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ABSTRACT

A proposal of mass generation in the Standard Model (SM) is
presented, based on the idea that the violent fluctuations of quantum
gravity at the Planck scale plays a nature regulator for the SM with fun-
damental length @, ~ 107%3cm, thus gauge invariant four-interactions
are necessary due to the “no-go” theorem of Nielsen and Ninomiya,
forbidding a sensible formulation of the usual electroweak action on a
such “Planck lattice”. We present that for certain values of the new
four-fermion couplings a spontaneous violation of SM chiral symmetry
emerges which (i) avoids the “no-go” theorem, (ii) produces a tt con-
densate model without appearance of the low-energy Higgs boson. The

mass generation of other fermions and intermediate gauge bosons, are
briefly discussed.

1. Introduction

In this lecture, I shall outline and discuss that the gauge principle realized in
the SM prevents from massive fermions and gauge bosons, and the quantum grav-
ity acts as a nature regulator called the “Planck lattice”(PL) which breaks gauge
symmetry and thus gauge invariant four-fermion interactions are necessary by the
“no-go” theorem of Nielsen and Ninomiya. In this framework of the SM in the PL,
gauge-principle is maintained and however all fermions as well as intermediate gauge
bosons can acquire their masses. The structure of the lecture will thus be as follows.
In Section 2 the possibility of quantum gravity may endow space-time with “foam”
structure and the usual Higgs mechanism for mass generation in the SM are briefly

discussed. Section 3 will provide an brief outline of the “no-go” theorem of Nielsen

t E-mail: xue@milano.infn.it
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and Ninomiya and the necessity of the gauge invariant four-fermion interactions. The
resulting tt-condensate without the low-energy Higgs boson will be presented in Sec-
tion 4. The discussions of other fermions and intermediate gauge bosons acquiring
their masses are briefly followed in Section 5 and Section 6. And finally I shall close

in Section 7 with a few comments and conclusions.

2. The Planck Lattice

The very-small-scale structure of space-time, the arena of physical reality, has
recently attracted a great deal attention. the realization of important role that quan-
tum gravity plays in determining such a structure, coupled with the grave difficulties
that this theory faces in the usual, perturbative formulation at distance smaller than
the Planck length a, ~ 107**cm (the Planck mass A, ~ 10'*GeV), is the basic moti-
vation of a umber of theoretical proposals tc overcome such difficulties and provide
a solution of this fascinating problem. As well known, the very popular superstring
theory belongs to this class of proposals, overcoming the problems of the conventional
quantum gravity by postulating that the fundamental “constituents” of space-time,
the physical events, at distance smaller than a, exhibit the rather complex structure
of a space-time “string” instead of a simple space-time point. In this way at distance
smaller than a, a whole brave new world emerges, described by the rich spectrum
of excitations of the string, whose phenomenology, however, seen from our vantage
point appears, to say the least, remote.

At the opposite end we may conceive that precisely due to the violent quantum
fluctuations that the gravitational field must exhibit at a,, space-time somehow “end”
there. Either by the creation of a “foam” !, or by some other mechanism which we
need not discuss here, one may conceive that as a result the physical space-time gets
endowed with a fundamental length, a,, and thus the basic arena of physical reality
becomes a lattice with lattice constant a,.

It is this possibility that we wish to explore in a fundamental problem of the
SM, the problem of fermion and intermediate gauge boson masses. As is well known
the gauge-symmetry principle as realized in the electroweak sector SUL(2) ® Uy(1)
demands that, at lagrangian level, all fermions and gauge bosons must be massless.
In order to avoid an obvious theoretical disaster and save the gauge principle, the
Higgs mechanism ? had to be grafted upon the beautiful gauge lagrangian, with a
completely ad hoc negative squared mass in order to secure a spontaneous symmetry
breaking mechanism for the generation of fermion masses as well as gauge boson
masses. It is for this reason that most people regard the Higgs mechanism at best as
a simple, rough approximation to real situation, and deny such field any fundamental
reality. And this is perfectly in line with'what one learns from superconductivity,
where Higgs mechanism was introduced as a simple, phenomenological means to

describe the more complicated dynamics of Cooper pairs.
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3. The Necessity of Four-fermion Interactions

Suppose now that, following the considerations reported in Section 2, we wish
to write the SM without Higgs field on the PL, a profound result obtained more than
ten years ago ° in the form of a “no-go” theorem, tells us that there is no consistent
way to transpose straightforwardly on a lattice the lagrangian of the continuum
theory.- While this is not the place for a detailed discussion of this important result,
we limit ourselves to remarking that the origin of the “no-go” theorem is quite simple,
stems from the peculiar dispersion relation of fermion on a lattice. According to it,
in the long wave-length limit more than one species appear in the spectrum and,
for instance of a left-handed Weyl field ¥y with chiral charge, say x = —1, there
appear four right-handed and four left-handed species. A situation which is clearly
at variance with experimental observation.

Wilson 4 has shown how can one modify the lagrangian by adding a simple
bilinear term, so as to remove the unwanted “replicas” from the long wave-length
regime. However, this can only be done by sacrificing chiral invariance, and “no-
go” theorem shows that no bilinear modification can be made to obey the chiral
gauge-principle. Thus if we are to go ahead in our program of putting the SM on
the PL without sacrificing the chiral gauge-principle, the “no-go” theorem tells us
that the simple transposition of the continuum lagrangian must be supplemented by
extra-terms that are least quadrilinear in fundamental fermion fields. Familiarity
with the original Nambu-Jona-Lasinio model * ® immediately reminds us that such
quadrilinear terms can be made to obey the chiral gauge-principle. Thus an SU.(3)®
SUL(2)® Uy (1) chiral-gauge invariant lagrangian which evades in principle the “no-

go” theorem can be written on the PL as 7

Spr = Sc + > (S5 + SKhL + SKAL), (3.1]
F

where Sg is the usual Wilson gauge-action, Sp the usual Dirac action, which will
both be analyzed in a forthcoming article 8, F=1 (F=q) denotes its lepton (quark)
sector. The simplest new quadrilinear NJL-terms are as follows °:

SEhL = G S {fi(z) - ¥R (2)9% (z) - ¥f¥(2)} 3.2)
and ’
SFir= 2T [F=ICH @)U =) vE (= + ) E5 () GRUL(2) - ¥E (e + )]
tTuz
[3.3]

where the indices 1, j denote fermion families; the Dirac indices are denoted by scalar
product “”. The gauge link US(z) connects left-and right-handed quark fields in
neighboring points so as to have the SU.(3) gauge symmetry. The chiral gauge
links Gﬁ(:c) (Gf(z:)) connect left-handed (right-handed) fermion fields to enforce
SUL(2) ® Uy(1) chiral gauge symmetry. G,; are two, yet unspecified, Fermi-type
O(af,) coupling constants which are assumed universal for both the lepton and quark
sectors. Thus action [3.1] is invariant under chiral gauge symmetries SU(3) ®
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SUL(2) ® Uy(l) and a global Ur(3) ® Ugr(3) in generation space. In addition it
evades, at least in principle, the “no-go theorem”. The question now is: does it yield

a long wave-length spectrum in agreement with observation (free from the unwanted

doublers)?
4. it Condensate and Composite Particles

In order for the action [3.1] to get rid of unwanted doubler and avoid in
practice the “no-go” theorem, it is necessary that the quadrilinear terms S§}; and
SE%. develop a dynamical chiral symmetry breaking through the following non-zero
vacuum expectation values 7 (V; is the 4-dimensional volume)

1) _ Gl T .
mp = 2v4 (9 (295 (=)

g (4.1]
TP = 1V, 2 Z{ e 11’&,(33‘*'%)) +h.c.}.

Indeed, should this happen, one would obtain the following effective lattice action of
the Wilson type *

547 =S¢ + Sp
+Z{¢' yMpyF(z) -

S (3F(2)GE(2)rGRUS ()9 (= + a,.) + h.c.)} ,
- (4.2]

oo |

where Mg = mp + 47g. Thus through dynamical symmetry breaking the obligatory
(in order to get rid of the doublers) Wilson term (rp = a,7r) gets produced together
with a mass term (mp) which, according to our action, must necessarily come with it.
In this way the evasion of the “no-go theorem” entails an extra bonus: the generation
of a fermion mass term. The SUL(2) ® Uy(1) and Ur(3) ® Ur(3) symmetries are
clearly broken and the only surviving gauge symmetries SU,(3) and U.m(1) °. Given
the quadrilinear NJL-terms (3.2 and (3.3}, we construct an effective potential in
terms of mp, 7r ®. A non-trivial dynamical symmetry breaking may emerge only if
the matrices mp, 7r obey a set of coupled, self-consistent equations obtained from
variation of the effective potential. We call these equations “gap equations”, that

turn out to have the following approximate matrix-form in the weak-isospin space ®

mpa,,
=2
TF =29 ] Dent (1)’
2l
_ TF sin 2
TF =g l DenF(l)’ [43]
mra, + 2rf sin? IJ;

" . _
where g1 2a2 = NcGr2i Tr = ap7rs [ = [l oyt (cos) = T, cosl, and

l
Denf (1) = sin®l, + (mpa, + 2rF sin’ -25)2 (4.4



We see that for any g, # 0, one gets = > 0, which removes the doublers through a
Wilson-type mechanism. By using now the gap equation [4.3] for mpa, # 0 and the
chain approximation, for the Goldstone modes (J),-(:c)'ysw.-(x)1Z'.<(0)75¢,-(0)) and scalar
modes (¥:(z)¥i(z)¥:(0)¢:(0)), we find the inverse propagators

2
Pl = B () = - [ =5 eal? 2”(‘; l“;) 4]
and
T7iq) = 2(BXq)F(q) + 4ME); If(9) = NT \ JonF (i“é;jz;)(l_g), 4.6]
where B*(q) = T, (i sin? l%z) and
[mp + 2;’:'— sin? %]2 7]

M5 = 4v/l‘denF (l+ %) denf (l - g)

For g,a, < 1, we can calculate numerically the position of the pole of the scalar
mode, which turns out to be of the order of the Planck mass instead of 4m%. Indeed

one gets
2

AME = 4m} + 0.8r L 4+ 0.9, (4.8)

a, a?
which for » = 1 pushes this pole at the Planck mass, making it thus disappear from
the observable, low energy spectrum. Analogously, we find charged Goldstone modes

appearing in the flavored channels corresponding to the quantum numbers of the we
bosons.

We shall now analyse the solutions of [{4.3]. If we look for “physical” solutions,
for which the eigenvalues of the mass matrix are such that mpa, < 1 and the

doublers are removed by rg # 0, then equation [4.3] for r approximately decouples

and becomes )t

2sin‘ £

T IATY [4.9]
sin? I, + 4r?(sin® 2)?

L= = flcor—

Notice that, assuming a universal coupling constant G in (10}, the Wilson parameters
for quarks and leptons are different because of the color number N.. The solution

r = rp(gz) is reported in fig. 1.
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Fig. 1 “—g";z- as a function of r
In order to understand the implications of obtaining physical solutions mpa, < 1,
we use the gap-equations [4.3] to draw the phase diagram (fig. 2), where the phases
(m < 0) are separated from the phase (m > 0) by critical lines, on which m = 0.

10 NN B B B
8 —
6 ——
4 D —
2 /——:
a —
ma,<0 ]
0 S A S R S SR S S
-20 0 20 &2
Fig. 2 phase diagram in terms of g, and g;,a,b(r = 0 — 0.385) and ¢, d(r = 0.385 —
1 — oo).

This phase diagram is in agreement with the continuum NJL-model that possesses
only the coupling constant G;. The requirement of obtaining physical solutions for
quarks N, = 3 with f,a, = 7, ~ O(1) and mFa, < 1 can clearly be met by a
coupling constant g, > 1, in this case one has r — 0.385. On the other hand the
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coupling g, is required to lie in the vicinity of the critical value g2. This holds for
quarks, for it is easy to see that for leptons (N. = 1) equation [4.3] does not allow
for massive solutions. Thus leptons at this stage remnain massless. In order to have
tt condensate and get rid of doublers, we chose the mass matrix, which only has one

non-zero eigenvalue, and r = rJ (I is identity matrix) for every fermions, which are

the solution to gap equation [4.3].
5. Fermion Masses without Goldstone Bosons

In this section we wish to outline our strategy to proceed further in our com-
putation of fermion masses, by considering the contributions arising from the photon
v, W%, and Z° interaction that we have so far neglected. The problem we must now
solve is the evaluation of the self-energy function of the fermions with the SM action
and supplemented by the interactions [3.2] and [3.3] on the Planck lattice. In order
to render this problem manageable we shall work in the“rainbow” approximation
of the Dyson equation, which neglects all vertex and gauge propagator corrections.
Thus on the Planck lattice we must solve the Dyson-Schwinger equation which we
give in diagrammatic form fig. 3.

P &%

Fig. 3 The diagrammatic form of Dyson-Schwinger equation

The first diagram in the left-hand side represents the result of the first stage calcula-
tion of ref. ®, while the second is a contact interaction typical of gauge theories on a
lattice. Please note that in the Dyson equation we have not included colored gluon
exchanges for they are related to color confinement, producing an infinite mass-shift
for quarks and all colored states. We shall return on this point in a future publication;
for, as a matter of fact, in this paper our sole intention is to study the structure of
the solutions of equation (fig. 3) on a Planck lattice and compare it with the rather
large amount of extant works on the continuum version of the Dyson equation. A fi-
nal remark on our approximation: the smallness of the coupling constants associated
with electroweak exchanges makes it quite plausible.

Let’s now turn to equation (fig. 3), where, for illustration purposes, we keep
only the exchange of a massive vector gauge-field of mass m, coupled to a vector
current. We can write it as: |



_8 ~

L d4 1

S = ”’ 3°
pL(pP) AP +3 )L = (2r)4 S(p—q)* +

< “Q) (2) _ 1 "
e G R Q)va,<q>+zn(q>V"l(p"’)]’

[5.1]

where S,(1)= é sin 55251, D,(l)= t sin(l,a,) and §* = ez('—’ﬂ-:%ll) for Uem (1)(SU(N
gauge group. The W,(p) is the self-energy of fermion generated through the Nambu-
Jona Lasinio mechanism ®. As discussed in ref. *for one-loop contribution, W,(p) =
M, + :—: S, sin? B2, Af, is non-vanishing for the top -quark only and, however r is
different from zero for all fermions. The vertices '° are (k, = ggi;72-3'*‘)

Vil(p,q) = (ucosky, +rsinky)s  VEAp,q) = ap(—yusink, + rcosk,)b,,. [5.2)

In this paper, the only property of W,(p); that we need specify, is its being O(a,) for
pa, < 1.

We limit our attention to fermions other than the top quark and to values
of the external momentum p such that pa, < 1, and in this kinematical region the
self energy function Tpr(p) should not and does not differ from its continuum limit
version T.(p). One of the main novelties of [5.1] is the non trivial interplay between
the continuum-limit region, i.e., for momenta (ga, < 1), and the truly discrete region,
which is probed for momenta ga, >~ 1. In order to study such interplay it is important
to introduce a “dividing scale” ¢, such that pa, < ¢ < 7. Separating the integration
region in [5.1] into two regions {0, ¢|* and [¢, 7]*, we may write our integral equations
as

Sip) =2 [ e s, )
472 Jazer, T(p—q)t+migt+m?

where A = ;5;, and the continuum-limit integral equation, following the common
practice, has been linearized, i.e.,in the denominator one sets .(g) >~ m, the“physical”
mass of the fermion, and the Landau gauge ¢ = 1, in which the self-energy function
for m, = 0 contains a mass renormalization only, is chosen for simplicity. As for

§pr(r,€), the contribution to the integral equation from the discrete lattice region,

we may write it as ([, = ¢,a,):

‘ 2 — cos? résin‘(2 sin?
Spclr = [ 2 l(h [1 LGpy(I)(= cos’(y) + 1 1(3))+ (1)
?)

ap Jlex]t 12”2(4 sin? GPL(I) + sin (

/\/ d*l  S(D —cos( ) +r? sm(l)
fe.x]t 472 4sm2(% Gpr(l)? +sin’(l,)

(5.4]
where we have decomposed Tp.(l) as a,Zpr(l) = a pZe(l) + Gpr(l), and Gpr(l) =
W (1) is non zero only in the discrete lattice region, i.e. for | € [e,m]'. The dependence

on the external momentum pa, is omitted in &py(¢, ) because of pa, < I € le, m]*.
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Note that (i) there is a perfect cancellation of gauge-dependent term a;'¢ between
the contact and the “rainbow” diagrams, that is guaranteed by Ward’s identities; (ii)
épr(e,7) cannot vanish if r, as in our case, does not vanish. Thus, on the Planck
lattice, the self energy integral equation [5.3] acquires an inhomogeneous term even
for M, = 0. This implies the very important consequence that [5.3] admits only
massive solutions provided A > 0 !'. The most appealing aspect of this result is that
on the Planck lattice mass gets generated for all fermions, but the top-quark, without
the appearance of Goldstone bosons: the reason for this fact, extremely important
phenomenologically, is the connection of the inhomogeneous term épr(e,7) with a

non zero r-value that, as emphasized, already breaks the chiral symmetry of the

four-fermion interaction.

At a moment we are not able to show the cancellation of a-l divergence
by intrinsic requiremenrt of hidden symmetries in the theory, this linear
divergence can be cancelled by simply adding counterterm. We can now write
the finite part ¢ dpr(r.%0) is

o [ LB [cesthesait)
(er)t 472 (4sin®(2) + m?) Gpr(l)? + sin’(l,)

Let’s now address the important question of the e-independence of our result. The
introduction of this “dividing scale” in [5.3] is, apart from the requirement pa, <
€ < 7, rather arbitrary thus no dependence on ¢ should appear in our final results.
In order for such independence to occur, as it must occur, it is clear that the e-
dependence from the continuum integral in eqn. [5.3], that is clearly logarithmic,
must be compensated by an analogous logarithmic term arising in the calculation of

dpr(r,€). Thus segregating the {ne-term in 5{,L(r, €), we may write
§h(r €)= A6pp(r) €n e + A8%, (T), 5.6]

where §%,(r) and 6%,(r) is independent of €, [5.3] becomes
PL PL

A

Z(p) = ——-/ d'q . =:(q) + 285,(r). (5.7]
‘ dn2Ja, (p—q)+miqt+m? ‘

This is an inhomogeneous equation admitting a finite solution for small A. We will

report this result soon 2.

6. Neutrino and Intermediate Gauge Boson Masses

The D.S. equation we adopted in above contains only vector-like coupling ver-
tices and massless gauge bosons. We are going to focus on the D.S. equation involving
V-A couplings and massive gauge bosons. Neutrinos, which belong to a special cate-
gory in fermion family, have only weak interaction with massive intermediate gauge
bosons. In the lattice with spacing a,, we not only have left-handed neutrinos but
also right-handed neutrinos since again there exists a Wilson term which is essen-

tially an interacting term between left- and right- handed species. It is expected that
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they would acquire small masses by weak interaction with heavy intermediate gauge
bosons. Since weak interactions change fermion flavours, the fermion mass matrix
we will calculate should not be diagonal in the basis of weak interaction eigenvectors.
Thus we expect that the different eigenvalues (fermion masses) would be obtained if
the fermion mass matrix is diagonalized and the transfer matrices would be related

to the Cabibbo-Kobayashi-Masicawa matrix.

Let us turn to intermediate gauge boson masses. The photon and gluon (with-
out considering their self-interaction) are massless since a vector-like gauge symmetry
can be maintained in an appropriate regularization (via a cutoff a,). This is guar-
anteed by the so-called Elitzur’s theorem 3, which states: a spontaneous breaking
of local symmetry for a symmetrical gauge theory (with cutoff and vector-like gauge
coupling) without gauge fixing is impossible. On the other hand, the intermediate
gauge bosons are endowed with masses because they couple to fermions in a chiral
fashion and chiral-gauge symmetry cannot be maintained in any regularization. We
have been trying to prove that it is impossible to maintain gauge symmetry in a
regularized gauge theory where the gauge coupling is in chiral fashion (parity vio-
lating) '*. Thus, instead of adding local gauge-variant counterterms to lagrangian
for maintaining gauge symmetry order by order, as one usually does for perturbative
QED and QCD, we should keep the local gauge-variant terms from the calculation of
the two-point function, which turn out to be mass terms of gauge bosons. The gauge
boson masses obtained in this way are related to the sum of all fermion masses !°,
which are finite once the spontaneous symmetry breakdown happens and fine tuning
is performed (as described in section 4). In this way, we will see the counterterm
(divergence) structure of a gauge theory is not affected by the occurrence of spon-
taneous symmetry breakdown. In another words, we do not need new counterterms
after fermions and intermediate boson become massive. It is then expected to be

renormalizable and all effects from the short wave-length regime (A = €A,) would be
renormalized away so as to have meaningful results defined on the physical mass-shell

in the long wave-length regime. In addition, the triangle-anomalies from the calcu-
lations of the three-point function are cancelled naturally by the fermion contents
of the theory, thus conservation of matter source current and Ward identities are

preserved and the theory is unitary. This is also important for renormalizability.

7. Conclusions and Remarks

In conclusion, we have shown that on the Planck lattice, whose “raison détre”
may well reside in the violent quantum fluctuations of the metric field at the Planck
scale a,, a consistent SM requires the addition of extra terms, quadrilinear in the
Dirac fields, whose coupling constants can be determined to induce the emergence
of the tt-condensate model with ma, « 1 and 0 < r < 1: m, gives rise to the

scale of electrowerk breakdown and r # 0 endows the composite scalar and the
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mirror fermions with masses at the Planck scale, making them disappear from the
low-energy spectrum. We should also stress that, differently from the continuum
tt-condensate model, its Planck lattice version disposes in a nice way of the scalar
composite, thus leading to the disappearance from the spectrum of a particle that
would resemble the Higgs boson. The implication of this conclusion for the present
and future phenomenology is too obvious to need further comments. In this frame-
work, we are proceeding the calculations of fermion and gauge boson masses, and

other problems we mentioned in this paper.
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