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Chapter 1

INTRODUCTION TO CHIRAL
SYMMETRY



Chiral perturbation theory (CHPT) is a systematic approach to formulate the
standard model as a quantum field theory at the hadronic level. In its general form,
it uses only the symmetries of the standard model, in particular its spontaneously
broken chiral symmetry. It is characterized by an effective chiral Lagrangian in
terms of pseudoscalar meson fields (and possibly other low-lying hadronic states)
giving rise to a systematic low-energy expansion of amplitudes [1, 2].

In the formulation of Ref.[2], one considers the generating functional Z[v,a, s, p|
of connected Green functions of quark currents associated with the fundamental
Lagrangian

L = Locp + 31" (vu + 138u)g — 4(s — i75p)g. (1)
Lcp is the QCD Lagrangian with the masses of the three light quarks set to zero.
The external fields v, a,, s and p are hermitian 3 x 3 matrices in flavour space. To

describe electromagnetic and semlleptomc interactions, the relevant external gauge
fields of the standard model are !

T =vuta, = —eQA, (2)
€
lp =Yy —ay = ——GQA“ —_ m(WJT.F + hC)
1 0 Vud ‘/us
Q= gdiag(2,~1,~1), T,=|0 0 0
0 0 0

where the V; are Kobayashi-Maskawa matrix elements. The quark mass matrix
M = diag(m,,mq,m,) (3)

is contained in the scalar field s(z). The Lagrangian (1) exhibits a local SU(3), x
SU(3)r symmetry

1 1
¢ = gry(l+7s)a+g5(1- %)
Tw — GRTugR +19rO.9%
l# - gblug}, + igLau.‘]}, (4)
s+ip — gr(s+ip)g}
grr € SUQ3)rrL-

The generating functional Z admits an expansion in powers of external momenta
and quark masses (CHPT). In the meson sector at leading order in CHPT, it is given
by the classical action

Z = /d“zﬂz(U,v,a,s,p). (5)

!We adopt the present conventions of the Particle Data Group [3].



L, is the non-linear ¢ model Lagrangian coupled to the external fields v,a, s, p

F2

[:2:—4“

(D, UD*U' + xU' + x'U) (6)
where
DU =9,U —ir, U +iUl,, x = 2By(s + ip), (7)
and (A) stands for the trace of the matrix A. U is a unitary 3 x 3 matrix
Ut =1, detU =1,
which transforms as

U — grUg}, (8)
under SU(3) x SU(3)r. U incorporates the fields of the eight pseudoscalar Gold-

stone bosons. A convenient parametrization is ?

° 18 i
s _ _K*t
vitve T
U = exp (1V2®/ F), $ = o SR I T I 9
( NN (9)
K- By CR

V6

The parameters F and B, are the only free constants at O{(p?): F is the pion
decay constant in the chiral limit,

Fr = F(1 4+ O(mguark)) = 93.2MeV, (10)
whereas By is related to the quark condensate,
(0]au|0) = —F?Bo(1 + O(mquark))- (11)

By always appears multiplied by quark masses. At O(p?), the product Bym, can be
expressed in terms of meson masses, e.g.

M2, = By(my, + mg). (12)

The Lagrangian (6) is referred to as the effective chiral Lagrangian of O(p?). The
chiral counting rules are the following: the field U is of O(p°), the derivative 8, and
the external gauge fields v, a, are terms of O(p), and the fields s, p count as O(p?).

At order p* the generating functional consists of three terms [2] :

i) The one-loop graphs generated by the lowest order Lagrangian (6).

2We follow the Condon-Shortley-de Swart phase conventions.



i) An explicit local action of order p'.

iii) A contribution to account for the chiral anomaly.

We briefly discuss the contributions ii) and iii) and start with the local action of
O(p'). 1t is generated by the Lagrangian £, [2]:

Ly = L{D,U'D*U)? + Ly(D,U'D,UYD*UD*U)
+L3(D,U'D*UD,U'D*U) + LD, U'D*U)(x'U + xU")
+Ls(DUTD*U(X'U + U'X)) + Le(x'U + xU')* + L {x'U — xU')?
+Ls(X'Ux'U + xU'xU") — iLo(F§* D, UD,U' + F*D,U'D,U)

+Lio(UTFRPUFrw) + Li(Fruw S + FLu FIY) + Lu(xtx), (13)
where
Fi = 8% — 8rk —i[r# 1] (14)
F¥o= 91" = 8"I* — 1", 1.
The twelve new low-energy couplings L, ..., L, arising here are in general diver-

gent (except L3z, L7). They absorb the divergences of the one-loop graphs via the
renormalization

L, = L:+F,/\

11 |
A o= (dm) 2t {EI?Z — < (In(4m) + T'(1) + 1)} (15)
in the dimensional regularization scheme. The coefficients T'; are displayed in table
1. They govern the scale dependence of the renormalized, finite couplings LI (y),

L; K1
LT =L In— . 1
H(p2) = Li(p) + T6r? ™ 4, (16)

Observable quantities are independent of the scale y, once the loop contributions
are included.

The constants F, Bo, together with L7,..., L],, completely determine the low-
energy behaviour of pseudoscalar meson interactions to O(p'). L7, and L7, are
contact terms which are not directly accessible to experiment. Similarly to F and
By discussed above, the constants L} are not determined by chiral symmetry — they
are fixed by the dynamics of the underlying theory through the renormalization
group invariant scale A and by the heavy quark masses m.,my,... . With present
techniques, it is, however, not possible to evaluate them directly from the QCD La-
grangian. In the absence of such a calculational scheme, they have been determined
by comparison with experimental low-energy information and by using large—N¢
arguments. The result is shown in column 2 of table 1, where L7,..., L], are dis-
played at the scale p = M,. The experimental information underlying these values



Table 1: Phenomenological values and source for the renormalized coupling con-
stants L}(M,). The quantities I'; in the fourth column determine the scale depen-

dence of the L[(u) according to Eq. (16). L7, and L%, are not directly accessible to
experiment.

i || Li(M,) x 10° | source L
1 0.7+ 0.5 | Key,mmr > 3/32
2 12+ 04 | Ky, > 7 3/16
3 -3.6 £ 13| Key,mm —> 7w 0
4 —0.3 £ 0.5 | Zweig rule 1/8
5 14+ 05| Fg: Fy 3/8
6 —0.2 £ 0.3 | Zweig rule 11/144
7 —0.4 £+ 0.2 | Gell-Mann-Okubo,Ls, Lg 0
8 0.9 £ 0.3 | Mgo — Mg+, Ls, 5/48
(2my — my — my) : (Mg — m,,)
9 6.9+ 07| <r?>T 1/4
10 =55+ 0.7 | — evy - 1/4
11 —1/8
12 5/24

is shown in column 3. [L,,L, and L3 are taken from a recent overall fit to K.,
and 77 data (4], see also the subsection on K, decays in section 2 and Ref. [5].
Ly,..., Ly are from [2]. For Lg see also [6]. In Refs. [2, 7] it was shown that the
values for the L (M,) can be understood in terms of meson resonance exchange. For
recent attempts to evaluate L; directly from the QCD Lagrangian see [8].]

Here, it is of interest to know which of the low-energy couplings occur in the
matrix elements for the semileptonic kaon decays discussed in section 2. This in-
formation is given in table 2. (There is an ambiguity concerning the bookkeeping
of Ly and Lj5: some of these contributions may be absorbed into the physical decay
constants Fy, Fx. Here we have chosen the convention which corresponds to the
amplitudes displayed in section 2. Furthermore, in K, decays, additional constants
may occur via the form factor R which has not yet been worked out at one-loop
level {9]. This channel is therefore omitted in the table.)

We now turn to point iii) above. A functional Z[U, l,r] which reproduces the chi-
ral anomaly was first constructed by Wess and Zumino [10]. For practical purposes,
it is useful to write it in the explicit form given by Witten [11]:

Z{U,Lrlwzw = - 21](\)’; L dPre?tm(nlvlniniel) (17)
tN¢
4872

/ &0 an (WU, 1,18 — W(1,1,7)")

— 10 —



Table 2: Occurrence of the low-energy coupling constants L;,..., Lo and of the
anomaly in the semileptonic decays discussed in section 2.

Kt - Kt - KY -
Koy | Kou | Kiz | Kiay | 7t m ety | 7%7% 0, | 7%~ etu,

L1 ’ X X

L, X X

Ly X X X

L, X X

L5 X X X

Lg X X X X X X
Lo+ Ly X X X
Anomaly X X X X X

1
WU, L) was = (ULLLUrs + ZUluU*ruUlaU*rB + U8, LU ry
+i6#ruUlanrg - iZl[;luUfraUlg + EﬁU"BuraUlg

~Ei2LU YUl + £11,0415 + 50,1415 (18)
: 1 :

—i%Cl6lg + 52";1”2515 — i BLells)

—(L < R)

=U'%U 2R =Us,U!
N¢ =3 €o123 = 1
where (L — R) stands for the interchange

U U, l, &y, EﬁHEf}.
The integration in the first term in Eq. (17) is over a five-dimensional manifold
whose boundary is four-dimensional Minkowski space, such that

A FreN ™, Tijy = / &'z Ty o (19)

according to Stoke’s theorem. [This term involves at least five pseudoscalar fields and
will not be needed in the following section.] The convention used in Eq. (17) ensures
that Z[U,l,7|wzw conserves parity and reproduces the anomaly under SU(3). x
SU(3)g transformations in Bardeen’s form [12] (in particular, it is invariant under
transformations generated by the vector currents).

The Wess-Zumino-Witten functional contains all the anomalies which contribute
to the semileptonic meson decays considered in the following section. The relevant
piece for e.g. K4 decays is

ZIU,Lr)wzw =

S / B 2epy < OHBO"BOPYT > 4 -+ . (20)

— 11 —



This short introduction to CHPT (see Refs.[13, 14] for more extensive treatments
with references to the original literature) contains all the ingredients necessary for
the calculation of semileptonic K decay amplitudes to O(p*) presented in the next
section. For the low energies involved in these decays, the momentum dependence
of the W propagator connecting to the lepton-neutrino pair in the final state can be
neglected. The chiral realization of the non-leptonic weak interactions is discussed
in the corresponding sections on non-leptonic K decays.

— 12—
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Chapter 2

SEMILEPTONIC KAON
DECAYS



1 Radiative Kj; decays
We consider the Ky, decay

K*(p) = U(p)ulp)r(e)  [Kias] (1.1)

where ! stands for e or g, and v is a real photon with ¢ = 0. Processes where
the (virtual) photon converts into a ete™ or u*p~ pair are considered in the next
subsection. The K~ mode is obtained from (1.1) by charge conjugation.

1.1 Matrix elements and kinematics
The matrix element for Kt — [*yy has the structure
T = —iGreVy e, {FxL* — H*"1} (1.2)

with

9 2 M [
B =m0 (2 )

o= a(p )71 - vs)v(m)
H" = iV(W)e"*Pq.ps — A(W?)(qW g — WHq")
WE = (p—gf=(+p). (1.3)

Here, ¢, denotes the polarization vector of the photon with Iq“e,, = 0, whereas

A, V stand for two Lorentz invariant amplitudes which occur in the general decom-
position of the tensors

1 = [ doe™= " <0 | TV )_(w) | K* () > , [=V,A . (14)

The form factor A (V) is related to the matrix element of the axial (vector) current
in (1.4). In appendix C we display the general decomposition of A**, V" for ¢* # 0
and provide also the link with the notation used by the PDG [1] and in (2, 3].

The term proportional to L* in (1.2) does not contain unknown quantities — it
is determined by the amplitude of the nonradiative decay K* — {*y;. This part of
the amplitude is usually referred to as "inner Bremsstrahlung (IB) contribution”,
whereas the term proportional to H** is called "structure dependent (SD) part” .

The form factors are analytic functions in the complex W2-plane cut along the

positive real axis. The cut starts at W? = (Mg +2M,)? for A (at W? = (My + M,)?

for V). In our phase convention, A and V are real in the physical region of Kj,,
decays,

mi < W? < M%. (1.5)

—17 —



The kinematics of (spin averaged) Kj;, decays needs two variables, for which we
choose the conventional quantities

z = 2pq/MY , y=2pp/M} . (1.6)

In the K rest frame, the variable z (y) is proportional to the photon (charged lepton)
energy,

:B=2E7/MK s y:2E1/MK , (17)
and the angle 6, between the photon and the charged lepton is related to z and y
by
C(-y/2+A2)(1-y/2-A/2) o
v 1 —y/2+ A/2cosd, A=yt - (18)

In terms of these quantities, one has
W?=Mg(1-=2); (¢ =0). (19)
We write the physical region for # and y as

2 <y<l4mn

1 1
- Lt A) <z <1 y-4) (1.10)
or, equivalently, as
0< z <1-—-m
lozt+——< y <l4m (1.11)
1-2)
where L1051 )
1.1.107%l = e
r=ml Mk = { 46-10°2(1 = p) . (1.12)

1.2 Decay rates

The partial decay rate is
1
dl' = ———— T)*d DUy Pus ) 1.13
21MK(27")5 ,mzml | LIPS(Pa P,D q) ( )

The Dalitz plot density

d’T Mg 2
= = T 1.14
p(z,y) dzdy 25673 Z |IT| ( )

spins

— 18 —



is a Lorentz invariant function which contains V and A in the following form [4]

i

P(“’,y) = Pla(z’y)+Pso(“’ay) +Plxr(msy)
pi(z,y) = Aifin(z,y)
pso(®,y) = AswME [(V + A) oo (2,) + (V = A foo-(2,9)]
pm(w,y) = AKNTIMK [(V + A)fINT+(z7y) +(V - A)leT‘(a’,y)] (1'15)

_ 1 —y+r 2 2:87‘((1 —~1‘1)
fie(z,y) = [m?(x+y— N —7'1)] {a: +2(1-z)(1—7) —m}

(

(2,9) = e+y-1-nfl(z+y-1)(1-2)~7]
foo-(zyy) = [L—-y+m]{(1-2)(1- y) +

( l—y+m

frarlea) = | 02— e =y
) _ 1- y+mn 2
five-(z,9) = [m(r Fy—1- 'T'l)] [:c —l-z)(1-z—-y)- 7'1] (1.16)
and
F 2
Ap = dr (‘M_I:{‘) Asp
Gi\|Visl?a
Ao = “ggm Mk
Ao - 4 (fﬁ) A (1.17)
INT = 4T Mr SD -+ .
For later convenience, we note that
a 1 Mg\ 2
Ap =2 ) . .
o = ge T ( e ) T(K = ) (1.18)

The indices IB, SD and INT stand respectively for the contribution from inner
Bremsstrahlung, from the structure dependent part and from the interference term
between the IB and the SD part in the amplitude.

To get a feeling for the magnitude of the various contributions IB,SD* and INT*
to the decay rate, we consider the integrated rates

T, = /R dzdypi(z,y) ; I =SD*INT%,IB , (1.19)
I
where psp = psp+ + psp- etc. For the region R; we take the full phase space for

I # 1B, and
Ry = 214.5MeV/c < p; < 231.5MeV/c . (1.20)



Table 1.1: The quantities X;, N;. SD* and INT? are evaluated with full phase
space, IB with restricted kinematics (1.20).

SD* SD~ INT* INT- IB
X;[[1.67-1077] 1.67-1072 | —8.22-10"% | 3.67-107° | 3.58 - 10~° || K.,,
X; [ 1.18-1077 ] 1.18- 1072 | —1.78-1073 [ 1.23 . 1072 | 3.68 - 1072 || K o,
N, 2 2 1 1 0

for the Bremsstrahlung contribution. Here p; stands for the modulus of the lepton
three momentum in the kaon rest system.?. We consider constant form factors V,
A and write for the rates and for the corresponding branching ratios

T; = Ag{Mg(V AW X,
BR; = I/T..=N{Mg(V+A}X, (1.21)
with
N = Ag /T, = 8.348 . 1072 (1.22)
The values for N; and X are listed in table 1.1.

To estimate I'; and BR;, we note that the form factors V, A are of order
Mg(V + A) >~ —10"" | Mg(V - A)~-4.10"% . (1.23)

From this and from the entries in the table one concludes that for the above regions
Ry, the interference terms INT® are negligible in K,;,, whereas they are important
in K 3,. Furthermore, IB is negligible for K.,,, because it is helicity suppressed as
can be seen from the factor m? in A;5. This term dominates however in K.

1.3 Determination of A(W?) and V(W?)
The decay rate contains two real functions |
FE(W?) = V(W?) £ A(W?) (1.24)

as the only unknowns. In Figs. (1.1,1.2) we display contour plots for the density
distributions fig, ..., fixrt forl = p,e. These five terms have obviously very different
Dalitz plots. Therefore, in principle, one can determine the strength of each term
by choosing a suitable kinematical region of observation. To pin down F'¥, it would
be sufficient to measure at each photon energy the interference term INT*. This
has not yet been achieved so far, either because the contribution of INT? is too

2This cut has been used in [3] for K,2,, because this kinematical region is free from K3
background. We apply it here for illustration also to the electron mode K.a4.

— 20 —
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small (in K.2,) , or because too few events have been collected (in K,2+). On the
other hand, from a measurement of SD* alone one can determine A4,V only up to a
fourfold ambiguity:

SD* — {(V,4); —(V, 4);(4,V); =(4,V)}. (1.25)
In terms of the ratio
9k = AJV (1.26)
this ambiguity amounts to
SD* — {yk;1/7k}. (1.27)

Therefore, in order to pin down the amplitudes A and V uniquely, one must measure
the interference terms INT* as well.

1.4 Previous experiments

K* — etvey

The PDG uses data from two experiments (2, 5], both of which have been sensitive
mainly to the SD* term in (1.15). In [5], 56 events with E, > 100 MeV, E,+ > 236
MeV and 6.+, > 120° have been identified, whereas the later experiment [2] has
collected 51 events with E, > 48 MeV, E.+ > 235 MeV and .+, > 140°. In these
kinematical regions, background from K+ — e*v,n°% is absent because Er~(Ke) =
228 MeV. The combined result of both experiments is > [2]

I(SD*)/T(K,2) = (2.4 £0.36) - 1075, (1.28)

For SD~, the bound
I[(SD7)/T\om < 1.6-107* (1.29)

has been obtained from a sample of electrons with energies 220 MeV < E, < 230
MeV [2]. Using (1.21,1.22), the result (1.28) leads to

Mg |V + A|=0.105 £ 0.008 . (1.30)
The bound (1.29) on the other hand implies [2]

|[V—-A|/|V+A|<V11, (1.31)
from where one concludes {2] that vk is outside the range —1.86 to —0.54,

vk & (—1.86,-0.54] . (1.32)

3In all four experiments {5, 2, 3, 6] discussed here and below , the form factors A and V have
been treated as constants.
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Table 1.2: Measured branching ratios I'( K — lvy)/T .- The K., data are from
(5, 2], the K2, data from (3, 6]. The last column corresponds (3] to the cut (1.20).

SD* SD~ INT* SD”™ +INT~ total
K.», | (1.52£0.23)-107> | < 1.6-10"7
Koy <3-107° <27-107% ] <2.6-107% | (3.02+0.10)-1073
(modulus) (modulus)

As we already mentioned, the interference terms INT* in K — ev.y are small and
can hardly ever be measured. As a result of this, the amplitudes A,V and the ratio
vk determined from K.,, are subject to the ambiguities (1.25), (1.27).

Kt — pty,y

Here, the interference terms INT* are nonnegligible in appropriate regions of
phase space (see Figs. (1.1,1.2)). Therefore, this decay allows one in principle to
pin down V and A. The PDG uses data from two experiments [3, 6]. In [3], the
momentum spectrum of the muon was measured in the region (1.20). In total 2+3.44
SD* events have been found with 216 MeV/c < p, < 230 MeV/c and E, > 100
MeV, which leads to

Mg |V+A|<0.16 . (1.33)

In order to identify the effect of the SD~ terms, the region 120 MeV/c < p, <150
MeV/c was searched. Here, the background from K3 decays was very serious. The
‘authors found 142 K, candidates and conclude that

—1.77 < Mx(V — A4) < 0.21. ' (1.34)

The result (1.33) is consistent with (1.30), and the bound (1.34) is worse than
the result (1.31) obtained from K.;,. The branching ratios which follow [3] from
(1.33,1.34) are displayed in table 1.2, where we also show the K.y, results (5, 2|.
The entry SD™+INT~ for K., is based on additional constraints from K., [3].

1.5 Theory

The amplitudes A(W?) and V(W?) have been worked out in the framework of various
approaches, viz., current algebra, PCAC, resonance exchange, dispersion relations,
.... For a rather detailed review together with an extensive list of references up to
1976 see [7]. Here, we concentrate on the predictions of V, A in the framework of

CHPT.
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A) Chiral expansion to one loop

The amplitudes A and V' have been evaluated (8, 9] in the framework of CHPT
to one loop. At leading order in the low-energy expansion, one has

A=V =0. (1.35)

As a consequence of this, the rate is entirely given by the IB contribution at leading
order. At the one-loop level, one finds

4 r r
A = “'F"(L9+L10)
v = -t 1
8wt F
YK = 321r2(L§+L{0), (1.36)

where Ly and Lj, are the renormalized low-energy couplings evaluated at the scale
p (the combination L§ + L7, is scale independent). The vector form factor stems

from the Wess-Zumino term [10] which enters the low-energy expansion at order p*,
see section 1.

Remarks:

(i) At this order in the low-energy expansion, the form factors A,V do not exhibit
any W?-dependence. A nontrivial W2-dependence only occurs at the next
order in the energy expansion (two-loop effect, see the discussion below). Note
that the available analyses of experimental data of K — vy decays [5, 2, 3, 6]
use constant form factors throughout.

(ii) Once the combination Lg + Lo has been pinned down from other processes,
Eq. (1.36) allows one to evaluate A,V unambiguously at this order in the
low-energy expansion. Using Lg + Lo = 1.4- 1073 and F = F,, one has

Mx(A+V) = —0.097
Mg(V — A) = —0.037
Yk = 045 . (1.37)

The result for the combination (A + V) agrees with (1.30) within the errors,
while v is consistent with (1.32).

We display in table 1.3 the branching ratios BR; (1.21) which follow from the

prediction (1.37). These predictions satisfy of course the inequalities found from
experimental data (see table 1.2).
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Table 1.3: Chiral prediction at order p* for the branching ratios T'(K — lvy)/T o
The cut used in the last column is given in Eq. (1.20).

SD* SD~ INT™ INT- total
K., | 1.30-107°{ 1.95-10°° | 6.64-10"'°| —1.15-107° | 2.34-10"°
K.y [9.24-107%]1.38.10%| 1.44-107° | —3.83-107% | 3.08-10°

B) W?-dependence of the form factors

The chiral prediction gives constant form factors at order p*. Terms of order p°
have not yet been calculated. They would, however, generate a nontrivial W? - de-
pendence both in V and A. In order to estimate the magnitude of these corrections,
we consider one class of p® - contributions: terms which are generated by vector and
axial vector resonance exchange with strangeness {7, 11},

V A
\% Hr2 ”r2
( )— 1—W2/MK~2 ’ A( )_ 1— W 2/1‘4{(12 (1.38)

where V, A are given in (1.36). We now examine the effect of the denominators in
(1.38) in the region y > 0.95,z > 0.2 which has been explored in Kt — etuy (2.
We put m, = 0 and evaluate the rate

dP(z) N, [t
P /yzo.%pw(m,y)dy (1.39)

where N,,, denotes the total number of K* decays considered, and I';;} =1.24-107®
sec.

The function d—%ﬂ is displayed in Fig. (1.3) for three different values of Mgk«
and Mg, , with N, = 9-10°. The total number of events

1
Np = / dP(z) (1.40)
r=0.2
is also indicated in each case. The difference between the dashed and the dotted line
shows that the nearby singularity in the anomaly form factor influences the decay
rate substantially at low photon energies. The effect disappears at z — 1, where
W? = M%(1 — ) — 0. To minimize the effect of resonance exchange, the large z-
region should thus be considered. The low z-region, on the other hand, may be used
to explore the W2-dependence of V and of A. For a rather exhaustive discussion of

the relevance of this W? - dependence for the analysis of Kj;, decays we refer the
reader to Ref. {7].
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Figure 1.3: The rate dP(z)/dz in (1.39), evaluated with the form factors (1.38) and
N.. = 9-10° The solid line corresponds to Mg~ = 890 MeV, Mg, = 1.3 GeV.
The dashed line is evaluated with M. = 890 MeV, Mk, = oo and the dotted line

corresponds to My« = Mg, = co. The total number of events is also indicated in
each case.

1.6 Improvements at DAFNE

Previous experiments have used various cuts in phase space in order (i) to identify
the individual contributions IB, SD*, INT? as far as possible, and (ii) to reduce the
background from Kj3 decays. This background has in fact forced so severe cuts that
only the upper end of the lepton spectrum remained.

The experimental possibilities to reduce background from Kj; decays are pre-
sumably more favourable with today’s techniques. Furthermore, the annual yield of
9.10°K* decays at DAFNE is more than two orders of magnitude higher than the
samples which were available in (2, 3, 5, 6]. This allows for a big improvement in the
determination of the amplitudes A and V, in particular in K2, decays. It would be
very interesting to pin down the combination Lg + Ly, of the low-energy constants
which occur in the chiral representation of the amplitude A and to investigate the
W?2-dependence of the form factors.
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2 The decays K* — I*vl'fl'-

Here we consider decays where the photon turns into a lepton-anti-lepton pair,

+

K* — etvptu : (2.1)
Kt — ptvete” (2.2)
K* — etvete” (2.3)
K* — uptoptp~ . (2.4)
2.1 Matrix elements
We start with the processes (2.1) and (2.2),
K*(p) — F(@)v(p)l*(p )l (p2)
(L) = (ep)or (pe) (2.5)
The matrix element is
T = —iGreVye, {FL’ - H™1,} (2.6)
where
- _ 2" — ¢ 2p/'+ W‘}
LI‘ = m y 1+ { . .
lu‘(p )( 75) 2pq —_ q2 2qu + q2 ”(Pl)
= w@(p, )y (1 - vs)v(p)
H" = iVie"*Pqaps — Ai(qW g™ — WPg")
~Ax(¢*g™ — ¢°¢") — Au(qgW ¢® — W )W* (2.7)
with oF P2
-1
A, = x__F(q) + A, (2.8)

M} —W? q?

The form factors A;(q%, W?), Vi(¢%, W?) are the ones defined in appendix C. F{f(q?)
is the electromagnetic form factor of the K*. Finally the quantity € stands for

e
e = ?ﬁ(pz)'r“v(pl) : (2.9)
and the four-momenta are

g=pr+p, W=p+p =p—g (2.10)
such that ¢,& = 0.

In order to obtain the matrix element for (2.3) and (2.4),

L K*(p) = I (p)u(p ) (21 (p2) (2.11)
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one identifies m; and m} in (2.6) and subtracts the contribution obtained from
interchanging py; < p; :

(plapl) - (plypl)
q — pi+p2
W — p—gq=p.+pi. (2.12)

2.2 Decay distributions

The decay width is given by

1 2
dr' = 2MK(27T)8 Z lT IdL[PS(?’?hpu,php’Z) (213)

sping

and the total rate is the integral over this for the case ! # I'. For the case | = '

the integral has to be divided by the factor 2 for two identical particles in the final
state.

We first consider the case where [ # I’ and introduce the dimensionless variables

s = 2P
M}
_ 2pp
y = _A—/—I?(-
2
, = 1
MZ
m;
™ = 353
Mg
2
™My

o= -Aﬁ (2.14)

Then one obtains, after integrating over p; and p; at fixed ¢* [12],

AU+ gruip- = EGE|VioPMEF(2,7) {— > —T;_T_"} dzdydz
spins
, 1 27 4r
F(zm) = 192732 {1 T } 1= z
T = Mg {FcI"-H"L}. (2.15)

The quantity {— > spins —T:‘T“} is displayed in appendix D. This result allows one’
to evaluate, e.g., the distribution dI'/dz of produced I'*I'" pairs rather easily. The
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kinematically allowed region is

W
3.

"

| ™
ORN
INIA A

1
1
A+B (2.16)
with
2-z)1+z+7r—2)
2l +z—z)

B - (I+z—2z—-r)vVz? -4z
2(1 4+ z — ) |

A

(2.17)

The case | = I’ is slightly more elaborate. We feel that it does not make sense to
display the term ¥, |T|? because it is of considerable complexity in the general
case when all the form factors A;, V; and F¥ are ¢®> and W? dependent. The

expression together with the Monte Carlo program to do the phase space integrals
is available on request from the authors.

2.3 Theory

The form factors 4;, V; and F/ have been discussed in all kinds of models, Vector
Meson Dominance, hard meson, etc.. For a discussion see Ref. [7]. We will restrict
ourselves to the predictions in the framework of CHPT.

To leading order we have

A] = A2 = 'A3 =0. ’ (218)

We also have Ff = 1. The rate here is entirely given by the inner Bremsstrahlung
contribution. At the one-loop level several form factors get non-zero values [9]

: 1
"= g
4 r r
A = “F (Lg + L)
A = _2Fc(FE(@) - 1)
2 = - q2
A3 =0
F¥(4?) = 1+ Hee(d®) + 2Hkk(q") - (2.19)

These results obey the current algebra relation of Ref. {7]. The function F/f(gq?)
does, however, deviate somewhat from the linear parametrization often used. The
function H(t) is defined in appendix B.
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Table 2.1: Theoretical values for the branching ratios for the decay K+ — ptvete-
for various cuts.

tree level | form factors as given by CHPT
full phase space 2.49-107° 2.49-107°
z< 1073 2.07-107° 2.07 1073
z>10"3 4.12-10°° 4.20-10°°
2 > (20 MeV/Mrg)? | 3.15-10-9 3.23-10-°
2 > (140 MeV/My)? | 4.98-10°° 8.51-10°°
z > 40 MeV /Mg 1.58 -107° 1.58 . 1073

The fact that the form factors at next-to-leading order could be written in terms
of the kaon electromagnetic form factor in a simple way is not true anymore at the
p® level. The Lagrangian at order p® contains a term of the form

r {Da Ferpt DﬁFRg“U} (2.20)

that contributes to A, and Aj but not to the kaon electromagnetic form factor,
F¥(q%).

2.4 Numerical results

Using the formulas of the previous subsections and appendix D we have calculated
the rates for a few cuts, including those given in the literature. For the case of
unequal leptons, the results are given in table 2.1 for the decay K* — ptvete .
These include the cuts used in Refs. [12] and [13], z > 40 MeV/Mk and z >
(140 MeV/Mg)?, respectively. It can be seen that for this decay most of the branch-
ing ratio is generated at very low electron-positron invariant masses. As can be seen
from the result for the cuts used in Ref. [13], the effect of the structure depen-
dent terms is most visible at high invariant electron-positron invariant mass. Our
calculation, including the effect of the form factors agrees well with their data. We
disagree, however, with the numerical result obtained by Ref. {12] by about an order
of magnitude.

For the decay K* — etvutp~, we obtain for the tree level or IB contribution a
branching ratio

BRig(K* — etuptp~) =3.06-1072 (2.21)
and, including the form factors,
BRigat( K™ — efvptp™) =1.12.107%. (2.22)

Here the structure dependent terms are the leading contribution since the inner
Bremsstrahlung contribution is helicity suppressed as can be seen from the factor
my in L.
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Table 2.2: Theoretical values for the branching ratios for the decay K+ — etvete
for various cuts.

tree level | form factors as given by CHPT
full phase space ~4-107° 1.8-1077
z, 2, > 1073 3.0.10°10 1.22.10~7
z, z; > (50 MeV/My)* | 5.2-1071! 8.88.1078
z, 2, > (140 MeV/Mg)? | 2.1-10712 3.39.10°8

For the decays with identical leptons we obtain for the muon case a branching
ratio of

BRiota( K* — ptvptp™) =1.35-107° (2.23)

for the full phase space including the effects of the form factors. The inner Bremsstrahlung
or the tree level branching ratio for this decay is

BR;g(K* — pfoptp™) =3.79 . 107°. (2.24)

For the decay with two positrons and one electron the integration over full phase
space for the tree level results is very sensitive to the behaviour for small pair masses.
We have given the tree level and the full prediction, including form factor effects in
table 2.2. The cuts are always on both invariant masses :

z = (;m +P2)2/M12<
zy = (p+p2)* /ML . (2.25)

The values for the masses used are those of K* and n*. For Ly and L,y we used
the values given in section 1,

Ly(M,) = 6.9.107°
Lo(M,) = =55.107° . ; (2.26)

2.5 Present experimental status

Only decays with an electron positron pair in the final state, decays (2.2) and (2.3),
have been observed.

Both have been measured in the same experiment [13]. The decay K+ —
ptvete” was measured with a branching ratio of (1.23 £ 0.32) - 107 with a lower
cut on the electron positron invariant mass of 140 MeV. The measurement is com-
patible with our calculation including the form factor effects for the relevant region
of phase space. This measurement was then extrapolated [13] using the result of [12]
to the full phase space. Since we disagree with that calculation, we also disagree
with the extrapolation.
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In the same experiment, 4 events of the type K+ — etvete™ were observed where
both electron positron pair invariant masses were above 140 MeV. This corresponds
to a branching ratio for this region of phase space of (2.872%) - 1078, This result
i1s compatible within errors with our calculation, see table 2.2. The matrix element
of Ref. [12] was again used for the extrapolation to full phase space[13]. Apart
from our numerical disagreement, the calculation of Ref. [12] was for the case of
non-identical leptons and cannot be applied here.

For the decay K* — ptvptu™ an upper limit of 4.1-1077 exists [14]. This upper
limit is compatible with our theoretical result, Eq. (2.23).

The decay K* — etvutpu™ has not been looked for so far and should be within
the capabilities of DAFNE given the branching ratio predicted in the previous sub-

section. This decay proceeds almost entirely through the structure dependent terms
and is as such a good test of our calculation.

2.6 Improvements at DAFNE

The decays discussed in this subsection, K+ — [*vl*]~, are complementary to the
decays K* — [Tvy. As was the case for the analogous decay, #* — etvete™ [15],
it may be possible to explore phase space more easily with this process than with
K* — ltvy to resolve ambiguities in the form factors.

As can be seen from our predictions, tables 2.1 and 2.2, all the decays considered
in this subsection should be observable at DAFNE. Large improvements in statistics
are possible since less severe cuts than those used in the past experiments should be
possible. In the decays with a u*u~ pair and the decay K™ — e*ve’e™ the effects
of the form factors are already large in the total rates and should be easily visible at
DAFNE. In the decay Kt — putvete™ most of the total rate is for small invariant
mass of the pair and is given by the inner Bremsstrahlung contribution. There are,
however, regions of phase space where the form factor effects. are large and DAFNE
should have enough statistics to be able to study these regions.



3 K3 decays

The decay channels considered in this subsection are
K*(p) — ='W (pulp) (K] (3.1)
K°(p) — = (@)W (pulp)  [Kp (3.2)

and their charge conjugate modes. The symbol I stands for u or e. We do not

consider electromagnetic corrections and correspondingly set @ = 0 throughout this
subsection.

3.1 Matrix elements and kinematics

The matrix element for K has the general structure

Gr
T = ZLvpr*w, 3.3
\/‘2‘ us u (p p) ( )
with
" = ﬁ(pu)v“(l—‘rsv)v(p:)
FHp,p) = <=(p)|V)7%(0) | KT (p) >

B \/%[(P'M)u 0 + (- P)ufE (@) (3.4)

To obtain the matrix element for K7} , one replaces F} by
F(pp) = <= (F) | V,7%(0) [ K°(p) >
= @+ O+ (- PWfET(R). (3.5)
The processes (3.1) and (3.2) thus involve the four K3 form factors fX'™°(t),
K= (t) which depend on
t=(p'—p) =(p+p), (3.6)
the square of the four momentum transfer to the leptons.

Let fK= = fK*=° or fK°=, K™ is referred to as the vector form factor, because
it specifies the P-wave projection of the crossed channel matrix elements < 0 |
Vi=3(0) | K*,7% in >. The S-wave projection is described by the scalar form
factor

t
K= _. fKn Kr
o () = fT(E) + ML - M- (t) - (3.7)
Analyses of K3 data frequently assume a linear dependence
t
£a(t) = £57(0) [1 + /\+,0H§“] . (3.8)
t+
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For a discussion of the validity of this approximation see [16, 1] and references cited
therein. Eq. (3.8) leads to a constant fX7(t),

Mg — M;

F(0) = FET(0) = FET0)0 = X )

(3.9)

The form factors ffg(t) are analytic functions in the complex ¢-plane cut along the
positive real axis. The cut starts at ¢ = (Mk + M,)?. In our phase convention, the
form factors are real in the physical region

mi <t < (Mg — M) (3.10)

The kinematics of (spin averaged) K;3 decays needs two variables, for which we
choose

y =2/ Mg, 2 =2pp' M = (=t + M7 + Mg)/ My . (3.11)
In the K rest frame, y (z) is proportional to the charged lepton (pion) energy,

y=2E1/A/IK y Z=2E,/MK . (3.12)
The physical region for y and z is

2\/7-'—1 < vy <l+4+rm—r7rg
A(y) - B(y) < z < A(y)+ B(y)
Aly) = C-y)(L+r+re—y)/2(L +r —y)]

Bly) = yr—4n(l+r—r.—y)/2(1 + 7 —y)]

r = mi/Mp,r. = M:/M}. (3.13)
or, equivalently,
2tz < 2 Sl4re—m
C(z)-D(2) < y <C(z2)+ D(z)
C(z) = 2-2)A+re+m—2)/[2(1+7r, —2)]
D(z) = 22 —dr(l+re—m—2)/[2(1 + 7.~ 2)] .
(3.14)
3.2 Decay rates
The differential decay rate for K} is given by
1
= — T|*d DL Pus D) - 3.15
dl’ TPOE ag;,l 1*drips(p; p1,Puy P') (3.15)
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The Dalitz plot density

(4.) = 2T
PY2) = ydz ~ 2567r3 21T (3.16)

spins

0 .
is a Lorentz invariant function whlch contains f& **° in the following form,

M5 G‘Z Vu_, 2 7r0 W 0 0
Kzge'ws | [AGFE )2 + BFET = g0 L o(F57°y1] (3.17)

p(y,z) =

with

N’
!

Ay, 2 dz+y—-1)(1—-y)+mdy+3z -3 —dr. +ri(rr — )
B(y,z) = 2r(3 -2y —z+r ~7y) .
Cly,2) = r{l+re—2z~-7). (3.18)

The quantities (A, B, C') are related to the ones quoted by the PDG [1] by
| | 8
(A,B,C): —Al_S(A,B,C)pDG . (319)
K

To obtain the rate for K}}, one replaces in (3.17) f K*=® by V2fK°".

For convenience we also display the K3/ K.; rates evaluated in the approxima-
tion (3.8) for the form factors,

0.645 + 2.087X, + 1.464X + 3.375A2 + 2.573A2
» 1+ 3.457TA, + 4.783A%
0.645 + 2.086), + 1.459X¢ + 3.369A2 + 2.560\2

0 0 . ° : + ’ 0
[(Ka)/T(Kea) = 1+ 3.456), + 4.7767% - (3.20)

M(KRL)/T(KS) =

We have used the physical masses (1] in evaluating these ratios and M.+ to scale
the slope in both cases. The terms linear and quadratic in Ay are proportional to m}
and therefore strongly suppressed in the electron case. We do not include them in
the denominators, because these coefficients are smaller than 10~*. The interference
term AgA, is absent by angular momentum conservation. Furthermore, one has

[ dy dzA(y,2) = { o0 g J | (3.21)

3.3 Determination of the K;; form factors
Measurements of the Dalitz plot distribution (3.17) of K3 data allow one in principle

to pin down the form factors (up to a sign) in the range m2 <t < (Mg — M,)>.
Measuring the K3/ K.3 branching ratio and then using (3.20) gives a relationship
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between A, and A, which is valid in the approximation (3.8). Furthermore, muon
polarization experiments measure the weighted average of the ratio fX™(t)/ fX=(t)
over the ¢ range of the experiment {1, 17]. On the other hand, the electron modes
K.3 are sensitive to fX™ only, because the other contributions are suppressed by the
factor (m./Mg)? ~ 107°, see eqgs. (3.17), (3.18).

Isospin breaking effects in fX**°(0) and fX°~7(0) play a central role in the
determination of the Kobayashi-Maskawa matrix element V,, from K.3; data, see

[18] for a detailed discussion of this point. In the following we concentrate on the
measurement of the slopes A, o.

3.4 Previous measurements

We refer the reader to the 1982 version of the PDG [19] * for a critical discussion

of the wealth of experimental information on /\f,’{). Here we content ourselves with
a short summary.

K 3-experiments

The A, values obtained are fairly consistent. The average values are

K% : A, = 0.028+0.004 Refl[l]
K% : A, = 0.030 £0.0016 Ref.[1] . (3.22)

K 3-experiments

The result by Donaldson et al. [20]

Ay = 0.030 +0.003
do = 0.019 £ 0.004 (3.23)

dominates the statistics in the K2 case. The A, value (3.23) is consistent with
the K.; value (3.22). However, the situation concerning the slope Ao is rather
unsatisfactory, as the following (chronological) list illustrates.

(0.0341 + 0.0067 [21]
0.050 + 0.008 [22]
| 0039 & 0010 [23] ,
Y =1 0047 + 0009 [24] (3.24)
0.025 <+ 0.019 [25]
| 0.019 <+ 0.004 [20] .

The x? fit to the K33 data yields A, = 0.034 + 0.005, Ay = 0.025 + 0.006 with a
x?/DF = 88/16 [19, p.76]! The situation in the charged mode K} is slightly better
[19]. ‘

*Please note that the most recent measurements of A} o go back to 1981 [1}!



3.5 Theory

The theoretical prediction of Ki3 form factors has a long history, starting in the
sixties with the current algebra evaluation of fX *r° For an early review of the
subject and for references to work prior to CHPT evaluations of fi we refer the
reader to [26] (see also Ref.[27]). Here we concentrate on the evaluation of the form
factors in the framework of CHPT. We restrict our consideration to the isospin
symmetry limit m, = mq, as a result of which one has

K1) = FEST(8) = Faolt) s mu=ma . (3.25)

A) Chiral prediction at one-loop order

In Ref. [16], the vector current matrix elements < M’ | q'y‘“\—;q | M > have been
calculated up to and including terms of order ¢ = (p’ — p)? and of order m,,my
and m, in the invariant form factors. For reasons which will become evident below,

we consider here, in addition to the K3 form factors, also the electromagnetic form
factor of the pion

<77 (p) | VE.(0) | 77 (p) >= (¢' + p)* FU(t): (3.26)

The low-energy representation for Fy(t) [16, 28] and f(t) [16] ceads

Fr(t) =1+ 2H,o(t) + Hix(t) |

£16) = 1+ 5 Hial0) + 5 Hco0) (3.27)

The quantity H(t) is a loop function displayed in appendix B. It contains the low-

energy constant Lg. The indices attached to H(t) denote the masses running in the
loop.

Since Lg is the only unknown occurring in Fj(t) and in f.(t), we need ex-
perimental information on the slope of one of these two form factors to obtain a
parameter-free low-energy representation of the other.

The analogous low-energy representation of the scalar form factor is

2

filt) = 1+—1——(5t—2zK,—3A§") Tualt)

8F?
1 A2\ .
+ S (3t-22K,,— f*) Jicq(t)
t (F
v (}—’ﬁ—l). (3.28)
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Figure 3.1: The vector and scalar form factors f,(t) and fo(t).

The function J(t) is listed in appendix B, and Y g, and Ak, stand for

EK‘N = M[2(+M:
Agr = M}~ M: . (3.29)

The measured value [18] Fx/F, = 1.224+0.01 may be used to obtain a parameter-free
prediction of the scalar form factor fo(t).

B) Momentum dependence of the vector form factor

In the spacelike interval /—t < 350 MeV the low-energy representation (3.27)
for the electromagnetic form factor F{3(t) is very well approximated by the first two
terms in the Taylor series expansion around ¢t = 0,

1 2
F{f(t)=1+g<r'>’(/t+--- . (3.30)
Likewise, the linear approximation
1 2 _Kr
Folt) = (@) {1+ 5 <* > b+ (3.31)

reproduces the low-energy representation (3.27) very well, see Fig. 3.1. This is in
agreement with the observed Dalitz plot distribution, which is consistent with a
form factor linear in ¢t. The charge radii are

12L3 1 M? M}
2 T 9 x K
< >UE o - o {2ln "l +1In v + 3}
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1 M? M}
< r? >V =g p? >V 64n 2F2{3h1(MK)+3hl(ﬁK—)

5 MK 3. M ‘
510 3 +51n M—K—.a} (3.32)
where
h(m)_l(23_3z2_3z+l)lnz+l<m+1) 1 3.33)
neEe (z —1)3 2\z—1 3 (3.

To evaluate these relations numerically, we use the measured charge radius of the
pion:

< r* >7=0.439 £ 0.008fm? Ref.[29] (3.34)
as input and obtain the prediction
1

Ay = EM; <7 >¥7=0.031 (3.35)

in agreement with the experimental results (3.22), (3.23) ° . From this (and from
the considerably more detailed discussion in Ref. [16]), one concludes, in agreement
with other theoretical investigations [30], that the measured charge radii < 72 >§,
and < 2 >&"™ are consistent with the low-energy prediction.

C) Momentum dependence of fy(t). Dashen-Weinstein and Callan-
Treiman relations '

In the physical region of K3 decay the low-energy representation (3. 28) for the
scalar form factor is approximated .by the linear formula

fo(t) = f+(0),{1 + % <r?>ETt+ } ' (3.36)

to within an accuracy of 1 %. (See Fig. 3.1). The curvature generated by higher

order terms is a.lso expected to be negligible in the physical region of the decay [16].
For the slope < 72 >X™ one obtains

6 (F .
< 1‘2 >IS(K — m (?‘E - 1) + 52 + O(m,m,)
1 M2 19M}‘} + 3M,3 M2
- _ S -1
& 10272 F? {15"2 (MK) t o \wmg)

(3.37)

SWe do not quote an error for the result (3.35), because one should estimate higher order chiral
corrections for this purpose.
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Figure 3.2: The normalized slopes of the vector and the scalar form factors. Curve
1: the normalized slope M2, df,(t)/dt. Curve 2: the normalized slope M2, dfo(t)/dt.
Near the 7K threshold ¢, = (M + M,)?, the vector form factor behaves as f.(t) =
f+(to) + O[(t — to)], whereas fo(t) = fo(to) + O[(v/T — to)]. The slope of the scalar

form factor is therefore singular at ¢t = (Mx + M,)2.

where
3 /1+e\? 3z(l+x)
k(@) = 3(77) A—zp %
ha(z) = ho (%) ho(1) = 1, |
m o= (m, +mq)/2 . (3.38) -

This (parameter-free) prediction is a modified version of the Dashen-Weinstein re-
lation [31], which results if the nonanalytic contribution §; is dropped. Dashen, Li,
Pagels and Weinstein [32] were the first to point out that the low-energy singularities
generated by the Goldstone bosons affect this relation. The modified relation is for-
mulated as a prediction for the slope of fo(t) at the unphysical point ¢, = M% + M2.
Their expression for this slope however has two shortcomings: (i) it does not account
for all corrections of order M; (ii) The slope at ¢, differs substantially from the slope
in the physical region of the decay {16, 33|, see Fig. 3.2.

Algebraically, the correction §, is of the same order in the low-energy expansion

as the term involving Fx/F, — 1. Numerically, the correction is however small: 8,

reduces the prediction by 11 %. With Fx/F, = 1.22 £ 0.01 the low-energy theorem
(3.37) implies a

<r? >K" = 0.20 £ 0.05fm’
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1

A(): 6

M2, < r? >E7=0.017 £ 0.004 (3.39)
where the error is an estimate of the uncertainties due to higher order contributions.
The prediction (3.39) is in agreement with the high-statistics experiment [20] quoted
in (3.23) but in flat disagreement with some of the more recent data listed in (3.24).

In the formulation of Dashen and Weinstein (31}, the Callan-Treiman relation
[34] states that the scalar form factor evaluated at t = M% — M2 differs from Fy/F,
only by terms of order m,, m4: the quantity

F
Acr = fo(ME — M?) — ?" (3.40)

is of order 7. Indeed, the low-energy representation (3.28) leads to

M2 (- 1. '
Acr = —2—F—’; {JK,,(M;-; - M)+ EJK,,(M?( - M,’f)} + O(mm,) . (3.41)
Numerically, Acy = —3.5-1073. The Callan-Treiman relation should therefore

hold to a very high degree of accuracy. If the form factor is linear from t = 0 to
t = M} — M2 then the slope must be very close to

M.?  (Fk
,\CTz—”—(———1)=.1 42
G ME — MZ\ T, 0.019, (3.42)
in agreement with (3.39) and with the experimental result of Ref. [20], but in
disagreement with, e.g., the value found in Ref. [22]. We see no way to reconcile
the value Ag = 0.050 with chiral symmetry.

3.6 Improvements at DAFNE

DAFNE provides the opportunity to improve our knowledge of Kj3 decays in a
very substantial manner - in particular, it should be possible to clarify the issue
of the slope Ao of the scalar form factor fo. To illustrate, we compare in table
3.1 the hitherto obtained number of events (third column) with the expected ones

at DAFNE (fourth column). The last column displays the remarkable increase in
statistics obtainable at DAFNE.
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Table 3.1: Rates of K3 decays. The number of events in the third column corre-
sponds to those data which are of relevance for the determination of the slope Ay of
the scalar form factor.

i events
branching | Particle Data | DAFNE | improve-
ratio Group 1 year ment
K* - n%%y, | 3.18.107° 10° 3108 3-10°
K; — m*p¥v | 27.107? 4.10° 3.108 70
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4 Radiative K3 decays
The decay channels considered in this subsection are

K*(p) — =@ pup)g) (KL,
K°(p) — = (@)W (@)ulp)v(e)  [Kd,)

and the charge conjugate modes. We only consider real photons (¢* = 0).

4.1 Matrix elements

- The matrix element for Kj§. has the general structure

T = ?/%ev* e“(e)” {(Vu’:‘Aﬁu)ﬁ(puh"(l—7s)v(pz) (4.1)

+

,+ %;ﬂ(Pu)7u(l - 75)(ml"‘ }5{— 4)'7;,4”(?1)} = EM‘A:.

The diagram of Fig. 4.l.a corresponding to the first part of Eq. (4.1) includes
Bremsstrahlung off the K*. The lepton Bremsstrahlung diagram of Fig. 4.1.b is
represented by the second part of Eq. (4.1). The hadronic tensors V., At are

defined as .
If, = z/d*ze"” 31 T{Ve"'( YETB(0)} | KH(p)), I=V,A. (4.2)
Ff is the K} matrix element _
Ff = (x°(p) | V)75(0) | K*(p))- (4.3)

~ The tensors V[, and A}, satisfy the Ward identities

q“Vuf, = Ff (4.4)
q“AZ’u =90

leading in turn to
PAT =0, (43)

as is required by gauge invariance.

For K}, one obtains the corresponding amplitudes and hadronic tensors by
making the replacements

Kt - K° o> a=x"
V:; — Vpou, A:V—>A2u (4.6)

v

F} — F°, AF - AS
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To make the infrared behaviour transparent, it is convenient to separate the

+ 0 .
tensors VW, V., into two parts:

~ p ’
Vi = V;;+;§Fj (4.7)

7
0o _ 0 , Pu o
Vo, = Vo + ;,Tq‘Fu‘

Due to Low’s theorem, the amplitudes V“t'o are finite for ¢ — 0. The axial ampli-
tudes A}, are automatically infrared finite. The Ward identity (4.4) implies that
the vector amplitudes VJ,‘O are transverse:

Vit =0. (4.8)

For on-shell photons, Lorentz and parity invariance together with gauge invari-
ance allow the general decomposition (dropping the superscripts +,0 and terms that
vanish upon contraction with the photon polarization vector)

A

W.q P'q
Vyu. = Vvl (gpu - quW ) + V2 (PLQu - q_WW“QU
) ?'q P'q
A = i€ ( A1 + A2 W) +ieu0p W (AW, + Asp,)
Fu = Clpi, + Cz(P - p,)u
W = p+p..

With the decomposition (4.7) we can write the matrix element for K% in (4.1) in
a form analogous to Eq. (1.2) for Kjz,:

T - %ev:,e“(q)*{ (7% — A% 2o, )7 (1 — 15)o() (4.10)
B (1) |2 = AT

The four invariant vector amplitudes V;,...,V, and the four axial amplitudes
Ai,..., A, are functions of three scalar variables. A convenient choice for these
variables is

E, =pq/Mk, E. = pp' [Mx, W = VW? (4.11)

where W is the invariant mass of the lepton pair. The amplitudes C;,C; can be
expressed in terms of the K3 form factors and depend only on the variable (p— )=
M2 + M? — 2MgE,. For the full kinematics of Kj3, two more variables are needed,
e.g. :
E, = ppi/Mk, == pq/Mk. (4.12)
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a) b)

Figure 4.1: Diagrammatic representation of the K5 amplitude.

The variable z is related to the angle 8,, between the photon and the charged lepton

in the K rest frame:
eM} = E,(E; — \/E} — m?cosfy,). (4.13)

T invariance implies that the vector amplitudes Vi,..., V), the axial amplitudes
Ay, ..., Ay and the Kj3 form factors Cy,C; are (separately) relatively real in the

physical region. We choose the standard phase convention in which all amplitudes
are real. '

For 6, — 0 (collinear lepton and photon), there is a lepton mass singularity in
(4.1) which is numerically relevant for [ = e. The region of small E.,, §;, is dominated
by the K3 matrix elements. The new theoretical information of K3, decays resides
in the tensor amplitudes V,“, and A,,. The relative importance of these contributions
can be enhanced by cutting away the region of low E.,,8;,. It may turn out to be
of advantage to reduce the statistics by applying more severe cuts than necessary
from a purely experimental point of view.

4.2 Decay rates

The total decay rate is given by

1
['(K — «wlvy) = W/dLIPS(P§P’aPhPmQ) Z | T 12 (4.14)

sping

in terms of the amplitude 7 in (4.1). The square of the matrix element, summed
over photon and lepton polarizations, is a bilinear form in the invariant amplitudes
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Viyoo o, Vay Ayq, ..., Ay, C1,C,. Pulling out common factors, we write (4.14) in the
form \
4aG% | Vi, |?

(K — nlvy) = (2r) Mx /dum@nﬁMJWQSMZ (4.15)

SM, the reduced matrix element squared, is given in App. E as a function of scalar
products and invariant amplitudes. For the actual numerical calculations, we have
found it useful to employ a tensor decomposition different from the one in Eqgs. (4.7)

and (4.9)

Vuu = Blgpu '+' BZWuqu + BBP:‘qu + B4prf,
+B5W,_‘Wu + BGP:,WL/ + B7p;‘p:, . (4.16)

One advantage is that (4.16) applies equally well to both charge modes while (4.7)
does not. Moreover, the expression for SM in App. E is more compact when written
in terms of the B;. In the numerical evaluation of the amplitudes, gauge invariance
can of course be used to express three of the B; in terms of the remaining ones and

Of Cl,CQ-

To get some feeling for the magnitude of the various decay rates, let us first con-
sider the tree level amplitudes to lowest order p? in CHPT. With the sign conventions
of Ref.[35] exhibited in section 1, these amplitudes are [9, 36] :

K}
1 (P + W)u(20 + W),
Vt = —= 14 v+ £
" v2 [ P
Af, = 0 (4.17)
1
Ff = E(P-FP')U
Ky, :
' (29 + 29+ W),
Vpou = -gﬂv+p“(p : )
_ r'q
A%, =0 (4.18)

F = (p+9)..

In table 4.1 the corresponding branching ratios are presented for the four decay
modes for E, > 30MeV and 6, > 20°. For KJ}, the rates are to be understood

as ['(K; — w*lFvy). The number of events correspond to the design values for
DAFNE (cf. App. A).
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Table 4.1: Branching ratios for tree level amplitudes for E, > 30MeV and 6,, > 20°

in the K rest frame.

decay | BR(tree) | #events/yr
K5, [28x107| 25x 10°
K& |1.9x1075| 1.7 x 10°
K% |3.6x107°| 4.0 108
K%, |52x107| 5.7x10°

Table 4.2: Experimental results for K3, decays

decay | exp. | E,nmin | # events BR

K5, | [37] | 10MeV 192 | (2.7+0.2) x 107* 1 0.6 < tosf., < 0.9
KX, | [38] | 10MeV 13{(3.7£1.3)x 107 ="

KX, | [39] | 30MeV 16 | (2.3 £ 1.0) x 10°* cos B, < 0.9
Kr. | [39] | 30MeV 0 <6.1x10°5 90% c.l.
K. | [40] | 15MeV 10 | (1.3 +£0.8) x 1072

4.3 Previous experiments

The data sample for K3, decays is very limited and it is obvious that DAFNE
will be able to make significant improvements. The present experimental status is
summarized in table 4.2.

A comparison between tables 4.1 and 4.2 shows the tremendous improvement in
statistics to be expected at DAFNE. We shall come back to the question whether
this improvement will be sufficient to test the standard model at the next-to-leading

order, O(p*), in CHPT.

4.4 Theory

Prior to CHPT, the most detailed calculations of K3, amplitudes were performed
by Fearing, Fischbach and Smith [41] using current algebra techniques.

In the framework of CHPT, the amplitudes are given by (4.17) and (4.18) to
leading order in the chiral expansion.

A) CHPT to O(p*)

There are in general three types of contributions [35]: anomaly, local contribu-
tions due to £, and loop amplitudes.
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Figure 4.2: Loop diagrams (without tadpoles) for K3 at O(p*). For K;3., the photon
must be appended on all charged lines and on all vertices.

The anomaly contributes to the axial amplitudes

V2 i 4 o

A:v = 1672 F2 {Eﬂqup(4pl + W)™ + m%,\MVVuP"\qWV’} (4.19)
0 L .
Aw = ~grapatum T W

The loop diagrams for Kj3, are shown in Fig. 4.2. We first write the K} matrix
element in terms of three functions f;, f;, f5 which will also appear in the invariant
amplitudes V;*. Including the contributions from the low-energy constants Ls, Lo
in £y, the K3 matrix element F is given by

R = FO (MR - M2 0RO+ O] -

¢ = ¢1)B3(t)

Py
I
S
+
NN
by
-
[\&]
M

500 =~ 3 {el - o oty - LERORI] a0

\/§F2 [=1 2t
v = K i\i{ L4 eb)(t+ Ap) — 25} AL (t) (4.20)
3(8) = \/5F,,+2t s (1 + ¢ I Cyp BrJr .
—_ 1 M. Mi M
Ly = Lg(p) - In —
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Table 4.3: Coefficients for the K}, loop amplitudes corresponding to the diagrams
I=1,2,3in Fig. 4.2. All coefficients ¢/ must be divided by 61/2F2.

I\ M; {my c{ cg cé

1\ Mg | M, | 1| 2| -M% —2M?
2\ Mg | M, | 3|-6|—-M}-2M?
3| M, | Mg 0| -6 —6M?

Ly is a scale independent coupling constant and we have traded the tadpole con-
tribution together with Ls for Fix/F, in f7 (t). The sum over I corresponds to the
three loop diagrams of Fig. 4.2 with coefficients c!,c!,c! displayed in table 4.3.
We use the Gell-Mann-Okubo mass formula throughout to express M in terms of
M%, M2. The functions J/(t) and BI(t) can be found in App. B.

The standard K3 form factors f, (t), f_(t) as given in the previous subsectlon (16]
are

1 +
fil) = Z5f) (4.21)
f-@t) = 7[(MK M2 — t)f5 () + 2f () - f (1)] .

It remains to calculate the infrared finite tensor amplitude th The invariant
amplitudes V;* can be expressed in terms of the previously defined functions f and
of additional amplitudes I, I,,I;. Diagrammatically, the latter amplitudes arise
from those diagrams in Fig. 4.2 where the photon is not appended on the incoming
K* (non-Bremsstrahlung diagrams). The final expressions are

Vi = L+ g WofH (W) + f3(W2)
Vi = Iz—i[p’quz*(quHf;’(Wf)]
Vi = Is+£&[p’Wfé*(Wz)+f§“(W2)—p’qu{“(WfFfs*(Wf)] (4.22)
FHW?) - fH(W2)
9
Wy, = W+q = p-7p.

Vi =



The amplitudes I,, I, I in Eq.(4.22) are given by

4qW .
I, = —\/TFTz(Lg-{-Lw) \/—FZLQ
W2 - AN
+Z {[ We + Ar)(ef + cf) — 2c3p' W, + cb)| [%nﬁﬂ “QGI)}
q
(Cé_‘%) W, (W —A%)jl 51 ' !
+ qu( 7 +4B,) +p' (W —q)L,,
[P'a(Fr — (W2 + ANG:) + pW(BS ~ B])]}
8L9 2 2
I, = — —~ ) |Fr — (W?+ AG
ot O |
4T, 3 L BI- B! A
I = 2(cl e | [ il :
; fF2 Z{ (cf - )[G,+ ot v | oW (4.23)
_— . 1 M. M} M,
Ly, = Llo(/‘)+2567r2 In ut :
b)) m
I _ [ I
. W2 1 .
_ [ T 2 nl 2 nl
F; = Bz——4—Lm+q—W—(W Bj - W2B])
G-—MLZCWZW"’M (W24 A — (W2 + A0
I = ( ’ 14T I)+8W(Q+ I)I—( + [)[]+647r2
JI = J[(WZ), J[ J[(Wz)

B, = Bj(W?"), B; = B{(W?).

The function C(W2 W?, M?,m3) is given in App. B. All the invariant ampli-

tudes Vi*,...,V," are real in the physical region. Of course, the same is true for the
K3 matrix element Fr.

The K}, amplitude has a very similar structure. Both the K {, matrix element F?
and the infrared finite vector amplitude V“Ou can be obtained from the corresponding
quantities F} and V“t by the following steps:

e interchange p’ and —p ;

Fr .
e replace FK by T in f5;

e insert the appropriate coefficients ¢/ for K7, listed in table 4.4;

e multiply F} and Vut by a factor —v/2.
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Table 4.4: Coeflicients for the K7} loop amplitudes corresponding to the diagrams
I=1,2,3in Fig. 4.2. All coefficients ¢! must be divided by 6v/2F2.

I M, my C{ Cg cé

1| Mg | M, | 0] =3 —3M%

2| Mg | M, | 6| -3| MZ+2M?
3| M, | Mk | 4| -2| —2M% +2M?

Table 4.5: Branching ratios and expected number of events at DAFNE for K,;,.

K, BR #events/yr
full O(p*) amplitude | 3.0 x 10=* | 2.7 x 10°
tree level 2.8 x 107 | 2.5 x 108

O(p*) without loops | 3.2 x 1074 | 2.9 x 10°

K:a.l BR #events/yr
full O(p*) amplitude | 2.0 x 1075 | 1.8 x 10°
tree level 1.9 x 1075 | 1.7 x 10°

O(p*) without loops | 2.1 x 107°| 1.9 x 10*

B) Numerical results

In calculating the rates with the complete amplitudes of the previous subsection,
we use thie same cuts as for the tree level rates in Subsect. 4.2:

E'Y
b,

30MeV o (4.24)

2
> 20°.

The physical values of M, and Mk are used in the amplitudes. M, is calculated
from the Gell-Mann—-Okubo mass formula. The values of the other parameters can
be found in section 1 and in appendix A.

The results for K5, and K}} are displayed in tables 4.5 and 4.6, respectively.
For comparison, the tree level branching ratios of table 4.1 and the rates for the
amplitudes without the loop contributions are also shown. The separation between
loop and counterterm contributions is of course scale dependent. This scale de-
pendence is absorbed in the scale invariant constants Lg, Lio defined in Eqs.(4.20),
(4.23). In other words, the entries in tables 4.5, 4.6 for the amplitudes without loops
correspond to setting all coefficients ¢! in tables 4.3, 4.4 equal to zero.
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Table 4.6: Branching ratios and expected number of events at DAFNE for K. .

K2, BR #events/yr
full O(p*) amplitude | 3.8 x 1073 | 4.2 x 10°
tree level 3.6 x 1073 | 4.0 x 10°

O(p*) without loops | 4.0 x 1073 | 4.4 x 10°

K., BR #events/yr
full O(p*) amplitude | 5.6 x 107* | 6.1 x 10°
tree level 5.2x107%| 5.7 x 10°

O(p') without loops | 5.9 x 107*| 6.5 x 10°

4.5 Improvements at DAFNE

The numerical results given above demonstrate very clearly that the non-trivial
CHPT effects of O(p*) can be detected at DAFNE in all four channels without any
problem of statistics. Of course, the rates are bigger for the electronic modes. On
the other hand, the relative size of the structure dependent terms is somewhat bigger
in the muonic channels (around 8% for the chosen cuts). We observe that there is
negative interference between the loop and counterterm amplitudes.

The sensitivity to the counterterm coupling constants Lo, Lo and to the chiral
anomaly can be expressed as the difference in the number of events between the tree
level and the O(p*) amplitudes (without loops). In the optimal case of K2, , this
amounts to more than 4 x 10° events/yr at DAFNE. Almost all of this difference is
due to Lg. It will be very difficult to extract the coupling constant Lo from the total
rates. A more detailed study is needed to determine whether Lo can be extracted

from differential distributions.

The chiral anomaly is more important for K,Jg,r, but even there it influences
the total rates rather little. Once again, a dedicated study of differential rates is
necessary to locate the chiral anomaly, if possible at all.

On the other hand, taking into account that Ly is already known to good accuracy
(see section 1), K3, decays will certainly allow for precise and unambiguous tests

of the one-loop effects in CHPT [9].
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5 Ky decays

In this subsection we discuss the decays

K*(p) — = (p) 7 (p2) I"(m) wi(p.) (5.1)
K*(p) — 7°(p) 7°%(p2) I (m1) wi(p.) (5.2)
K°(p) — =°(p) 7 (p2) I*(p0) wi(p.) (5.3)

and their charge conjugate modes. The letter I stands for e or . We do not consider
isospin violating contributions and correspondingly set m, = mq4, a = 0.

5.1 Kinematics

We start with the process (5.1). The full kinematics of this decay requires five
variables. We will use the ones introduced by Cabibbo and Maksymowicz {42]. It is
convenient to consider three reference frames, namely the Kt rest system (X k), the

mt7~ center-of-mass system (X;.) and the Ity center-of-mass system (Z;,). Then
the variables are

1. sx, the effective mass squared of the dipion system,
s1, the effective mass squared of the dilepton system,

6., the angle of the #* in X,, with respect to the dipion line of flight in X,

oW N

6i, the angle of the I* in ¥,, with respect to the dilepton line of flight in X,
and : - '

5. ¢, the angle between the plane formed by the pions in ¥ g and the correspond-
ing plane formed by the dileptons.

The angles 0., 6; and ¢ are displayed in Fig. 5.1. In order to specify these
variables more precisely, let p; be the three-momentum of the #* in X, and p; the
three-momentum of the [* in ¥;,,. Furthermore, let ¥ be a unit vector along the
direction of flight of the dipion in T, and &(d) a unit vector along the projection
of p1(p1) perpendicular to 7(—7),

= (g — 97 -5/ [P — (B - 7)*]/?
= (g —95-p)/ [} — (B - 92 .

The vectors #, ¢ and d are indicated in Fig. 5.1. Then, one has

. 0y

s» = (m+p), s=(+p)
cosb. = T-pi/|prl, cosb=~V-pf|pi|
g-d, sing=(Zx7)-d. (5.4)

cos¢p =
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Figure 5.1: Kinematic variables for K4 decays. The angle 8, is defined in X, 8; in

¥, and ¢ in Xg.

The range of the variables is

4M? < s < (Mg —my)?
m} < s < (Mg — /3:)°
0 < 6,6 <m0<¢<2m. (5.5)

It is useful to furthermore introduce the following combinations of four vectors

P=p +py Q=pr—p2, L=p+p., N=p—p. (5.6)

together with the corresponding Lorentz invariant scalar products

PZ
PQ
PL

PN
QL
QN

LN
< LNPQ >

with

2

Or

Sey QP =d4M?—s,, L* =g, N? =2m} — s,
0,

1 3

5 (Mk = sz = s1),

ziPL + (1 — z)X cos 6y,

o X cos b,

2QL + ox(1 — z;) [PL cos 0 cos §;

— (.s,,sl)l/2 sin 8, sin §; cos ¢>]

m{

€uvpe LY NV PPQ°

—(3,,.9,)‘/20',,(1 — 2/)X sin @, sin §; sin ¢ (5.7)

1
((PL)? — s,8))'/* = 5,\1/2(M}(,3,,s,)

mi /s
(1—4aM?/s.)'2 (5.8)
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Below we will also use the variables

t = (p—p)°
u (p2 — p)*. (5.9)

These are related to s,,s; and 8, by

t+u = 2M,3+M§+3,—s,,
—20,.X cosf, . (5.10)

t—u

5.2 Matrix elements

The matrix element for K+ — x¥tr~ Ity is

T = %vu:a(pym(l )V — A% (5.11)

where

I, = <at(p)w (p)out | I17%(0) | K*(p) >; I =V, A

H v pp e

Va = —yewelPQ
1

A, = —i— [P, F+Q,G+L,R . (5.12)
My

and €y23 = 1. The matrix elements for the other channels (5.2,5.3) may be obtained
from (5.11,5.12) by isospin symmetry, see below.

The form factors F, G, R and H are real analytic functions of the three variables
p1p2, p1p and pyp. Below, we will use instead the variables {sx,si,0.} or {sr,t,u}.

Remark: In order to agree with the notation used by Pais and Treiman (43} and
by Rosselet et al. [44], we have changed our previous convention {45, 46] in the
definition of the anomaly form factor H. See also the comments after Eq. (5.21).

5.3 Decay rates
The partial decay rate for (5.1) is given by

1 2
T My (27)® d i vyP1,DP2). 5.1
ar M (27 ) Z | T |* drips(p; Pty Pvs D1, P2) (5.13)

spins

The quantity ¥ ,,im, | T |? is a Lorentz invariant quadratic form in F,G, R and

H. All scalar products can be expressed in the 5 independent variables s, s, 0,0
and ¢, such that

Z | T |*=2G% | Vs ‘ZME2J5(8,,,8[,9,”9(,¢) . (5.14)

spins
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Carrying out the integrations over the remaining 4 -3 — 5 = 7 variables in (5.13)
gives [42]

dTls = G% | Vis | N(8y 81)J5(8x, 81, 0x, 01, ¢)dsds;d(cos 6, )d(cos 8,)dp  (5.15)

where
N(smy8) = (1 = 2)o. X287 M%) . (5.16)

The form factors F,G, R and H are independent of ¢ and §;. It is therefore possible
to carry out two more integrations in (5.15) with the result

dT3 = G% | Viy |* N(8r,81)J3(8x5 81, 8x )dsrdsid(cos 8.). (5.17)
The explicit form of Js is
Js

|F|? [(PL):2 ~(PN)? — sz81 + m} s, ]
G [(QL) — (QN)? - Q%si + m}Q?]
B m] [s — m]

+ o+

M}EIHP [(m? - 5) [@*X" + 5:(QL)"] - < LNPQ >7]

(F*G+ FG")[(PL)QL) - (PN)(QN)]
+ (F R+ FR)m}[(PL) - (PN)]

-+

M2 o (F H + FH) [(QN)(PL)* — (QL)(PL)(PN) — 5:3(QN) + mfs~(QL)]
+ (G'R+GR)m{ [(QL) - (@N)]

n —%(G*H + GHY)[(PL)(QLY@N) — (PN)QL) + si(PN)Q? — m}(PL)Q]

+ —M— < LNPQ > [-(F'G - FG")M} + (F"H — FH")(PN)
K
+ (G"H—-GH")(QN) + (R'H~ RH")m}] . | (5.18)

For data analysis it is useful to represent this result in a still different form which
displays the §; and ¢ dependence more clearly (43]:

Js = 2(1—z) [11 + I, cos20; + I;sin® 8; - cos 2¢ + I,sin 26, - cos ¢ + I5sin 6; - cos ¢
+ Igcos; + Isinf; - sin @ + Igsin 26; - sin @ + I sin’ 6; - sin 243] . (5.19)

One obtains

I,

1 .
{(1 + )R+ (3 +2) (1Bl + o) sin? 6, + 2z,|F4{2}

1 .
L = —;(1-=) {|F1|2 -5 (RS + | F3?) sin® e,}
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I = —i—(l—z,){]Fﬂ?—|F312}sin29,,

1

I, = 5(1 — z1) Re(F| F;)sin 0,

I; = —{ Re(F[F;3)+ z1 Re(F; F,)}sind,

Is = —{ Re(F;F3)sin’ 6, — z Re(F; Fy)}

I: = —{Im(FF,)+ 2z Im(F]F3)}siné,

I = %(1 — 2) Im(F7 Fy) sin 6,

Iy = —%(1 — z;) Im(F; F3)sin® 6, (5.20)
where

FR = X.-F+o0,(PL)cosb,-G
F, = a,,(s,,sl)l/ZG

H

— /2

F3 = 0',\—X (3,,81)1 F}(

F, = —(PL)F —-sR—-0:Xcosb,.-G . (5.21)

The definition of Fy,..., F} in (5.21) corresponds to the combinations used by Pais
and Treiman (43} (the different sign in the terms ~ PL is due to our use of the
metric diag(+ — ——)). The form factors I,..., Iy agree with the expressions given
in [43]. We conclude that our convention for the relative phase in the definition of
the form factors in Eq. (5.12) agrees with the one used by Pais and Treiman. The

comparison of (5.18) with [44, table II] shows furthermore that it also agrees with
this reference. -

The quantity J3 can now easily be obtained from (5.19) by integrating over ¢
and 6,

Js= [ dg d(cosbi)Js = 8x(1 ~ =) [1, - %12] . (5.22)

5.4 Isospin decomposition

The Ki, decays (5.2) and (5.3) involve the same form factors as displayed in Eq.
(5.12). We denote by A, _, Ago and Ag_ the current matrix elements of the processes
(5.1)-(5.3). These are related by isospin symmetry °,

Ao-
A.+_ = 70'5- el AOQ . (5.23)

This relation also holds for the individual form factors, which may be decomposed
into a symmetric and an antisymmetric part under ¢ & u (p; & p;). Because of

5We use the Condon-Shortley phase conventions.

— 58 —



Bose symmetry and of the AT =

% rule of the relevant weak currents, one has

(F,G,R,H)po = —(F*,G",R*,H),4_
(F,G,R,H)o- = V2(F ,G*,R™,H"),_ (5.24)
where .
Ff = E[F(s,r,t,u) + F(sx,yu,t)] (5.25)
and F(sr,t,u) is defined in Eq. (5.12).
The isospin relation for the decay rates is
1
K »ntn-lty) = §I‘(KL — mrE ¥ ) + 2T(KY - =70t y) . (5.26)

Isospin violating contributions affect the matrix elements and phase space, as a result
of which this relation is modified. In order to illustrate the (substantial) effects from
asymmetries in phase space, we take constant form factors F,G and set R =0, H =
0. Eq. (5.26) then reads (with physical masses for K+ — n¥x~ [y, n°x°l*y; and
with Mo = M.+ = 137 MeV in K — n%zFi*v)

(16.0F? + 3.1G*)I,
Lo

in the electron mode and
(1.79F? + 0.25G?)T,

in the muon mode.

5.5 Partial wave expansion

(20.1F?% + 2.0G*)I,

V2 . 10%sec™! (5.27)

(2.64F% 4+ 0.20G*)Ty (5.28)

The form factors may be written in a partial wave expansion in the variable §,. We
consider a definite isospin 77 state. Suppressing isospin indices, one has [47, 48]

<PL
F = ZP, (cos 0) fi — "P cos .G
G = Y P/(cosb)g
=1
> OrSn
R = ZH(COSG,)T;-}- cos 8, G
(=0 X
H = Y P/(cosb)h (5.29)
=0
where
P/(z) = —PI(Z) : (5.30)
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Table 5.1: Rates of K., decays.

i events
branching | Particle Data | DAFNE | improve-
ratio Group 1yr ment
K* > ntr~ety, | 3.91.1078 3-10¢ 3-10° 10
Kt — n07%*y, | 2.1.1073 < 50 2.10° | >4.10°
K; — n%r%efy | 6.2.107° 16 7-10* 4.10°

The partial wave amplitudes f, g/, and h; depend on s, and s;. Their phase
coincides with the phase shifts §/ in elastic 77 scattering (angular momentum I,
isospin I). More precisely, the quantities

— 50
e lé?’X‘)[

e—iééH'lX?l_*_l ; l—_—' 0,1,... H X = f,g,r')h' (5'31)

are real in the physical region of K, decay. The form factors F and Fj therefore
have a simple expansion

F1 = XZPI(COSG,‘-)f(
l}

Fy = =Y P(cos8)(PLfi + sim). (5.32)
1 - B

On the other hand, the phase of the projected amplitudes
Fy = /P,(cos 8.)Fad(cos 05); 1 =0,1,2, ... (5.33)

is not given by &/, e.g., ™"\ Fyg is not real in the isospin one case. A similar remark
applies to Fj. '

5.6 Previous experiments

We display in table 5.1 the number of events collected so far. The data are
obviously dominated by the work of Rosselet et al. {44], which measures the 7¥n~
final state with good statistics. The authors parametrize the form factors as

F = f,e"‘sg + fpew{ cos 8, + D-wave
G = gei‘s{ + D-wave
H = hei + D-wave (5.34)
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with f,, fp, 9 and h assumed to be real 7 . Furthermore, they put m, = 0, such
that the form factors R and F) drop out in the decay distribution. Despite the
good statistics, the experiment has not been able to separate out the full kinematic
behaviour of the matrix elements. Therefore certain approximations/assumptions
had to be made. For example, no dependence on s; was seen within the limits of the
data, so that the results were quoted assuming that such a dependence is absent.
Similarly, f, was found to be compatible with zero, and hence put equal to zero

when the final result for g was derived. A dependence on s, was seen, and found to
be compatible with

fs(8®) = f(O)[1 +Asq)
9(a®) = g(0)[L + X,q%
h(g*) = R(O)[1 + Ang’]
¢ = (8, — d¢M?2)/4M? (5.35)
with
Af = A, = Ay = A (5.36)

These approximations to the form factors do not agree completely with what
is found in the theoretical predictions. Dependence on s; and non-zero values for
higher partial waves all occur in the theoretical results.

The experimental results for the threshold values and the slopes of the form
factors are [44]

£(0) = 5.59+0.14
g(0) = 4.77+0.27
h(0) = —2.68+0.68
A = 0.08+0.02. (5.37)

We have used [1] | Vi, |= 0.22 in transcribing these results. (We note that from Eqs.
(5.34 - 5.37) and f, = 0 we obtain 'k, = (2.94+0.16)-10° sec™'. This value must be
compared with g, = (3.26 £0.15)-10° sec™! obtained in the same experiment.) In
addition to the threshold values (5.37) of the form factors, the phase shift difference
§ = 80 — 6! was determined (44] in five energy bins. The S-wave scattering length
a was then extracted by using a model of Basdevant, Froggatt and Petersen [49)].
This model is based on solutions to Roy equations. The result for the scattering
length is

ad = 0.28 + 0.05. (5.38)

A study by [50], based on a more recent solution to Roy equations, gives

ad = 0.26 % 0.05. (5.39)

"Note that, according to what is said in the previous subsection, the terms denoted by ” D-wave”
in Eq. (5.34) all contain (complex) contributions which are proportional to Pi(coséx),1 > 0.
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Turning now to the other channels, we consider the measured branching ratios

BR(K*t — 1°1%*ty,) = (2.01’8:3) +107% [25 events] [37] (5.40)
and
o 3.+ y — ) (62£2.0)-107° (16 events] [51]
BR(K), — n'n7e*v) { (5.8 £0.24+0.4)- 1075 [780 £ 40 events] [52] .
(5.41)

The kinematic dependence of the form factors on the variables s,, s; and 6, has not
yet been resolved experimentally in these decays. In order to proceed, we assume
that the Ago and Ao form factors are independent of 0., e.g., Foo = Foo(sr,t+u) etc.
As a result of this assumption, Goo, Hoo, Fo~ and Ry all vanish by Bose statistics.
The contribution from Ry is completely negligible in the electron mode, and the
contribution from the anomaly form factor to the decay (5.41) is tiny. We neglect

it altogether, as a result of which the above decays are fully determined by Fy, and
Go-. We write

Foo = Fo(1 + Ag%), Go- = Go(l + A¢%) (5.42)

and obtain for the rate
2kt mnomvety, = [FoVusl?(2.01 + 1.7A + O(A?)) - 10%sec™ (5.43)
T, omontet, = |GoVisl?(0.406 + 0.47X + O(A?)) - 10%sec™  (5.44)

where we have used physical phase space in (5.43) and M2 = M* = 137 MeV in
(5.44). This finally gives with A = 0.08 from (5.37)

|[Fo] = 5.58757 (37
[ 75+12 [51]
Gol = { 73+03 [52] (5.45)
which compares rather well with the isospin predictions (5.24)
IFs] = |f,(0)] = 5.59 + 0.14
1Go] = Vv/2|g(0)] =6.75£0.38 . (5.46)

5.7 Theory

The theoretical predictions of Ky form factors have a long history which started
in the sixties with the current algebra evaluation of F', G, R and H. For an early
review of the subject and for references to work prior to CHPT we refer the reader
to [26] (see also [27]). Here we concentrate on the evaluation of the form factors
in the framework of CHPT [45, 46]. We restrict our consideration to the isospin
symmetry limit m, = my,a = 0.



A) The one-loop result

In Ref. [45, 46], the form factors F', G and H have been evaluated in CHPT at
order p*. The analytic expression for R has not yet been worked out to this accuracy
(53]. This form factor only contributes significantly to K, decays.

The chiral representation of the form factors at order E? was originally given by
Weinberg [54],

My

G =
V2F,
H = 0. (5.47)

We write the result for F' at next-to-leading order in the form

F =

= 3.74

F(sx t,u) = \—/_Ag;——{1+F+(s,,,t,u)+F‘(s,,,t,u)+O(E“‘)}
FE(set,u) = UE(sq,t,u)+ PE(sr,t,u) + CE (5.48)

and will use below an analogous expression for the form factor G. The superscript
+(—) denotes a term which is even (odd) under crossing ¢ < u. The contributions
UZ(34,t,u) denote the unitarity corrections generated by the one-loop graphs which
appear at order E*. They have the form

U}-(Sm t’u’) = er_2 [Ao(sﬁ) + aF(t) + a.p(’u,)]

Ur(8myt,u) = FI2[bp(t) — bp(u)) (5.49)
with
Bose) = 2200 = MEMZuler) + S o) + 2227 50
ap(t) = 312- [(14ME + 14M2 = 198)J5(8) + (2MF + 2M — 3t) rk(t)]
+ %6 [(3MF — TM? + 5t) Ko (t) + (Mf — 5M7 + 3t) Kok (¢)]
2 (9T (8) + Lo (6)) + (M — 3M2 = 9) (M (6) + Mip(8)]
br(t) = or(t) — 5(ME + M2~ )il (t). (5.50)
The loop integrals JI _(8r),... which occur in these expressions are listed in the

appendix B. The functions Jp, and Mp, depend on the scale p at which the loops

are renormalized. The scale drops out in the expression for the full amplitude (see
below).

The imaginary part of F-2Ao(s,) contains the I = 0, S-wave wr phase shift

83(3:) = (327 F2) "' (28 — M2)or + O(E*) (5.51)



as well as contributions from K K and 77 intermediate states. The functions ar(t)
and bg(t) are real in the physical region.

The contribution PZE(sr,t,u) is a polynomial in s,,t,u obtained from the tree
graphs at order E*. We find

PE(sq,t,u) = T2 Zpt (8xyt,u)L] (5.52)

=1

where
ptF = 32(87r - 2MZ)
p;F = 8(ME + s, — s1)
p;F = 2(M;"( — 8M,‘2. + 530 — 81)

pj"p = 32M,f

P;-,F = 4M1\2'

p;-,F = 23[

P3p = —2(t — u). (5.53)

The remaining coefficients pffp are zero. The symbols L7 denote the renormalized
coupling constants discussed in section 1.

Finally we come to the contributions CE which contain logarithmic terms, inde-
pendent of s,,¢ and u:

2 M2
Ct = (256m%F?)! |5M21n -]W— —2M%1n MK —~3M?Iln —! -
p p? p?
Cr = 0. . (5.54)
The corresponding decomposition of the form factor G,
G* = UE + PE + C§, (5.55)

has the following explicit form:

Ud(smst,u) = F72[A(sx) + ac(t) + ac(u))]
U (sxyt,u) = F7?[bg(t) — bg(u)] (5.56)

Bulse) = 2o {Miy(on) + 5 Mix(s0))
ac(t) = 515 (202 + 2M2 + 36)J%(£) — (2ME + 2M2 — 36)J7(8)]
+ Ilé [(—3M,2( + TM? — 58)K i (t) + (—ME + 5M?2 — 3t)K,,K(t)]
— T Eke6) + Lak(8) ~ (MG ~ M2+ 6)(ME(6) + My(2)]

bolt) = aq(t) — 5(ME + M2 —)f ). (557)
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The imaginary part of F-?A;(s,) contains the I = 1, P-wave phase shift
6 (3.) = (967 F?) 5,02/ + O(EY) (5.58)

as well as contributions from K K intermediate states. The functions ag, bg are real
in the physical region.

The polynomials

1 9
PE = =3 pilsn )] (5.59)
™ a=1
are
p;"G = -—2(114}2( + 8, — 81)
P;G = 4M:
P;,G = 239
Pog = 8(t—u)
- 1 _ .
Pisc = ZPZ,G' (5.60)

The remaining pr vanish. The logarithms contained in CZ are

CE = -CE. (5.61)
The form factor H starts only at O(E*). The prediction is
V2M§
H = g = ~2.66 | (5.62)

in excellent agreement with the experimental value.

The results for F and G must satisfy two nontrivial constraints: i) Unitarity
requires that F and G contain, in the physical region 4M? < s, < (Mg — m)?,
imaginary parts governed by S- and P-wave 77 scattering [these imaginary parts
are contained in the functions Ag(sr),A((sr)]. i) The scale dependence of the
low-energy constants LT must be compensated by the scale dependence of Urc and
Crc for all values of s.,¢,u, M2, M%. [Since we work at order E*, the meson masses
appearing in the above expressions satisfy the Gell-Mann-Okubo mass formula.] We
have checked that these constraints are satisfied.

B) Comparison with experiment

One striking feature of the chiral prediction for the form factors is that the only
important dependence on the low-energy constants is through L;, L, and L3. We
proceed by fixing Ly, Ls and Lo at the values found in other processes (see section
1, in particular table 1).
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Table 5.2: Predictions of chiral symmetry following from the fit to the K., data [44]
alone (column 3) and the combined determination from #x [55] and K., data [44]
(last column). The first column gives the prediction of the leading order term in the
low-energy expansion of the 77 amplitude.

leading

order experiment K., alone K., +rm
Ag 0.08 £+ 0.02 0.06 £+ 0.02 | 0.06 = 0.02
ad 0.16 0.26 + 0.05 0.20 0.20
b 0.18 0.25 +0.03 0.26 0.26
al | —0.045 | —0.028 + 0.012 —0.040 -0.041
b2 | —0.089 | —0.082 + 0.008 —0.069 -0.070
aj | 0.030 0.038 + 0.002 0.037 0.036
b 0.045 0.043
ad (17 +3)-10 21.10°% 20-1074
a’ (1.3+£3)-10"* | 3.5-107 3.5.10°¢

A rather extensive analysis of the chiral prediction and the data on Kt —
ntm~e*v and elastic 7m scattering has been given in Refs. [45, 46]. We refer the

reader to these articles for details. Here we mention the following points.

1. Fixing L,, L, and L3 from f,(0), g(0) and the slope A of the form factor f,

gives )
Ly(M,)) = [05+£0.3]-107°
Ly(M,) = [1.6+£0.3]-107°
Ly = [-3.2+1.1]-107% . (5.63)

The error bar corresponds [46] to an increase of x* by one. It does not include
the error due to unknown higher order corrections in the chiral expansion of
the form factor. Having determined L, L, and L3, one may then work out the
form factors from the representation (5.48-5.61). The result is shown in Fig.

5.2, where we plot for the electron mode the quantity
1 ; 1 2)1/?
) =4 — ds;|= 5.64
f’(a ) {(sma'(_ mm) /’;nin St 2 } ( )
and similarly for g(s.). The lowest order results Eq. (5.47) (labelled "tree”)
plus the experimental central values and the central values corresponding to
Eq. (5.63) are displayed. Note that the slope of the g form factor has not

been included in the fit and is thus a predlctlon It matches very well with the
experimental data.

1
/ d(cosr)F(sz, 31, cosbr)
-1
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Figure 5.2: The form factors f,(s.) and g(s.) (Eq. 5.64) according to the chiral
representation (electron mode). The dotted lines show the lowest order result (5.47),
and the dashed lines correspond to L, L, and L3 from (5.63). The experimental
result (5.37) is displayed by a solid line.

2. The decay K* — n*r~e*v, allows one to test the large N¢ prediction

(L —2L7)/L; =0 (large N¢). (5.65)

From the values in Eq. (5.63), we see that a small non-zero result for this
combination is preferred, but that it is consistent with zero within the errors.
The fit was also done [46] using the variables

X, = Ly-2L7 — Ls

X, = I

X; = (L, —-2L%)/Ls (5.66)
with the result

X, = (3.84+09)-107°

X, = (1.64£03)-107°
X; = -0.19132% . (5.67)

(X, and Xj; are scale independent, X, is evaluated at the rho mass.) The
result is that the large N¢ prediction works remarkably well.

. Having determined the low-energy constants, one is in a position to study the

predictions. The coefficients L;, L; and L3 also govern elastic wr-scattering,



and the real test of the theory is that these coefficients are simultaneously
compatible with the elastic 77 amplitude. The most straightforward way to
check this is to predict the mm threshold parameters. The chiral predictions
were worked out in Ref. [56, 57]. If we use the determination (5.63), we
obtain the prediction in table 5.2, third column. (For l3,; which occur in
af,b] we have used the central value I3 = 2.9,l, = 4.3 from Ref. [56]). The
predictions are within 1} standard deviations of the data in all cases. Note,
in particular, the nice agreement for the I = 0,2 D-wave scattering lengths

a9, a3. Furthermore, it is comforting to see that the SU(2)xSU(2) prediction

(56, 57]
ag = 0.20 £ 0.01 (5.68)

survives the K., test unharmed.

. It is of interest to provide the best determination of the low-energy constants
by including the maximum amount of data. This includes the K., form factors
£+(0),9(0) and Ay, as well as the direct determination of §) — §} in K.y decay.
We take the other information as the mx threshold parameters al,a9,a?, b as
well as the universal curve [58]

X(a3,al) = 2a§ - 5a —0.96(ag — 0.3)
~0.7(a$ - 0.3)*
= 0.69+0.04 . (5.69)

The results of the fit are shown in the last column of table 5.2. The corre-
sponding values for L, L, and L3 are

LI(M,) = (0.7+£0.5)-107°
Ly(M,)) = (1.2+0.4)-107°
Ly = (-36+13)-107° . (5.70)

The error includes the theoretical error bar, see Ref. [46]. [The one-loop
representation (5.48-5.62) of the form factors F,G and H, evaluated at the
central values (5.70), gives I'x,, = 2.5-10°% sec™!. This is somewhat lower than
the experimental [44] width I'x,, = 3.26-10° sec™! and the value I'x,, = 2.94-
103 sec™! which follows from (5.37). The reason for considering nevertheless
(5.70) as the present best estimate for L,,L, and L3 is discussed at some
length in [46]: since the chiral corrections to the tree level result F = G = 3.74
are large, one should not expect that the one-loop corrections already do the
complete job - rather, higher order terms have any right to also contribute
accordingly. The above result for L;, L, and Lj includes an estimate for these
additional terms. (The experimental width for K., is within the uncertainties

AL;,AL; and AL; quoted.)]



5.8 Improvements at DAFNE

The chiral analysis of K4 decays has been used so far for three purposes:

1. The K.y data from Ref. [44] make predictions for the slope of the G form
factor and for the 77 scattering lengths. These are given in table 5.2.

2. The same K., data allow one to test the large N¢ prediction, see Eqs. (5.65-
5.67).

3. The full set of K.s and wr scattering data allows the best determination of
the coefficients L,, L, and Ls in the chiral Lagrangian, see (5.70).

In the next generation of K4 decay experiments, there is the opportumty to
improve the phenomenology of Ky, (see table 5.1):

1. The present experimental uncertainty on G is still too large to provide a precise
value for the large N¢ parameter (L} —2L7)/L;. (K® — 7%7~etv, decays are
mainly sensitive to Gt_ which in turn can be used to pin down L;. K+ —
%1% Ty, is mainly sensitive to F}_ which contains Ly, L, and Lj.)

2. The observation of all K4 reactions with high statistics could provide a cleaner
separation of the various isospin amplitudes.

3. A very useful innovation would be to analyze the experimental data directly
using the framework of chiral perturbation theory. Rather than making as-
sumptions about the absence of P-waves, D-waves etc., one could parametrize
the data using the full chiral perturbation formulas, and directly decide the
quality of the fit and the favoured values of the low-energy constants.

4. Finally, we come to a most important point. As we mentioned already,
K* — m*n~ety, has been used [50] to determine the isoscalar S-wave scat-
tering length with the result af = 0.26 + 0.05. This value must be compared
with the SU(2)xSU(2) prediction [56, 57] a§ = 0.20 £ 0.01. Low-energy ==
scattering is one of the few places where chiral symmetry allows one to make
a precise prediction within the framework of QCD. In their article, Rosselet et
al. comment about the discrepancy between aJ = 0.26 + 0.05 and the leading
order result [59] a) = 0.16 in the following manner: ”... it appears that this
prediction can be revised without any fundamental change in current algebra
or in the partial conservation of axial-vector current [60, 61].” Today, we know
that this is not the case: It would be a major difficulty for QCD, should the
central value a$ = 0.26 be confirmed with a substantially smaller error.

K4 decays are — at present [62] — the only available source of clean information
on ww S-wave scattering near threshold. We therefore feel that it would be
rather appropriate to clarify this issue.
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A Notation

The notation for phase space is the one without the factors of 27. For the decay

rate of a particle with four momentum p into n particles with momenta p,,...,p,
this is
d . _ g4 . T dpi
LIPS(P:PI,---,Pn)—‘S (p_zpt)HTpo' . (Al)
=1 1=1 t

We use a covariant normalization of one-particle states,

<p'lp>=(2r)*2p°8%*(p’ - p) , (A.2)

together with the spinor normalization

u(p,r)u(p, s) = 2mé,, . "(A.3)

The kinematical function A(z,y, 2z) is defined as

Mz,y,2) =2> +y* + 2% — 2(zy + yz + 22) . (A.4)

We take the standard model in the current x current form, i.e., we neglect the
momentum dependence of the W-propagator. The currents used in the text are :

- 1 . -
V: o= Q7u‘2‘(/\4—1/\5)q = 3T.u

- _ 1 : -
AT = umsg( - i) = Frarsu
Vi o= qnlg
Q = diag(2/3,-1/3,-1/3). (A.5)

The numerical values used in the programs are the physical masses for the particles
as given by the Particle Data Group [1]. In addition we have used the values for
the decay constants derived from the most recent measured charged pion and kaon
semileptonic decay rates(1, 18] :

F. = 932 MeV
Fx = 113.6 MeV. (A.6)

We do not need values for the quark masses. For the processes considered in this
report we can always use the lowest order relations to rewrite them in terms of the
pseudoscalar meson masses (see section 1). For the KM matrix element |V,,| we
used the central value, 0.220, of Ref. [1|. The numerical values for the L{(M,) are
those given in section 1.

The number of events quoted for DAFNE are based on a luminosity of 5 -
1032 em~2s~!, which is equivalent [63] to an annual rate of 9-10° (1.1 - 10°) tagged
K* (K_) (1 year = 107 s assumed).
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Whenever we quote a branching ratio for a semileptonic K°® decay, it stands for
the branching ratio of the corresponding K| decay, e.g.,

BR(K® — n~1*v) = BR(K, — r*IFv) . (A.7)

We use the Condon-Shortley phase conventions throughout.
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B Loop integrals

In this appendix we define the functions appearing in the loop integrals used in
the text. First we define the functions needed for loops with two propagators,
mainly in the form given in Ref. [35]. We consider a loop with two masses, M
and m. All needed functions can be given in terms of the subtracted scalar integral

J(t) = J(¢t) - J(0),

L[ dp 1
t)= — .
0= = | G T I (B-1)
with ¢t = k2. The functions used in the text are then :
- 1 M? —tz(l-z)- Az
I = ‘167r2/o da log M?_ Az .
1 A, mr L. mP VA, (t+ V) - A?
S S e PO WO L PO ,
3272 t BT T AR T Tt By - A
J'(t) = J(t)-2k,
i 1 AT 1k
M (t) = T {t—2T}J(t) + Et_zJ(t) + S5 g
1 M*m? m?
T 96mt {2 T2 m‘z&ﬁ} :
A? .

L) = 7)),

K@) = 570,

2Ly 1.
H(t) = g},—;tﬁ-ﬁ[tM (t) — L(t)],
A = M?*-m?,
Y = M*4+m?,
A o= ALMAmY) = (t+AY -4M?. (B.2)

In the text these are used with subscripts,
Jij(t) = J(t) with M= M;m=M; (B.3)

and similarly for the other symbols. The subtraction point dependent part is con-
tained in the constant k

1 g () —mileg ()
3272 M? —m?

(B.4)

where p is the subtraction scale.
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In addition, in subsection 4 these functions and symbols appear in a summation

over loops I with

J}(t) = J(t) with M =M;m=m;;
X = 11‘412 + m% (B5)
and again similarly for the others. There the combination B, appears as well :
By(t,M*,m?) = B,(t,m? M?) (B.6)
1 At, M2, m?)J(t) T —-8M*m?  M?
= r—t)- — .
28877 CE 1) 12t BAA 8

The last formula to be defined is the three propagator loop integral function
C(t1,t2, M?,m?) where one of the three external momenta has zero mass and two
of the propagators have the same mass M. Here t, = (q; + ¢2)%, t2 = ¢ and ¢ = 0.

C(tl, t2, MZ, mz)

y£(t)

—1?

(47|')2(t1 - tg

i

51; {t +A+ \//\(t,M2,m2)}

dip _ 1
2r)d (p? — M*)((p + @) — M?)((p + @1 + @2)* — m?)

1 1-z 1
d/ d
/(-) * 0 yM2—y(A+t1)+:ny(t1-—t2)+y2t1
1

{oi) k)
)it}

y-(t2)

/ (
1
1672

_1
y+(t1)

where Li; is the dilogarithm

: 1 d
Liy(z) = —/0 ?y log(1 - zy) .
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C Decomposition of the hadronic tensors I*

Here we consider the tensors
1 = [ dae % < 0| TV @) o(v) | K () >, I=V,4  (C)

and detail its connection with the matrix element (1.2).

The general decomposition of A*, V¥ in terms of Lorentz invariant amplitudes

reads (7, 9] for ¢ # 0

1 u B\TA7V
.__.Al‘” — _FK{(2W +Q)W +gPV}

V2 M} — W
+ A(qWg™ — WHg") + Ax(d’g™ — ¢#¢")

{ (ML = Wo)g + Ay p (W — ¢*WHW (C.2)
and )
vl Vi gaps (C.3)

where the form factors 4;(¢%, W?) and Vi(g?, W?) are analytic functions of ¢* and
W2. F¥(q%) denotes the electromagnetic form factor of the kaon (F K(0) = 1). A®
satisfies the Ward identity

QA" = —V2Fxp". (C.4)

In the process (1.1) the photon is real. As a consequence of this, only the two
form factors A;(0, W?) and V;(0, W?) contribute. We set

AW?Y) = 4,(0,W?)
V(WY = W(0,W?) (C.5)

and obtain for the matrix element (1.2)

T = —iGp/V2eVi,"e, {V2Fll — (V™ - A“”)l,,}' o (C.6)
with
# o= alp (1 - s)v(m)
_ 2p + 4"
[T T
ll = M+ mlu(p,,)(l +75)m'2 - (Pl + q)2v(Pl) : (CT)

Grouping terms into an IB and a SD piece gives (1.2,1.3). As a consequence of
(C.4), T is invariant under the gauge transformation €, — €, + qu-

The amplitudes A,, A, and V] are related to the corresponding quantities Fiy, R
and Fy used by the PDG [1] by

— V2Mx(Ar, A, ) = (Fa, R, Fv). (C8)
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The last term in (C.2) is omitted in [1]. It contributes to processes with a virtual
photon, K% — [y l'*+1'-, :

Finally, the relation to the notation used in {2, 3] is

2042 V) = (axtw)® (2
V2A4,V) = (Fs,Fy) [3] . (C.9)

— 76 —



D Formulas for the traces in terms of z,y and z
for the decays K+ — ITvi't]'~

This is the FORTRAN program used to evaluate the differential decay rate in terms
of the kinematic variables used in the text. The formfactors are A1,A2,A4 and V1
with their complex conjugates A1C, A2C, A4C and V1C, all made dimensionless
by multiplying with the relevant power of Mg. T is the quantity {—— > spins T:‘T"}.
The matrix element squared, before the integration over the lepton pair kinematic
variables, is available on request from the authors.

C ALL QUANTITIES ARE IN UNITS OF MK TO THE RELEVANT POWER

W2 =1.0-X+2
P$W =1.0 -~ X/2.0
P$PN = P$W - Y/2.0
PL$PN= (W2 - RL)/2.0

PL$W = RL + PL$PN
PN$W = W2 - PL$W

Q$W = X/2.0 - 2

Q$PL = Y/2.0 - PL$W
Q$PN = P$PN - PN$W
DENOM1 = 1.0/(2.0*Q$PL + Z)
DENOM2 = 1.0/(X - 2)
A11 = REAL ( A1 + A1C)
A22 = REAL ( A2 + A2C)
A44 = REAL ( A4 + A4C)
VV = REAL ( Vi + ViC)

A12 = REAL (A1*A2C + A1C*A2)
A14 = REAL (A1*A4C + A1C*A4)
A1V = REAL (A1%V1iC + A1Cx*V1)
A24 = REAL (A2*A4C + A2C*A4)
A2V = REAL (A2%ViC + A2C*V1)

A4V = REAL (A4#V1C + A4C*V1)

A1A1C = REAL (A1#*A1C)

A2A2C = REAL (A2%A2C)

A4A4C = REAL (A4*A4C)

ViViC = REAL (V1*V1iC)

T =0.0

T =T + A1A1C * ( 16+*Q$PL*Q$PN*W2 - 16*Q$PL*Q$W*PNSW - 16*xQ$PN=»

+ Q3W*PL$W - S*PLIPN=*ZxW2 )

T + A2A2C * ( - 16+Q$PL*Q$PN*Z - 8+*PLSPN*Z**2 )

= T + AGA4C * ( 8#Q3W+»2+«PLEPN*Z#W2 ~ 16%Q$W**2+PLEW*PNEW*Z -
+ 8*PLPN*Z##2+%W2x*2 + 16*PLEWPNW#Z**2+W2 )

T + VIVIC * ( - 8*P$PN*Q$PL*X + 8*P$PN*xY*Z + 16*xQ$PL*Q$PN

-1 ]
W

-3
1}
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-~ 4*Q$PN*XxY )
T + FK**2xDENOM1*%2 * (= 32+«Q3$PL**2«PL$PN#Z*x(-1)*RL ~ 32%
Q$PL*Q$PN*RL - 32+Q$PL*PL$PN*RL + 32#Q$PN*RL#*2 + S*PL$PN#Z* .
RL + 32+PL$PN*RL**2 )
T + FK**2+«DENOM1+DENOM2 * ( 32*P$PN*Q$PL*RL + 32*Q$PL*PLEPN*X
*Z**(~1)*RL - 16*Q$PN*Y*RL - 32+«PL$PN*Y*RL )
T + FK*#*2+«DENOM2#%2 * ( - 8*xPL$PN*X**24Zxx(~1)*RL + 32*PL$PN
*RL )
T + FK+*DENOMi*A11 * ( 16*Q$PN*Q$W+RL - 16*Q$PN*PLE$W+RL + 16=
QSWxPLSPN*RL + 8*PN$W#Z=RL )
T + FK*DENOM1*A22 * ( - 16*Q$PL*Q$PN*RL + 24*Q3$PN*Z*RL + 16%
PL$PN*Z*RL )
T + FK*DENOM1#%A44 * ( 16+Q$PL*Q$W+PN$W+RL - 8*xQ$PN*Z*W2*RL +
8*Q$W*PN$W*Z*RL ~ 16*PL$W*PN$W»Z*RL ) '
FK+*DENOM1*VV * ( 16#P$PN*Z*RL - 8*Q$PN*X*RL )
+ FK*DENOM2*A11 * ( - 16*P$PN*Q$W*RL + 16*P$W=Q$PN*RL )
+ FK+*DENOM2#A22 * ( - 16*P$PN#Z=*RL + 8*Q$PN*X*RL )
+
+

+

FK*DENOM2#*A44 * ( 16*P$W+PN$W»Z+RL - 8*Q3WxPN$W*XxRL )
A12 * (- 8*Q3PL*PN$W#Z - 8*Q$PN*PLE$W*Z - 8xQ$WxPLIPN*Z

L B B Bl Bl |

)
T + A14 * ( 8*Q3PL*PNS$W*Z*W2 + 8xQ3PN*PLIW*Z*W2 - 16*Q$W*PLSW
*PNSW*Z )
T + A1V * (- S*P$PN*Q3PL*Q3W - S*P$PN*PLSW*Z - 4*Q$PL*PN$W=
X + 4*Q$PN*Q3W»Y + 4*Q$PN*PLSW*X + 4*PNIW*Y=*Z )
T + A24 * ( 8*Q3PL*Q3WPNSW*Z + 8*xQIPN*QSW+PLIW*Z - S»QW*%2x

PLSPN*Z + S+PL$PN*Z##2+§2 - 16#PLIN*PNSW»Z*%2 )

T + A2V = (-~ 16+P$PN*Q$PL*Z + 8*Q$PN*Y»Z )

T + A4V * ( 8*P$PN*Q3PL*Z*W2 - 8*P$PN*Q$WxPLW*Z - 8*P$WxQ$PL

*PNSW*Z + 8*P3W+QIPN*PLSW*Z - 4*QIPN*Y*Z*W2 + 4*Q3WAPNEWHY*Z
)

-T
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E FORTRAN routine for the calculation of the

anoooacaoaaaan

Qa0 aa

reduced square of the K3, matrix element SM

FUNCTION SM(EG,EP,W2,EL,X) .
THE FUNCTION SM CALCULATES THE REDUCED SQUARE OF THE MATRIX
ELEMENT OF SUBSECT. 4 IN TERMS OF THE SCALAR VARIABLES EG(PHOTON
ENERGY), EP(PION ENERGY), W2(INVARIANT MASS SQUARED OF LEPTON
PAIR), EL(ENERGY OF CHARGED LEPTON) AND X=PL.Q/MK~2 AND IN
TERMS OF THE VECTOR AMPLITUDES Bi,..,B7, AXIAL AMPLITUDES
A1, A2, A3 (A4=0 TO 0(P"4)) AND C1i, C2 DEFINED IN SUBSECT. 4.
ALL DIMENSIONFUL QUANTITIES ARE NORMALIZED TO THE KAON MASS:
MP=M(PION)/M(KAON), ML=M(LEPTON)/M(KAON), ETC.

REAL ML,MP,ML2,MP2,ML4

COMMON/MASSES/ML ,MP

ML2=ML*%2

MP2=MP*=*2

ML4=ML**4
SCALAR PRODUCTS: QPP=Q.P’, PLPP=P(LEPTON).P’, WPP=W.P’,
QW=Q.W, ALL SCALED TO M(KAON)=1; W=P(LEPTON)+P(NEUTRINQO)

QPP=EP+EG+(W2-MP2-1.)/2.

PLPP=EL-X~-(W2+ML2)/2.

WPP=-EG+(1.-MP2-W2)/2.

QW=-EP+(1.+MP2-W2)/2.
FOR ILLUSTRATION, THE TREE LEVEL AMPLITUDES B1,...,B7,
A1,A2,A3,C1,C2 FOR KO(L3GAMMA) ARE LISTED BELOW

Bi=-1.

B2=0.

B3=2./QPP

B4=0.

B5=0.

B6=1./QPP

B7=B3

A1=0.

A2=0.

A3=0.

C1=2.

c2=1.
IN THE FOLLOWING, SM IS CALCULATED IN TERMS OF SCALAR
PRODUCTS, MASSES AND INVARIANT AMPLITUDES.
THIS PART IS INDEPENDENT OF THE CHOICE OF SCALAR VARIABLES
TO SPECIFY THE KINEMATICS (P(LEPTON).Q IS DENOTED X)
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R1=B1*(B1-B5*ML2)*(-ML2 + W2)
R1=R1 + B1*B2#2*ML2*(X-QW)
R11=B1*B3+B2%B4*W2+(B2*B7+B3*B4) *WPP+B3*B7*MP2
R1=R1+R11*(4*X*PLPP-2*X+WPP-2*PLPP*QW-
+ QPP*ML2 + (QPP*W2)
Ri=R1 + B1*(B4+B6)*2xML2* (PLPP-WPP)
R1=R1 + B1*A1x(-4*X*WPP + 4*xPLPP*QW)
R1=R1 + B1#A2% (4*X*W2-2+QWxML2-2*QW*W2)
R1i=R1 B2% (B2*W2+2*B3*WPP) #2*X* (X-QW)
R1=R1 + B2*(B5*W2+B6*WPP) *2xML2* (X-QW)
R12=B2*A1+B3*A2+A3*ML2*(A2-C2/2./X)
R1=R1+R12%(-2*X*QW+WPP+2*X*QPP*W2+2+xPLPP
+ *QUW*x2-QW*QPP*ML2-QW*QPP*W?2)
R1=R1 + B3*#2#x2«MP2*X*(X-QW)
R1=R1 + B3*(B5*WPP+B6*MP2)*2*ML2* (X-QW)
R1=R1+(B4**2xW2+B7**2xMP2+2%B1*B7)*(~1./2 . *ML2xMP2+1./2 . *MP2*W2
+ + 2+%PLPP**2-2%xPLPP*WPP)
R1i=R1+(B4+*(B5*W2+B6+WPP)+B7+ (BS*WPP+B6*MP2) ) *2*ML2* (PLPP-WPP)
R1=R1+B4*B7*WPP* (4*xPLPP**2-4*PLPP*WPP-
+ ML2*MP2+MP24W2)
R1=R1+(B4*A1+B7*A2) * (=2« X*WPP**2+2xX*MP2*W2+2*PLPP
+ *QWxWPP-2*xPLPP*(QPP*W2-QWxML2*MP2-QWxMP2*W2
+ + (QPP*WPP*ML2 + QPP*WPP*W2)
R1=R1+(B5*(B5*W2/2+B6*WPP)+B6%*2xMP2/2) *ML2* (ML2-W2)
Ri=R1 + Ai**2*(2*Xﬁ*2*KP2-4*X*PLPP*QPP-2*X*
+ QWAMP2 + 2#X*QPP*WPP + 2*PLPP*QW*QPP)
R1=R1 + A1%A2%(-4#X**2*WPP + 4*X*PLPP*QW + 2*X
+ *QWxWPP + 2*xX*QPP*ML2-2*PLPP*QW**2-QW*QPP*
+ ML2-QW*QPP*W2)
R1=R1 + (A1+C1/2./X)*A3*ML2* (2*X*QW*MP2-2+X*QPP*WPP
+ -2*%PLPP*QW*QPP-2%QWx*2xMP2 + 4*xQW
+ *QPP*WPP + QPP##2+ML2-QPP**2+W2)
Ri=R1 + A2##2# (2#Xxx2x§2- 2« X*xQWAML2~2*X*QW*
+ W2 + QW»*2xML2 + QW*x2xW2)
R1=R1+A3%#2+ML2*(1./2. *QW*2xML2*xMP2~1 . /2 . *QWx=*2
+ *MP2*W2-QW*QPP*WPP*ML2+QW»QPP+*WPP*W2 + 1./
+ 2. *xQPP**2=ML2*W2-1. /2 *QPP**2x|§2%*»2)
R2=C1*#2%(-1./2.*ML4*MP2 + 1./2.*ML2+*MP2*W2
+ Xxx2xMP2-2xX#PLPP*(PP-X*QW*MP2 + 2%
X*QPP*WPP-X*ML2%MP2 + 2%PLPP**2%ML2 + 2%
PLPP*QPP*ML2~-2*PLPP*WPP*ML2 + QWxML2*MP2-2x%
QPP*WPP*ML2)
R2=R2 + C1#*C2# (2#X**2+WPP-2+«X*PLPP*QW + 4*Xx*

<+

+ 4+ + +



+ PLPP*ML2-X*QPP*ML2 + X*QPP*W2-4*X*WPPx*
+ ML2 + 2%PLPP*ML4-2*WPP*xML4)
R2=R2 + C2##2x(1./2.*ML**6-1,/2 . *ML4*W2 + 2*X**2*
+ ML2 + Xx%x2xW2-3%X+«QW*ML2 + 2»XxML4-X*
+ ML2*W2-QW*ML4)
RI=B1*C1*(-2+*X*WPP + 2*PLPP*QW-2*PLPP*ML2
+ + QPP*ML2-QPP*W2 + 2*WPP*ML2)
RI=RI + B1#C2%(-ML4 + ML2*W2-2*X*ML2-2%X*
+ W2 + 4*QWxML2)
RI=RI + B2*C1*(2*X#*2%WPP-2+X*PLPP*QW-2*X*
+ PLPP*ML2-2#X*PLPP*W2-2xX*QW*WPP-X*(PP*
+ ML2 + X*QPP*W2 + X*WPP*ML2 + X*«WPP*W2 + 2=*
+ PLPP*QW**2 + PLPP*QW*ML2 + PLPP*QW*W2 + QW+QPP=*
+ ML2-QW*QPP*W2 + 1./2.*QPP*ML4-1./2.*QPP*W2+%2)
RI=RI+B2*C2*ML2* (~2%X**2-X*ML2-X*W2
+ +2%xQWx*2+QWxML2+QW*W2)
RI=RI + B3#C1#*(2#X»*2xMP2-4*xX*PLPP**2-4+X*
+ PLPP*(PP + 2*X*PLPP*WPP-2%X*x(W*MP2 + 2%Xx*

+ QPP*WPP + 2+xPLPP*»2xQW + 2*PLPP*QW*QPP + PLPP*QPP=*

+ ML2-PLPP*QPP*W2 + QPP»*2*ML2-(QPP**2%W2)
RI=RI + B3#C2%(-4*X**2%PLPP + 2xX#%2%WPP + 2%xX*
+ PLPP*QW-2+#X*PLPP*ML2-X*QPP*ML2-X*QPP*

+ W2 + 2+«PLPP*QW*ML2 + 2*QW=QPP*ML2)

RI=RI + B4*Cix(1./2.*ML4*MP2-1./2.*MP2*xW2*%2 + 2%
+ X+#PLPP*WPP-2*X*xWPP*#%2 + X*MP2*W2-2%PLPP*x*2

+ *QW-2%PLPP*#2*ML2-2%PLPP**2*W2 + 2+*PLPP*QW*WPP-
+ PLPP*QPP*ML2-PLPP*(QPP*W2 + 2*PLPP*WPP*ML2 + 2%
+

RI=RI + B4*C2*ML2x(-2+X*PLPP+X*WPP-

+ PLPP*QW-PLPP*ML2-PLPP*W2 + 2*x(QW*WPP

+ +1./2.*QPP*ML2-1./2.*QPP*W2 + WPP=*ML2

+ + WPP*W2)

RI=RI + B5*C1*ML2*(X+*WPP-PLPP*QW~PLPP*

+ ML2-PLPP*W2-1./2.*QPP*ML2 + 1./2.*QPP*W2

+ +WPP*ML2 + WPP#*W2)

RI=RI + BS5#C2#ML2*(~1./2.*ML4+1./2 *W2#*x2-Xx*

+ ML2+QW*W2)

RI=RI + B6*C1*ML2*(X*MP2-2%PLPP**2-2*PLPP

+ *QPP+2*PLPP*WPP-QW*MP2 + 2*QPP*WPP)

RI=RI + B6*C2#ML2*(-2%X+*PLPP+X*WPP+

+ PLPP*QW-PLPP*ML2 + PLPP#*W2-1./2.*(PP*

+ ML2 + 1./2.*QPPxW2)

RI=RI + B7*C1*(2*X*PLPP+*MP2-X*WPP*MP2-4x*
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+ PLPP*#3-4*PLPP**2xQPP + 4*PLPP**2xWYPP-PLPP*QW*
+ MP2 + 4+PLPP*(QPP*WPP + PLPP*ML2*MP2-PLPP*MP2%
+ W2 + 1./2.*QPP*ML2*MP2-1./2.*QPP*MP2*W2)

RI=RI + B7*C2*(-4*X*PLPP*%2 + 4*X*PLPP*WPP-X
+ *MP2*W2-2+PLPP**2*ML2 + 2«PLPP*WPP*ML2 + QW*ML2
+ *MP2) .

RI=RI + A1*C1*(2*X**x2%xMP2-4*X*PLPP*QPP + 2xXx*

+ PLPP#WPP-2*X*QW*MP2 + 4*xX*QPP*WPP-X*ML2

+ *MP2-X*MP2*W2-2*xPLPP*%2+QW + PLPP*QPP*ML2 +
+ PLPP*QPP*W2 + 2+«QW*ML2*MP2-2*QPP*WPP*ML2)

RI=RI + A1%C2%(4*X**2+%WPP-4+X*PLPP*QW-2%X*

+ QPP*ML2 + 2*QW=QPP*ML2)

RI=RI + A2%C1*(~-2*X**2*WPP + 2*X*PLPP*QW-2*X
+ *PLPP*W2 + X*QPP*ML2-X*QPP*W2 + X*WPP*ML2
+ + X*WPP+W2 + PLPP*QW*ML2 + PLPP*QW*W2-2*QW=WPP
+ *ML2-1./2.*%QPP*ML4 + QPP*ML2%W2-1./2.*QPP*W2%%2)
RI=RI + A2*C2#(-4*X**x2xW2 + 4*X*xQW+*ML2 + 2%X=*
+ QW*W2-2xQW**2*ML2)

SM=R1+RI/X+R2/X**2

RETURN

END

— 82 —



List of Tables

1.1

1.2

1.3

2.1

2.2

3.1

4.1

4.2
4.3

4.4

Phenomenological values and source for the renormalized coupling
constants L7(M,). The quantities I'; in the fourth column determine
the scale dependence of the LT(x) according to Eq. (16). L]; and L], _
are not directly accessible to experiment. . . . . . ... ... ... 10-

Occurrence of the low-energy coupling constants L,..., Lo and of
the anomaly in the semileptonic decays discussed in chapter 2. ... 1i-

The quantities X;, N;. SD* and INT* are evaluated with full phase
space, IB with restricted kinematics (1.20).

Measured branching ratios (K — ly)/T... The K.y, data are
from [5, 2], the K2, data from (3, 6]. The last column corresponds . -
[3] tothecut (1.20). . . ... ... .. . ... . i 2% -

Chiral prediction at order p* for the branching ratios (K — lvy)/T\oia- ;3 B
The cut used in the last column is given in Eq. (1.20). . ... .. .. 26

Theoretical values for the branching ratios for the decay Kt —
ptvete™ for various cuts.

Theoretical values for the branching ratios for the decay K+ — N
etvete  forvarious cuts. . . . . . . . . .. ..o oo 390,
Rates of K;3 decays. The number of events in the third column cor- o
responds to those data which are of relevance for the determination .
of the slope A of the scalar form factor. . . . .. ... . ... .... 43
Branching ratios for tree level amplitudes for E, > 30MeV and 6, >

20°in the K rest frame. . . . . .. ... ... ... ... .. 48
Experimental results for Kj3, decays . ... ... ... ........ 48.
Coeflicients for the K}, loop amplitudes correspondmg to the dia-
grams I = 1,2,3 in Fig. 4.2. All coefficients ¢/ must be divided by

6\/— Fe, e e e e e e e e e e e e e e e e e e e e e 50‘
Coefficients for the Kj} loop amplitudes correspondmg to the dia-

grams I = 1,2,3 in Fig. 4.2. All coefficients ¢/ must be divided by
BV2F2.

83—



4.5
4.6
5.1
5.2

Branching ratios and expected number of events at DAFNE for K.

Branching ratios and expected number of events at DAFNE for K3, .
Rates of K 4 decays.

...........................

Predictions of chiral symmetry following from the fit to the K., data
[44) alone (column 3) and the combined determination from 7w [55]
and K., data [44] (last column). The first column gives the predic-

tion of the leading order term in the low-energy expansion of the 77
amplitude.

--------------------------------

— 84 —



List of Figures

1.1

1.2

1.3

3.1
3.2

4.1
4.2

5.1

5.2

Contour plots for fis,..., fixrt [Ku2y]. The numbering on the lines
points towards increasing modulus. The normalization is arbitrary.

Contour plots for fip,..., finrt [Ke24). The numbering on the lines
points towards increasing modulus. The normalization is arbitrary.

The rate dP(z)/dz in (1.39), evaluated with the form factors (1.38)
and N, = 9-10°. The solid line corresponds to Mg+ = 890 MeV,
Mg, = 1.3 GeV. The dashed line is evaluated with Mg~ = 890 MeV,
Mg, = oo and the dotted line corresponds to Mg« = Mg, = co. The
total number of events is also indicated in each case.

The vector and scalar form factors f, (t) and fo(t).

The normalized slopes of the vector and the scalar form factors. Curve
1: the normalized slope M2, df,(t)/dt. Curve 2: the normalized slope
M2, dfo(t)/dt. Near the K threshold to = (Mg + M,)?, the vector
form factor behaves as f(t) = fi(to) + O[(t — t0)], whereas fy(t) =
fo(to) + O[(+/t — to)]. The slope of the scalar form factor is therefore

singular at t = (M + M:)>. . . . ... .. ...

Diagrammatic representation of the K5 amplitude

Loop diagrams (without tadpoles) for K;3 at O(p*). For Kj3,, the

photon must be appended on all charged lines and on all vertices. . .

Kinematic variables for K4 decays. The angle 8, is defined in ¥y, 8;

inY,and ¢in L. . . . . . e e e e e e e

The form factors f,(s:) and g(s.) (Eq. 5.64) according to the chiral
representation (electron mode). The dotted lines show the lowest
order result (5.47), and the dashed lines correspond to L, L; and L;

from (5.63). The experimental result (5.37) is displayed by a solid line.

85—

.........

..........

...........

21

22

27
39

41
46

49

55



Bibliography

(1] Particle Data Group, Phys. Lett. B239 (1990).
(2] J. Heintze et al., Nucl. Phys. B149 (1979) 365.
(3] Y. Akiba et al., Phys. Rev. D32 (1985) 2911.

(4] S.G. Brown and S.A. Bludman, Phys. Rev. B136 (1964) 1160;
D.A. Bryman et al., Phys. Rep. C88 (1982) 151.

[5] K.S. Heard et al., Phys. Lett. 55B (1975) 324.

(6] V.V. Barmin et al., Sov. J. Nucl. Phyé. 47 (1988) 643.

(7] D. Yu. Bardin and E. A.'Ivanov, Sov. J. Part. Nucl. 7 (1976) 286.
(8] J.F. Donoghue and B.R. Holstein, Phys. Rev. D40 (1989) 3700.

(9] J. Bijnens, G. Ecker and J. Gasser, Radiative semileptonic kaon decays, in
preparation. : < - ’

(10] J. Wess and B. Zumino, Phys. Lett. 37B (1971) 95;
E. Witten, Nucl. Phys. B223 (1983) 422;
N.K. Pak and P. Rossi, Nucl. Phys. B250 (1985) 279.

{11] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B321 (1989) 311;
G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Phys. Lett. B223
(1989) 425;

J.F. Donoghue, C. Ramirez and G. Valencia, Phys. Rev. D39 (1989) 1947;
M. Praszalowicz and G. Valencia, Nucl. Phys. B341 (1990) 27.

[12] S. Krishna and H.S. Mani, Phys. Rev. D5 (1972) 678.
(13] A.M. Diamant-Berger et al., Phys. Lett. 62B (1976) 485.
(14] M.S. Atiya et al., Phys. Rev. Lett. 63 (1989) 2177.

(15] S. Egli et al., Phys. Lett. B175 (1986) 97;
S. Egli et al.,Phys. Lett. B222 (1989) 533.

(16] J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 517.
(17] N. Cabibbo and A. Maksymowicz, Phys. Lett. 9 (1964) 352.

(18] H. Leutwyler and M. Roos, Z. Phys. C25 (1984) 91;
J.F. Donoghue, B.R. Holstein and S.W. Klimt, Phys. Rev. D35 (1987) 934.

(19] Particle Data Group, Phys. Lett. B111 (1982).

— 86 —



(20] G. Donaldson et al., Phys. Rev. D9 (1974) 2960.

[21] V.K. Birulev et al., Nucl. Phys. B182 (1981) 1.

[22] Y. Cho et al., Phys. Rev. D22 (1980) 2688.

(23] D.G. Hill et al., Nucl. Phys. B153 (1979) 39.

[24] A.R. Clark et al., Phys. Rev. D15 (1977) 553.

[25] C.D. Buchanan et al., Phys. Rev. D11 (1975) 457.

{26] L.-M. Chounet, J.-M. Gaillard and M.K. Gaillard, Phys.Rep. C4 (1972) 199.

(27) E.P. Shabalin, Yad. Fiz. 49 (1989) 588 [Sov. J. Nucl. Phys. 49 (1989) 365]; ibid.
51 (1990) 464 [Sov. J. Nucl. Phys. 51 (1990) 296].

(28] J. Bijnens and F. Cornet, Nucl. Phys. B296 (1986) 557.
(29] S.R. Amendolia et al., Nucl. Phys. B277 (1986) 168 and references therein.

[30] M.F. Heyn and C.B. Lang, Z.Phys. 7C (1981) 169;
N. Zovko, Forts. Phys. 23 (1975) 185.

(31] R. Dashen and M. Weinstein, Phys. Rev. Lett. 22 (1969) 1337.

(32] R. Dashen, L.-F. Li, H. Pagels and M. Weinstein, Phys. Rev. D6 (1972) 834.
[33] B.G. Kenny, Phys. Rev. D15 (1977) 3481.

[34] C.G. Callan and S.B. Treiman, Phys. Rev. Lett. 16 (1966) 153.

[35] J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 465.

[36] B.R. Holstein, Phys. Rev. D41 (1989) 2829.

[37] V.N. Bolotov et al., Yad. Fiz. 44 (1986) 108 [Sov. J. Nucl. Phys. 44(1986) 68].
[38] F. Romano et al., Phys. Lett. 36B (1971) 525.

(39] D. Ljung and D. Cline, Phys. Rev. D8 (1973) 1307.

[40] K.J. Peach et al., Phys. Lett. 35B (1971) 351.

[41] E. Fischbach and J. Smith, Phys. Rev. 184 (1969) 1645;
H.W. Fearing, E. Fischbach and J. Smith, Phys. Rev. D2 (1970) 542.

[42] N. Cabibbo and A. Maksymovicz, Phys. Rev. B137 (1965) B438; erratum Phys.
Rev. 168 (1968) 1926.

[43] A. Pais and S.B. Treiman, Phys. Rev. 168 (1968) 1858.
[44] L. Rosselet et al., Phys. Rev. D15 (1977) 574.

_ 87 —



(45] J. Bijnens, Nucl. Phys. B337 (1990) 635.

(46] C. Riggenbach, J. Gasser, J.F. Donoghue and B.R. Holstein , Phys. Rev. D43
(1991) 127.

[47] F.A.Berends, A. Donnachie and G.C. Oades, Phys. Lett. 26B (1967) 109; Phys.
Rev. 171 (1968) 1457.

(48] C. Riggenbach, University of Bern thesis (1992).
(49] J.L. Basdevant, C.D. Froggatt and J.L. Petersen, Nucl. Phys. B72 (1974) 413.

[50] C.D. Froggatt and J.L. Petersen, Nucl. Phys. B129 (1977) 89;
J.L. Petersen, CERN Yellow Report CERN 77-04 "The nx Interaction”.

[51] A.S. Carroll et al., Phys. Lett. 96B (1980) 407.

[52] A.R.Barker, Recent K° Decay Results from Fermilab E - 731, Fermilab preprint
EFI91-04, Proceedings of the SLAC Summer Institute on Particle Physics, July
1990, SLAC-378.

[53] G. Colangelo and J. Gasser, in preparation.

[54] S. Weinberg, Phys. Rev. Lett. 17 (1966) 336; 18 (1967) 1178E.
{55] M.M. Nagels et al., Nucl. Phys. B147 (1979) 189.

(56] J. Gasser and H. Leutwyler, Ann. Phys. 158 (1984) 142.

(57] J. Gasser and H. Leutwyler, Phys. Lett. B125 (1983) 321, 325.

(58] M.M. Nagels et al., Nucl. Phys. B147 (1979) 189;
D. Morgan and G. Shaw, Nucl. Phys. B10 (1968) 261;
J.L. Petersen, CERN Yellow Report CERN 77-04 "The n= Interaction”.
The coefficients in Eq. (5.69) are from this last reference.

[59] S. Weinberg, Phys. Rev. Lett. 17 (1966) 616.
[60] B. Bonnier and N. Johanneson, Nuovo Cimento 29A (1975) 565.
(61] J. Franklin, Phys. Rev. D11 (1975) 513.

[62] For a proposal to measure n7 and 7K threshold parameters in dimeson atoms
see L. Montanet and L. Nemenov, Letter of Intent to the SPSLC, CERN/SPSLC
91-47.

[63] P. Franzini, private communication.





