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Abstract

On the “Planck lattice” possibly generated by the quantum fluctuations of gravity, we con-
sider a “rainbow” Dyson equation for fermion self-energy function by only taking the NJL
and QED interactions into account. We find a finite inhomogeneous term adding to usual
Dyson-equation in continuum space-time even with Nambu-Jona-Lasinio mass vanishing
(Mpsr). Thus, a massive solution to Dyson-equation is possible for small gauge couplings.
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In a recent paper [1] we have observed that a new view of the Standard Model (SM)
might emerge if space-time would effectively exhibit at the Planck scale a random lattice
structure: the Planck lattice. The reason why the possible foam-like structure of space-
time, induced by the violent quantum fluctuations at the Planck scale [2], does change the
very formulation of the SM, is a conseduence of the well known “no-go” theorem of Nielsen
and Ninomiya [3]. According to such theorem no consistent chiral gauge symmetry can be
written on a lattice, when the lagrangian density only contains terms bilinear in the Fermi
fields, as suggested by the simple transcription of the continuum lagrangian. In order to
evade the “no-go” theorem in [1] we suggested adding to the usual lagrangian of the SM

the simplest quadrilinear terms,
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whereF=1 (F=q) denotes its lepton (quark) sector, the indices 7,7 denote fermion families;
the Dirac indices are denoted by scalar product “.”. The gauge link Uj(z) connects left-and
right-handed quark fields in neighboring points so as to have the SU.(3) gauge symmetry.
The chiral gauge links G%(z) (G2(z)) connect left-handed (right-handed) fermion fields to
enforce SUL(2) ® Uy(1) chiral gauge symmetry. G, are two, yet unspecified, Fermi-type
O(af,) coupling constants which are assumed universal for both the lepton and quark sectors.
Its structure was necessary to remove, in principle, the unwanted “doublers” that appear in
the low energy spectrum of that lagrangian.

A careful examination of the theory [1] has indicated that the quadrilinear terms can
develop the necessary dynamical chiral symmetry breaking through the non-zero vacuum
expectation values, related to fermion mass m and the Wilson parameter r» [4], depending
on the values of G ;. As discussed in ref. [1], one can “tune” G, in such a way that only one
fermion of quark-type acquires a non-zero mass, thus giving rise to the phenomenologically
appealing tt-condensate model [5]. However, at this stage,reven though all other fermions
remain massless, the emergence of a non-zero 7, equal for all fermions, is sufficient to remove

from the long-wave spectrum all “doublers”.



In this paper we wish to outline our strategy to proceed further in our computation of
fermion masses, by considering the contributions arising from the photon v, W*, and Z°
interaction that we have so far neglected. The problem we must now solve is the evaluation
of the self-energy function of the fermions with the SM action and supplemented by the
interaction (1) on the Planck lattice. In order to render this problem manageable we shall
work in the“rainbow” approximation of the Dyson equation, which neglects all vertex and
gauge propagator corrections. Thus on the Planck lattice we must solve the Dyson-Schwinger
equation which we give in diagrammatic form in Fig. 1. The first diagram in the left-hand
side represents the result of the first stage calculation of ref. [1}, while the second is a contact
interaction typical of gauge theories on a lattice. Please note that in the Dyson equation
we have not included colored gluon exchanges for they are related to color confinement,
producing a ma.s‘s-shift of the order of the Planck mass for quarks and all colored states.
We shall return on this point iﬁ a future publication; for, as a matter of fact, in this paper
our sole intention is to study the structure of the solutions of eqn. (2)on a Planck lattice
and compare it with the rather 1érge amount of extant works on the continuum version of
the Dyson equation. A final remark on our approximation: the smallness of the coupling
constants associated with electroweak exchanges makes it quite plausible.

Let’s now turn to eqn'. (2), where, for illustration purposes, we keep only the exchange

of a massive vector gauge-field of mass m, coupled to a vector current. We can write it as:
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gauge group. The W.(p) is the self-energy of the fermion generated through the Nambu-
Jona Lasinio mechanism [6]. As discussed in ref. [1]for the one-loop contribution, W;(p) =
m, + My + Zr E sin® 2 : m, is non-vanishing for the top-quark only and the “bare” mass
term M, = % together with the Wilson term ‘%:—‘ Y, sin? %2 are different from zero for all

2
fermions. The vertices [7] are (k, = (Putaue +§ =2 )

VU)(P’ q) = (Yucosk, + rsin k_u) i V(z)(P) q) = ap(—Yusink, +rcosky,) b, (4)



We limit our attention to fermions other than the top quark and to values of the external
momentum p such that pa, < 1: in this kinematical region the self energy function Lp(p)
should not and does not differ from its continuum limit version £.(p). One of the main
novelties of (3) is the non trivial interplay between the continuum-limit region, i.e. for
momenta (gqa, < 1), and the truly discrete region, which is probed for momenta ga, > 1.
In order to study such interplay it is important to introduce a “dividing scale” ¢, such that
pap < € K 7. Separating the integration region in (3) into two regions [0, ¢]* and [¢, 7]*, we

may write our integral equations as

A 1 Ze(g)
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where \ = ‘%ﬁ%, and the continuum-limit integral equation, following common practice, has
been linearized, i.e. in the denominator one has set £.(q) ~ m, the“physical” mass of the
fermion, and the Landau gauge ¢ = 1, in which the self-energy function for m, = 0 contains
a mass renormalization only, is chosen for simplicity. As for ép.(r,€), the contribution to

the integral equation from the discrete lattice region, we may write it as (I, = gua,):
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where we have decomposed Xpr(l) as a,Zpr(l) = apX(!) + Gpr(l). In the one-loop calcula-
tion of (1), Gpr(l)is 2r T, sin’ b%", which is non zero only in the discrete lattice region, i.e.
for [ € [e,w]*. It will be clear soon that a consistent cancellation of the a—lp divergence, which
stems from the lattice region, is enforced by fine-tuning the bare mass term My. The de-
pendence on the external momentum pa, is omitted in §py(€,7) because of pa, < [ € [e, n]*.
Note that (i) there is no dependence on the gauge parameter ¢ for there is a perfect can-
cellation between the contact and the “rainbow” diagrams, that is guaranteed by Ward’s
identities; (i1) épr(e,7) cannot vanish if r, as in our case, does not vanish. Thus, on the
Planck lattice, the self energy integral equation (5) acquires an inhomogeneous term even

for m; = 0. This implies the very important consequence that (5) admits only massive

solutions provided A > 0 [8]. The most appealing aspect of this result is that on the Planck



lattice mass gets generated for all fermions, but the top-quark, without the appearance of
Goldstone bosons: the reason for this fact, extremely important phenomenologically, is the
connection of the inhomogeneous term §pr(€,r) with a non zero r-value that, as emphasized,
already breaks the chiral symmetry of the four-fermion interaction.

We know from our mathematical analysis that the fermion mass X.(p) >~ m is certainly
non-zero, how do we know that it is not proportional to the Planck mass A, = f;? In order
to answer this important question we note that if My = i were such that the terms in
eqn. (5), that are in principle proportional to ;1;, vanish then épr(¢e,r) would automatically
be finite, thus ensuring fermion masses much smaller than the Planck mass. A sufficient

condition for this to happen is the vanishing of the expression
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as for the coefficient of the “bare” mass term, c is the very small value ¢ > 0.07X [9]. We

can thus write the finite part of épr(r,¢€) is
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Let’s now address the important question of the e-independence of our result. The
introduction of the “dividing scale” in (2), apart from the requirement pa, < ¢ < 7,
is rather arbitrary; thus no dependence on ¢ should appear in our final results. In order
for such independence to occur, as it must occur, it is clear that the e-dependence from
the continuum integral in eqn. (5), that is clearly logarithmic, must be compensated by
an analogous logarithmic term arising in the calculation of §pz(7,¢). Thus segregating the

fn e-term in 85, (r,€), we may write

where 6%, (r) is independent of ¢, £ is the asymptotic value of T (I) and the numerical

evaluation of Aé%;(r) is reported in fig. 2. Defining

Ap) = T(p) - Z, (10)



eqn. (5)becomes

- A 1 A(q) - |A A
S+A(p) == [df z_z<P) o

where in view of the asymptotic vanishing of A(g) the momentum integral is cut-off clearly
independent. For m? = 0, the case of the e.m. interaction, a standard analysis easily shows

that the integral equation (11) admits trivial a solution for A(p), as a result of the boundary

condition A(oo) = 0. Thus, for consistency, from (11) one derives the “gap” equation
A A o
1= (;;1) +A65(r), | (12)

where in the spirit of our rainbow approximation A is given the bare coupling constant g,.
In view of the extreme sensitivity of the gap equation to the actual value of A, and of our
neglect of all other gauge interactions, SU.(3) and SUL(2), we do not think a numerical
estimate of the size of masses that may result from it to be worthwhile.

We end this paper with the observation ‘that, when formulated on the Planck lattice,
also the self-energy problem of fermions that did not receive any mass through the NJL-
mechanism inherent in the SM on a-Planck lattice appears to have a solution completely
different from the one encounters in the continuum. One obtains for all charged fermions a
non-zero mass, whose size depends (only and very sensitively) from the bare gauge coupling
constants at the Planck scale. And due to the intrinsic violation of chiral symmetry of the
NJL-mechanism, through a non-zero Wilson’s r-parameter, no additional Goldstone bosons

appear in the spectrum of fundamental particles.
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Fig. 1 The diagrammatic form of Dyson-Schwinger equation
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