) (as well as for eq. (12)), Hs
is certainly not.

Thus in order to give a Hamiltonian interpretation to the equation (12) we have to
. examine the question of existence of another Hamiltonian structure for this system.
Our proposal is to introduce one more dimension 2 spinor N = 3 superfield J and

to re-obtain (12) as a closed subsector of some Hamiltonian system of equations for the
extended set of superﬁelds J, J.



It can be easily checked that under the following Poisson structure
{J(2), J(2")}, =0

{J2), 12}, = [%D"——;-J8+%D‘J'D"+6J] AzZ-2z) ()

7 T 7! _ i _ l T l I o '] o
{i2), iz}, = [12173 SJ0+ SDD + 07| A(Z - ')
the Hamiltonian ) o )
H= / ded®§ (2JD*T ~ JD'ID'T — 477 J.) (21)

gives rise for J to the N = 3 super KdV equation(12).

So we have succeeded in interpreting our N = 3 super KdV equation as a Hamiltonian
equation in the framework of an extended system which includes the additional superfield
J. It is worthwhile to emphasize that in this approach the KdV superfield J generates
a commutative translation superalgebra instead of N = 3 superconformal algebra; the
crucial point in deducing eq.(12) from the Hamiltonian (21) is that J behaves as a quasi-
primary superfield with respect to an extra N = 3 superconformal algebra generated by
J. This manifests itself as the presence of a nonvanishing central charge in second of the
relations (20). It is easy to show that (20) can be obtained as a contraction of a direct
sum of two N = 3 superconformal algebras with independent central charges.

Let us finally note that almost all known systems with N = 3 supersymmetry respect
as well N = 4 supersymmetry. Thus, the above doubling of fields could perhaps be
interpreted as an extension of our N = 3 multiplet of currents to the N = 4 one or at
least as coming from a contraction of the second Hamiltonian structure for N = 4 super
KdV equation. This question certainly warrants further investigation.

4. In this letter we have demonstrated that in the case of the N = 3 super KdV
equation the standard second Hamiltonian structure based on N = 3 superconformal
algebra results in a non-integrable system. We have deduced another N = 3 super KdV
equation by considering the most general N = 3 superextension of the KdV equation
and checking the existence of the higher order non-trivial superfield conserved quantity
for it. It is remarkable that there exists a unique N = 3 superextension of the KdV
equation which possesses such a non-trivial conserved quantity. After reduction to the
N = 2 case this equation turns into the exceptional N = 2 super KdV equation (with
parameter a = 1) the integrability of which is under investigation [8]. Thus the N =3
superfield equation constructed is a good candidate for integrable N = 3 super KdV
equation. Respectively, its bosonic core (a new system of coupled KdV and matrix mKdV
equations) has also a great chance to be integrable.

We have proposed the Hamiltonian structure for our N = 3 super KdV equation. It
appears as some contraction of the direct sum of two N = 3 superconformal algebras.
It is an open question whether this structure can be somehow related to N = 4 super-
conformal algebras. So it seems very interesting to construct possible integrable N = 4
superextensions of the KdV equation.
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