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ABSTRACT

The diffraction transform solves both the direct and the inverse scattering problem for
the Helmholtz equation. Its kernel is itself an integral. It is the representation of the evolution
operator associated with translations of a constrained Cartesian coordinate. The corresponding
momentum operator is, consequently, non—Hermitian. This fact threatens the inverse scattering
problem with a divergence if the transform kernel is understood as a Cauchy integral. The
kernel is, however, everywhere convergent if its integral representation is interpreted as a
Cesaro summable integral. Taking a Bjorken type limit of the Cesaro representation leads to
the summability of the divergent kemel with respect to a spectral measure. This accords well
with the general solution of the scattering problem in which such spectral functions are
admissible. The use of variously motivated cut—offs and other ad hoc filters to enforce
convergence is therefore highly contrived.

PACS number(s): 42.30.Wb, 02.30.Lc, 42.10.Hc, 42.30.Kgq.

1. - INTRODUCTION

In classical physics, diffraction is essentially a boundary value problem associated with a
linear wave equation [1]. According to this picture, a diffractive object (or target) is no more
than a passive geometrical obstacle in the path of the incident wave (or projectile). The
incident wave field is specified as a boundary condition over the target profile. Because of the
linearity of the wave equation, the scattered field is obtained as an integral transform of the
incident field. This is the so—alled direct scattering problem. The inverse problem consists in
the recovery of the incident field, given the scattered field configuration. This solution
provides information about the target profile geometry [2-5]. Therein lies the importance of
the classical inverse scattering problem. There are in fact important applications (e.g.
diffraction tomography [6], optical information processing and, more generally, Fourier optics
[71) which make extensive use of classical diffraction theory. This theory is, however, saddled
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with a long—standing, apparently unyielding, divergence problem [8, 9]. The problem is
evaded, especially in applications, by recourse to filtering methods [6, 8, 9]. These filters are
usually nothing else but cut—offs studiedly chosen to enforce convergence. They are essentially
contrived regularization methods. However well they are physically motivated, cut—offs
obscure, at least, in part, the essential dynamics. To avoid this, the divergence problem has
therefore, to be approached differently, particularly in view of the many applications of the
theory. This is the purpose of this paper. We propose to show that the divergence in question is
spurious. By this we mean, firstly, that if no simplifying assumption is made regarding certain
spectral properties of the theory, then the divergence just does not occur. Secondly, even when
the simplifying assumption is made, the divergence occurs only in a context where all integrals
in the theory, independently of the formal manipulations which lead to them are naively
assumed to be Cauchy summable. The latter is, in general, not true. In particular, it is not true
of the inverse integral transform which solves for the incident field in terms of the scattered
field in classical diffraction theory [8, 9]. It is the Cauchy divergence of the kernel of this
integral transform which constitutes the unsolved problem of this theory. We shall show that if
this and other integrals in the theory are interpreted as Cesaro integrals [10, 11, 12, 13], then
the divergence does not exist. Put differently, the Cauchy divergence is regularized by means
of Cesaro summability. Cauchy integrals form a sub—class of Cesaro summable integrals. By
taking a Bjorken type limit [14] of the Cesaro representation we show that the transformation
kernel is also summable with respect to a gaussian spectral measure. The general solution of
the scattering problem admits a large class of such spectral functions.

The paper is organized as follows: in Section 2 we review briefly the classical diffraction
theory in terms of solutions of the Helmholtz equation. In Section 3 we examine the
symmetries of the problem and their consequences. Section 4 implements the regularization of

the diffraction transform kernel using the Cesaro summability procedure. Section 5 contains
conclusions.

2. - DIFFRACTION TRANSFORMS

Consider a scalar field wy(t, x), associated with a mass parameter m, and satisfying the
Klein—Gordon equation {15]

a2 . 4
(-8—3—V2+m2)w(t,x)=0 ey
t
where
3 92
Vis= —_— ‘ 2
}'§1 ot )

. . . . —._) . . .

is the Laplace operator in 3—space with coordinate vector x . It will be convenient in what
follows to view this space in terms of two—dimensional plane slices orthogonal to the z-axis. A
point on each such slice is described by the position z of the plane along the z-axis and a 2—
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- -
vector coordinate b (the impact parameter) on the plane. Thus, the 3—vector x is decomposed
. - — . :
into x = (b, z), and will be so understood throughout the rest of this paper.
Now, let us look for monochromatic solutions

y(tx)=e @ ox) (3)

of Eq. (1). Substituting (3) in (1) yields the Helmholtz equation.

(V24K 0(x) =0 (4)

K =0’ -m (5)

Eq. (4) is to be solved with the boundary condition
o(b, z=2,) = ¢,(b) (6)

The search for this solution in the half-space z 2 z, constitutes the direct exterior problem
while in the half-space z < 7 it becomes the direct interior problem. The exterior and interior
solutions are related by a reflection principle (i.e. parity) as will emerge later (cf. Fig. 1). It is
therefore sufficient to concentrate on the direct exterior problem.

In each half-space z 2 Z,0rz<7z, there are two linearly independent solutions ¢ . (x) of
the Helmholtz equation: the one, e.g. ¢.(x), is the regular solution in the half-space z2z ; in
the sense that it tends to zero for z — oo, We will also refer to it as the outward propagating
solution. The other @ (x) is the singular solution. It does not vanish for z — e, but rather for
z — — oo, It is the inward propagating solution. @, (x) and ¢_(x) interchange roles in the half-
space z < z,,, i.e. ¢_(x) is there regular and outward propagating while ¢ (x) is singular and
inward propagating (see Fig. 1). To obtain these solutions, substitute the two—dimensional
Fourier transform

LoD
ob,2)= Ja?qe 9 ® f(q,2) (7)
into Eq. (4) to get the equation

>
[Q +p <q>} fq.2)=0 ®

where

p’(@) =k - ¢’ ®
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like k? in Eq. (5) is not necessarily positive. Define the two real momentum variables

p(@:=VK2-q® pX@20 (10.4)

p,(q) = VK pA@<0 (10.i1)

The inverse
f(q, 2) = 1 J.dzb el q-b o(b, z) (11)
@Qn?
of Eq. (7) will also be needed.
¢-(25°¢) 9.(25°¢)
et >
2o-¢ Zq Zo%¢
¢¢(Zo‘§> w-(zo’()
— ——]

FIG. 1 - Illustration of the reflection principle (Eq. (37)). ¢ (b, z, £ £)and @ (b,
z,¥ C) are mirror images of each other with respect to the plane at'z = z,,.
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Two linearly independent solutions of Eq. (8) are
£, 2) =0 (- g*)a,@e D%+ 0 (g™ k) b,(q) e'Po? (12)

The coefficients a (q) and b,(q) are arbitrary functions of (—1) They may be fixed by
boundary conditions. Since Eq. (8)_is of second order, two boundary conditions are necessary
to determine these coefficients. The one boundary condition in Eq. (6) is therefore not enough
to determine them. This is in itself not bad because it leaves room for a very general treatment.
The essential step in this treatment is to invert Eq. (12) and solve for a (q)and b,(q) in terms of
f,(q, z). The general way to do this is to introduce a probability distr_i)bution or spectral
function p(q, z) [16] in the variable z and dependent, in general, on q. The distribution
function p(q,z) is normalised, i.e. )

+o00

[ dzpg,n=1 (13)

and is assumed to be such that its characteristic function

400

w(@, p) = Jdzp(q, 2) P (14)

exists for all complex p and is finite for | p | < oo.

Now, taking the average of both sides of Eq. (12) with respect to p (q, z) and making use
of Eq. (14) and Eq. (11) for f + (g, b) yields the inversions

400

2 R e 4
e(kz—q2)ai(q)=e(k2*1> 1 szbe’“q'b J' dzp @7 @b,2) (150

w(q,1p)  (21)?

400
Bk 1 2, Fiq-b .
w(q, £ip) (27)? d*betd Jo dzp(q, 2) ¢,(b,z)  (15.ii)

8(q>-K*)b,(q) =

~

With the help of the spectral function p(q, z), one thus expresses a,(q) and b, (q) in terms of .
the averages of ¢_(x) and not in terms of the boundary conditions on them. Egs. (15) therefore
involve global constraints. p(q, z) is introduced here on quite general grounds. Its role is,
however, essentially that of a physical filter. It is not an ad hoc filter but rather a dynamical
function which incorporates implicitly external constraints of which boundary conditions are

special cases. Making use of Egs. (15) in Egs. (12) and (7), one arrives finally at the
homogeneous integral equations



0,00 = J&®x D, (x| x) @, (x) (16)

where

J 5367
Dy(b.zl b, 2)=—5 Ja’q p(, )™ 4 7).
- n)

. [9( K-q*) tip z | 6( ) P,z 17)

wgtp) ¢ ' T wigHp)

To arrive at Eq. ( 16Lwe have interchanged the order of the g—integration coming from Egs.
(15) with that of the q —integration coming from Eq. (7). This interchange is usually [8,9] held
responsible for the divergence in D, (x | x') which arises when one makes the special choice

Po(@2) = 8(z - z,) - (18)

of the spectral function. This is an important point and will be taken up more fully in sect(4).
po(q, z) allows to relate a,(q) and b,.(q) directly to the boundary values ¢, (b, 2 of (pi(x) on
the plane z = z,. The integral equation in Eq. (16) is equivalent to the Helmholtz equation.

Note the following properties of the kernels D Lx I

+o0
J.dz D.(b.z| b,2) =8P - b") (19)
Jd3x’ D, (x|x)Dyx [x) =Dy(x| x") e

Egs. (19) and (20) hold independently of the explicit form of p(q, z) . Eq. (20) makes it clear
that the matrices Di(x | x") have no inverse in the sense that there do not exist matrices
ﬁ ,_r(x t X} such that the relations

4

jd3x' D (x | x) I/\)t(x' | x) = 8(3)(x —x") 21)

hold. In other words, the operators D,, with matrix elements D,(x | x'), are projection
operators. With the choice of p (q, z) in Eq. (18), D,(x | x') become

D,(b,z| b, 2)=8z-2)G,(bz| b',2) (22)



where
j LD D =
G,b.z| b,z)=—1 Ja?qetl 4P -b),
: @)

° [e (kz_q2 ) e_—*-—ipl (Z—Z,) + e (q2__k2 ) elp2 (Z—Z,) } (23)

But there is more: G (b z| b, z') can be interpreted ‘as the matrix elements G i z| z)b b
G (b, z| b', z') of the forward (+) and backward (-) evolution operators G (z[ z'). From Egs.
(22) and (19), G 4 z| z) reduce to the identity operator i.e.

Gzl =1 - (244)
or in matrix form
G,b.z | b,2=5?@® - b | (24.ii)

Secondly, G;_l( z| Z) = Gi( z | z) are the inverses of Gi( z| Z)ie.

Gzl 2)G(z] »=1, (25.4)
equivalently
J-dzb' G,b,z | b,2)G,0,2 | b, 2=8P@®-b") (25.ii)

We also have the group closure property

G,(zl )G (2| 2)=Gy (2] 2 (26.4)

In terms of matrix elements, (26.1) becomes [17]

Jev G0, 216, 2)6,0, 7 | b, 29 =G0,z | b, 27) - (26.)

In Egs. (24)—(26) , the parameters z, z', z" are not subject to any ordering restrictions such as
2>7 27" or 2 < 7' < 7. It is this fact which allows for the existence of the inverses of
G, (z l z)) and ensures that one is dealing with groups rather than semi-groups.

B Substituting from Eq. (22) into (16), one obtains the so—called diffraction transforms



0, (b, 2) = J b Gy, z | b, 2) g b, 2) 27)

On account of Eq. (25), for any fixed pair of parameters (z, z') these transforms have an
inverse, i.e.

0, (b, 2) = J'dz bG, (.2 | b, 2)gb,2) (28)

The structure of Egs. (27) and (28) coincide on account of the equality G;l(zl z):=G i(z' I 7).
Thus, for any fixed pair of parameters (z,z') the diffraction transform opErators G,(z, 2') are
involutory, that is, they satisfy Eq. (25.1). This fact has, in the past [8,9], received little or no
attention. This is so because, according to Eq. (23), the kernel G (b, z | b, z) in Eq. (28) is
divergent for z' < z. This behaviour is so different from the convergence of G(b , z | b, z)in

Eq. (27), for z' < z, that Egs. (27) and (28) have been regarded as different. They are not. First
of all, the divergence can be eliminated, so that both Egs. (27) and (28) can be understood to
hold for all values of z — z'. There is also a symmetry underlying the equivalence between Egs.
(27) and (28). This equivalence ensures that the diffraction transform solves both the direct and
the inverse scattering problem for the Helmholtz equation. This is another statement of Eq.
(25). We next proceed to examine the symmetries of the system.

3. - SYMMETRIES AND THEIR CONSEQUENCES

The Helmholtz equation is invariant under rotations in 3-space, as well as under
translations

- - -
T,:Xx > X =X+ A (29)
and parity
- - -
Px -5 x' 1 =-x (30)
This means that if ¢(x) is a solution of Eq. (4) then the functions
0,(x) = T,0(x) = p(x = 1) (31)

and
Pp(x) := Po(x) = ¢(-x) (32)
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are also solutions. We shall restrict attention to only these two symmetries. They are the most
relevant in the situation of overall axial symmetry of the coordinate system x = (b z). In

particular, we shall consider the actions of these transformations mainly on the variable z and
on functions thereof.

To see the consequences of these symmetries, first note, from Eq. (14), that if the
probability distribution is z—parity invariant {18] that is,

p(q.2) = p(q, - 2) (33)
then

w(q,p) = w(q, —p) (34)
Consequently, from Eq. (17) one finds that

D (x Ix)=D (x'Ix) (35

Making use of (35) in (16) then leads to the relationship

Po, (x) =¢; (x) (36)
An equivalent way of expressing Eq. (36) is in terms of the reflection principle

9,(b, Z+0)= ¢ (b,2— ) —co <[ <+oo (37)

which represents the effect of a parity operation about the plane at z.
In terms of the operators D 4 one rewrites Eq. (35) as

PD_P=D_ (38)

A further restriction of fp (q, 2) is required so that D,(x | x') would be translation 1nvar1ant not
only in the 2-vector b but also in z. Making use of (29) in (17) for infinitesimal k the
restriction is easily found to be

M, (b,z|b,2) Db,z | b2)

— =0 39
0z oz (39)

To arrive at Eq. (39) we have also made use of the equality

~

Di = DI (40)

where the symbol (~) stands for the transpose operation._*T{imslation invariance implies that
D i(x Ix) =D, (x - x') is a function of only the difference x —x'.



-10 -

With the choice of p (q, z) in Eq. (18) we now have, in place of Dy, the operators
G4 (z12') (cf. Egs. ((24)—(26)) and in place of Egs. (38) and (40), respectively, the relations

PG, (z|2)P= G.(zlz) (41.)
G:(217) =G (z12) (41 ii)

The two components () of Eq. (27) are therefore parity transforms of each other.
Alternatively, given Egs. (41), Eq. (28) can also be read directly from Eq. (27) and vice versa,
whence their equivalence. Lastly, note that the evolution operators G+ (z | z') satisfy the
equation

82Gi(z| 2)

57— =H Gy(zl 2) NG

where, in E)—space, the Hamiltonian H is given by
2, N
H(b)) = - (_Vb +k ) (42.i)

2
with V_ the two—dimensional Laplacian. On the basis of Egs. (24) — (26), Eq. (42) may be
interpreted as a reversible evolution equation for the transition probability amplitudes
Gyb, z | b, z'). In such an interpretation z acts as a random sampling parameter and

- —
B(z) :=b (43)
as the value of the random variable ﬁ(z) at parameter value z. The function defined by

Gyb,z | b,2)=G4B@=b,z | B@)=b.2) (44)

is then the conditional probability amplitude of finding §(z) at z, conditional on its value §(z‘)
at z'. Eq. (24) gives the initial condition for G (B(z), zl B(z), z). Eq. (26), the group closure
property, corresponds to the Chapman—Kolrr_logorov equation. Translation invariance (in z)
means that the random process is stationary i.e.

Gi(B(z+l) , z+}.| B(z+\), 2'+A) = G4 (B(2),z | B(z),7) (45)
The behaviour of Gi(B (2),z l B(z'), 2') under parity (cf. Eq. (41)) expresses only reversibility,
ie.

G,(B(-2),~z | B(-2),-2)=G4(B(z).Z| B(z),2) (46)

and not parity invariance.
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A stochastic process, reversible and stationary in time, was first invoked by Nelson [20]
to derive the Schrodinger equation from classical mechanics and probability theory. Our
interpretation of Eqs. (24), (26) and (42) is in agreement with Nelson's idea regarding the
intimate relationship between quantum mechanics and classical mechanics combined with
probability theory. The direct exterior problem for the Helmholtz equation in the half-space
z2z, 18 in fact easily seen to be equivalent to the Schrodinger equation with an infinite
potential barrier at z=z,. The solution of the classical problem can therefore al§0 be obtained
quantum mechanically. The difference with the approach of Nelson is that one starts here with
the Schrodinger equation itself (Eqs. (42)) and then arrives at its classical probability
interpretation through Egs. (24) — (26).The principal consequence of the constraint z > z,, for
the quantum mechanical problem is that the generator of translations in z is not a Hermitian
operator. Classically, this is manifested in Eq. (12) by the existence of the two real momentum
variables p,(q) = k?—q? (K2 q2 yand p(q) = q2 -k (k%< q2 ) in the solutions f (q,
z) of Eq. (8). The component of the fields f ,(q,2) with momentum p, (q) is referred to as the
homogeneous wave and the component with the momentum p,(q) as the inhomogeneous or
evanescent wave. The combination of these two components in the solutions f_(q, z) leads to
the fact that, although the evolution operator G,( z Iz' ) possesses the inverse G—:( z]z) =
G,(z | 2), it is not unitary, that is, G,'( z| z) % G| (z |2), where (1) stands for the adjoint
operation. This is easily checked from Eq. (23). The lack of unitarity of G+(z Iz') does not
mean, however, that the dynamics is necessarily irreversible. In fact, the equation of motion
(the Helmholtz equation) is z-reversible. Microscopic reversibility is represented, in terms of
the two independent solutions ¢_(z) of the equation of motion, by the reflection principle in
Eq. (37). We illustrate this sch;matically in Fig. (1) {18]. Eq. (37) ensures that the field
configuration at the plane g +{ is the same as that of its mirror image at the plane
2 — § (=00 < { < +00), with the image fields propagating in directions opposite to those of the
object fields. The overall field configuration (object plus image) is therefore parity invariant.
The symmetry between object and image fields is, of course, broken if one is interested in the
scattered fields only in the half space z2z,. In particular, if the interest is only in the outward
(9,(2)) or inward (¢_(z)) propagating field in the half-space z2z,, then the evolution of this
field is irreversible. Irreversibility corresponds, in this situation, to the break—-down of parity
invariance by the boundary constraints. In this case, the original group defined by Egs. (24)-
(26) splits into two isomorphic semi-groups generated by G (z1z')and G (z1z').

4. - CESARO SUMMABILITY OF THE DIFFRACTION TRANSFORM KERNEL

We return, in this section, to the principal concern of this paper, viz, the elimination of
the divergence in the diffraction transform kernels G (b, z| b, z'). We recall that the
divergence occurs in G_(b, z | b, z') for z < 7' and in G (b, z| b, z') for z > z'. We have

elaborated on the claim that this divergence is spurious. The claim is based on the observation
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that it is the special choice of the spectral function p(q,z) in Eq. (18) that is responsible for the
divergence. From Eq. (12) alone, this special choice is not given a priori, either by dynamics
or by symmetry arguments. The general inversion formulae which follow from Eq. (12) are as
given by Egs. (15). An argument for the position in Eq. (18) would be simplicity. But the
simplicity argument soon encounters the problem of whether the interchange of the order of
integration leading to Eq. (16) is legitimate or not. In order to arrive at Egs. (16) and (27) one
has to face up to this problem. It is not this interchange by itself which is responsible for the
divergence but rather the interchange togheter with the particular form of p (q, z) in Eq. (18).
To understand this, note that there is enough freedom in the choice of the spectral function to
allow for this interchange and consequently guarantee the convergence of the resulting
integral. Put differently, the spectral function p(q, z), present in the theory on general grounds,
also defines the summability of the integral representation in Eq. (23). From this point of view,
the special choice of p (q, z) in Eq. (18) which leads to Eq. (23) is not completely innocent: it
is precisely that element in the class of spectral functions p (q, z) which corresponds to Cauchy
summability. Formal manipulations of Cauchy integrals (e.g. interchange of order of
integration) are notoriously suspect because they cannot always be expected to yield resultant
integrals which are summable in the same way as the composite integrals. More to the point,
no integral has a value (finite or infinite) unless one has been assigned to it by means of a
consistent definition. This is the fundamental thesis of summability theory [10]. Eq. (17) is,
for this reason, much more than the generalization, in the physical sense, of Eq. (23). It is also
the summability of the latter defined by the spectral function p (q, z). The spectral class is
adapted to define a summability procedure by the requirement that p, (q, z) in Eq. (18) be also
the limit of any given p (g, z) when certain control parameters in the latter are allowed to
approach zero. The non—vanishing of these parameters defines a summability method different
from that of Cauchy. The limit of these summable integrals when the control parameters tend
to zero defines the regularization of the divergent Cauchy integral corresponding to p (g, z).
In the case of the kemnels G4 (b, z b, z'), it emerges that their regularizations obtained in this
way coincide with their representations as Cesaro integrals. We now proceed to show this. To
this end, we make use of translation invariance and rewrite Eq. (23) as

Gylb,z | b,2)=G,4r. 0= J dqqJ (4 u,(q, ) @47

I
where r :=b -b', { ;= z-z' and

2n
1 .
T (qr)=— [ doeldrcos®) (48
ola") 2n 0'[ ? )

is the Bessel function of order zero. The functions u,(q, {) are defined by
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u,(q, §) =u'P(q, ) +uP(q, O) (49)
where

W (q,0) :=;—n 0 (%-q? ) etiP, § (50.0)

uP(q.0) = 51; 6 (q*k) e b (50.ii)

The integrals in Eq. (47) over uX(q.() are convergent and will, therefore, not be discussed
further. We concentrate on the contributions of u(iz) (g, §) to these integrals and restrict

attention only to G_(r, ) since G_(r,{) =G 1, -0). To lighten the notation, we represent this
contribution as

(=]

2
Gt 0= | dqql (qnePb=5 | dares V142 )etY (51)
2 0 0
2n 2n o

where R :=krand Y :=k .
The integral in Eq. (51) is convergent.for { > 0; for { = 0 it becomes

1 1 ¥
G,r.0=—380)-— [d 52
(1 D=p S8 - Oj SERACY) (52)
where
J dq qJ(qn) = 8(r%) (53)

is the Dirac delta function. For { < 0, the integral in (51) is Cauchy divergent. We propose to
regularize it by means of Cesaro summability. To this end, we associate with Eq. (51) the
sequence of partial sums [10-13]

Q

Cr. 5 Q) :=U[ da[ aigan v®q, 0] (54.0)
Q

¢, Q) :=J dqC, (. Gq;  n2l. (54.ii)

Carrying out the implied iteration in Eq. (54.i1) and making use of (54.i) one finds that
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i Q
C, @5 Q = J dq (@9 [a7,(a0uPq, 0] (55)

Next, we define the n—th Cesaro mean by

Q
COLQ) = g—!n C,(r6Q) = fda (-3 [a Ty v@q, 0] (56)
0
The limit
Reg G,(r,0) == lim COr(Q)  (C.n) (57)
Q00

when it exists, is said to define Reg Gz(r, ) as a Cesaro summable integral of order n [21].
This is the significance of the symbol (C, n) in Eq. (§7). By this definition, n=0 corresponds to
Cauchy summability, whence the latter is a special case of Cesaro summability. If the limit in
(57) exists for n=N>0 but not for n<N, then it exists for all n=N+m, m > 0. For { <0, this limit
does not exist for n=0; in other words, the original integral in Eq. (51) is, as we already know,
not Cauchy summable. We have checked that for all finite { < 0, there exists a finite n 2 1 for
which the limit exists. In other words, the integral in Eq. (51) is Cesaro summable for all finite
'C< 0. We illustrate this convergence graphically in Fig. (2) where Reg G, (r, {) is plotted
against { for various values of r. For comparison we have also computed

X k

: 2 4
G,(r, C)::zl— quq]o(qr) elPI(Q)C K J dttJO(R" 1-2)elt Y (58)
Ty : 27 0

The real and imaginary parts of G (r, {) are plotted in Figs. (3) and (4) as functions of {. The
real part of

G(1,0):=G,(,{) +Reg G,(1. {) (59)

is plotted in Fig. (5).

The limit on the right hand side of Eq. (57) defines the Cesaro integral representation of
G,(r, ). We wish next to show that this representation coincides with the regularization of
G,(r, {), defined as a limit over the'set of summable integrals G, (r, {), characterized by
spectral functions p (q, z) = p, (g, z), when the control parameters ¢ = (0,.....0p) tend to zero.
It is sufficient for our purpose to consider the gaussian distribution g (q, z) = p (2 , z,,) about
the central point z, and having width o, i.e.
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For simplicity, we assume that both z, and © are independent of Ef The distribution
P,(Z, Z,) is normalised to unity in agreement with Eq. (13). The control or regularization
parameter is ¢. In fact, we re—obtain Eq. (18) as the limit

Ps (2, 20)= exp [—(z - 20)2/202] (60)

lim 7,2,) = 0(z—2 (61)
lm, P2, 7y) = &(z—2y)
02 F 008
C 0.08 &
°F 007 &
—02 E 0.06 F
¥ 0.05 |
—04 0.04 E
-0.6 [ 0.03 £
C 002 E
-08 0.01 F
___1 ’—lllllllLlllllelllll O:illlllllllllllllllll
-1 -05 0 05 I -1 -05 0 05 1
$ - ¢
0 ¢ 0
E r=10 (C) C r=15 (d)
=0.001 £ -0.002 £
~0.002 £ 0004 B
-0.003 £ :
£ -0.006
-0.004 F -
~0.005 F ~0.008 £
-0.006 £ -0.01
—0.007 _ -0.012 £
~0.008 £ ~0.014 &
m0.00% & ~0.016 £
_0.01 _lllllllllil(llllLllJ Klllll]lllLlllllIlllll
-1 -05 0 05 1 -1 -05 0 05 I
¢ : ¢

FIG. 2 — Plots of the Cesaro integral Reg G, (r, {) as a function of (-1<0<+1)
for various values of r (r =1, 5, 10, 15) and the parameter k = 1.
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Eq. (23) too follows as a limit when ¢ — 0. To see this, first substitute Eq. (60) into (14)
to get

+o00
. 2
wc(p) = sz pc(z, ZO) P exp [ipzo —PTGZ— ] (62)
—00Q

On making use of (60) and (62) in (17) then yields

Dyyb.z | b,2)=p (z.2) Gy b,z | b,2) (63)
where

' t 1 f 2 il E(—I;—B')) t

Gygbiz | 1, 2) =5-Jd%ae uy (q, 2-2) (64)

and

Uio(q,z"‘l') = i_[e(kz_qZ) e_lpl(Z Z)+p102/2+8(q k2 +p2 (z—2")— P20'2/2] (65)

Eqgs. (63) and (64) are to be compared with Egs. (22) and (23), respectively. Note that
Eq. (65) is in the form of Eq. (12). From Egs. (64)and (65) one finds that Gi(b ,Z I b, z') in
Eq. (23) follows as the limit

J LD 2

Gub,z | b,2)=L Jd?qeB 4P D) Limu, (q,2-2) (66)
- 27 o—0 —OC

Now for ¢ # 0, the q (b,z l b', z') are finite for all values of z-z'. One states this by

saying that the original integrals G,(b , z | b, 2') are o—summable. The limit

RegG,(b,z | b,2):=Lim G, _(b.z | b,z) (67)
- g0 -9

defines the regularization of G (b, z | b', z') through the spectral function p_(q, zy). The claim
is that the limits in Egs. (57) and (67) [22] define the same functions. We illustrate this
equality with the regularization of the function G, (, ) in Eq. (51).

The o-summable integral corresponding to it is

2 2 o2
G, (0 = 21—“ qu q Jo(qr) e—P2C—p202/2 - ;_n f ditd (R f 1+2) t Y-t G§/2(68)
k 0
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Where R :=kr, Y :=k{ and 6, := ko. The approach of G, (r, §) to the limit

Reg G, (1, §) = {;1_{)‘% G, (1, §) (69)

as ¢ tends to zero is illustrated in Fig. (6). Comparing Fig. 6 with Fig. 2b one finds that
G, (T, €) tends to the Cesaro representation of G, (, ) for 6—0. There are two parts to this
result. The first part is straightforward and states only that Reg G, (b, z | b', z') is different
from G (b, z | b, z'). It is instructively expressed by the non—comr—'r_lutativity

-

f .o 3 f Do

Lim Jd%qeH 4® D)y, (qz-7) % Jd2qeBd®-Y) Limu, (q.z-2) (70)
+ q +

-0 Sy om0 IO

__)
of the operations of integrating over the two—vector q and taking the limit 6—0. It is therefore
the interchange of the order of these operations which gives rise to a divergence. The second
part of the result is much more important theoretically. It consists in the fundamental equality

RegGu(b,z | b,z):=LimG, (b,z | b,z)  (C,n). (71)
- c—-0 -9

Eq. (71) identifies the procedure of regularization achieved through the control parameter ¢
with Cesaro summability. The latter method is well defined and unambiguous. It is logically
and systematically constructed as the generalization of the Cauchy integral. The introduction
of regularization parameters, on the contrary, is arbitrary. The choice of these parameters is
practically unlimited and is dictated by no logical procedure. One is led to it by intuition and
experience. The gaussian distribution p  (q, z,) was chosen essentially on this basis, guided,
albeit, by the known relationship between it and the Dirac delta function. Eq. (71) is important
because it allows to dispense with these ad hoc regularization procedures. The right hand side
of Eq. (71) can in fact be obtained much more directly from the left hand side for n — oo.
Recall that if an integral is summable (C, n = N), then it is summable for all n 2 N, including
n — oo, In the limit n—eo, Cesaro summability goes over into summability with respect to a
spectral measure. To see this and to determine the measure, consider the divergent integrals in
Eq. (47) and their Cesaro representations at fixed n

o \
RegGy(r, 0= Lim [ dq (-3 aJy@ @) €. (72)
0

Now send both Q and n to infinity at fixed ratio (Bjorken type limit [14])

A= (73)

Q=

and then let A — 0 in the end.



-21-

0.14

LR R AL I T 7 T 1

01

Q.08

0.06

0.04

0.02

g =3 —_—

5.

i

(<4

lllllllll]llllllllT'lllll!llll

__0'02 lllllllllllllllLLLJ'I]lllllllLlIllllllll(ll
-1 =0.7% =05 =025 O 025 05 0.75 1

FIG. 6 — Plots of G, _ (1, {) (cf. Eq. (68)) as a functionof { (-1 < { <
and values of ¢ ten%lomg tozero (=35, 4, 3, 2, 1, 0.5, 0.4, 03,
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Carrying out these operations in Eq. (72) yields

Reg G(r, §) = Lim f dq q7,(a) u4(q, O M (74)
0

where we have made use of the definition

Lim (1-29) _ ¢~ (75)

n—eo
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Cesaro summability is therefore equivalent to summability with respect to the spectral measure
exp(-Aq). Eq. (74) agrees with Eq. (71) upon making the identification

A=pic’/q (76)

In z-space, the gaussian distribution p  (z, 7)) therefore corresponds to Cesaro summability,
whence the legitimacy of Eq. (71).

S. - CONCLUSIONS

The problem solved in this paper was first clearly formulated by Sherman [8] and by
Shewell and Wolf [9]. These authors seemed to have been mostly concemed in pointing out
the existence of the divergence in the matrix elements of the forward propagator G, (z | z') for
Z < z'. Sherman laboriously constructed the inverse G (z12)=G (2 12) of G (z | z)forz >
z' to arrive at the divergence. Shewell and Wolf, on the other hand noticed much more easily
the relationship (cf. Eq. (41.ii)) between G (z | ) and its inverse G‘l (z | ') and hence the
divergence in the latter for z>z'. The d1vergegce according to these authors arises as a result
of the interchange of the order of theq-and b—integrations, in the passage from Eqs. (7) and
(15) to (16), which defines the kernels Gi(b ,z b ,z)when p(q, z) = po(q, z) =8 (z-z Zy)
Compare this point of view with Eq. (70). Eq. (70) expresses the real problem and the
operations involved. Shewell and Wolf propose to regularize the singularity most simply by
means of a cut-off, a so called band-width limitation. The cut—off eliminates the higher
frequencies (q2 > k%) (i.e. the evanescent waves) in Egs. (17) and (23), leaving only the
homogeneous waves. The arguments in support of this cut—off procedure are not theoretical
but rather they make recourse to the behaviour of frequency detectors. The arguments claim
that no detector can resolve frequencies that are arbitrarily high. True, therefore it should be
the detectors which must confirm this rather than it being built into the mathematics. Sherman
is much more sophisticated in his regularization programme. He suggests to interpret the
divergent integral as a distribution. The suggestion, unfortunately, does not go further to
specify the space of test functions on which the distribution is to act. In any case, the
suggestion implies no more than using test functions to operate cut—offs. The work of Sherman
and of Shewell and Wolf is widely used in applications. And in doing so serious theoretical
problems do in fact arise. We quote, in this regard, the otherwise interesting paper of Devaney
on diffraction tomography [6]. One encounters here too the divergent kernel G (b, z b, z)
(z<z'). To invert the diffraction transform and recover the object field from a given scattered
field configuration, Devaney resorts to the construction of a set of filters upon which are
imposed various band-width limitations. The operators corresponding to these filters are then
expected to combine and yield a "good approximation” to the unit operator in function space.
With this approximation one inverts the diffraction transform and recovers the required object
field. The latter is then compared with the experimentally deduced target geometrical profile. It
is to be feared that, under these circumstances, a theory of the combination of specially
constructed filters is being used to simulate experimental cuts. There is no more to this
approach than that. Filtering operations, when not required, as here, by the theory are
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irrelevant encumbrances. They obscure the dynamics with details of filter properties which one
would better do without. To ensure good object recostruction, it is important that the inversion
process should be as uncluttered as possible by otherwise avoidable approximations and facile
expediencies, especially in the face of mathematical difficulties. Our aim in this paper has been
to show that Cesaro summability offers a clean and uncluttered procedure for the inversion of
the diffraction transform.The divergence problem in the inversion of the diffraction transform
resides in a force of habit. The habit is to assume that all integrals encountered in physical
problems, independently of the manipulations which give rise to them, are invariably Cauchy
summable. This is far from being true. Integrals, as a rule, have no value until they have been
consistently defined [10]. The integral representation of the diffraction transform kemel is not
everywhere Cauchy summable. It becomes therefore necessary to interpret it within a more
general context which includes the Cauchy integral as a special case. The context we propose
is that of Cesaro summability. This interpretation eliminates the divergence in the theory. One
describes this phenomenon commonly, but improperly, by saying that the divergence of the
corresponding Cauchy integral has been regularized. The regularization is, in this case,
equivalent to the regularization achieved by specifying the spectral function present in the
general solution of the Helmholtz equation. The corresponding spectral function is a gaussian.
The Helmholtz equation should be viewed much more generally. The parameter k? in Eq. (4)
could be any complex number not necessarily a positive real one. In particular, k? could be
real and negative. Eq. (5) shows how, starting from the Klein—-Gordon equation the latter
situation may arise. The solution of the scattering problem would then consist of only
evanescent waves. Band-width limitations cannot be invoked to eliminate these waves. The
interpretation of the integral representation of the diffraction transform kernel as a Cesaro
integral then becomes a necessity. One may apply the same procedure to the solution of the
classical scattering problem for the Klein—-Gordon equation with m?< 0.

The scattering problem for the Helmholtz equation involves essentially the solution of the one
dimensional Schrodinger equation with a potential barrier at the boundary plane z = z, The
text book solution of this quantum mechanical problem is well known. One may approach the
problem differently by taking issue with the non—-Hermiticity of the translation operator

conjugate to the constrained variable z. We propose to re—consider the problem from this point
of view elsewhere.
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