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ABSTRACT

We have investigated by Monte Carlo simulation a recently proposed lattice regularization
of gauge theories where the gauge fields are noncompact but gauge-invariance is exact. We
have found a nonvanishing value of the string tension.

1. — We have investigated by Monte Carlo simulation a lattice regularization of non abelian

gauge theories where the gauge fields are noncompact(l), and we have found a nonvanishing

value of the string tension.

(2.3:4) in that it is

exactly gauge—invariant and renormalizable. Gauge—invariance is enforced by means of
auxiliary fields which decouple in the continuum limit.

The present regularization differs from previous noncompact ones

Previous calculations with non compact gauge fields have given a vanishing value of the
string tension. Such a result, if confirmed, would have related confinement to compactness of
the gauge fields, a conclusion also supported by the widespread belief that a gauge—invariant
regularization with noncompact gauge fields could not exist on the lattice. Our result avoids
such a conclusion, but it would be interesting to go deeper into the previous calculations which
are not conclusive because they are incomplete. In all of them with one exception(4) lattice
regularization was done by direct discretization with consequent explicit breaking of gauge—
invariance. Such a breaking has indeed been considered responsible for the vanishing of the
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string tension. There remains nevertheless the possibility(3) that these regularizations, being
close to the continuum, might have a scale parameter close to the continuum one. In such a case
it is also possible that the physical dimension of the lattice spacing be so small in the scaling
window that inside actual lattices there be no linear potential.

In the only exception where gauge-invariance was enforced on the lattice™, this was
done by using gauge—invariant variables. These variables are the solutions of a non
renormalizable gauge—fixing, so that perturbation theory cannot be used to evaluate the scale
parameter, and strictly speaking such a parameter could not exist at all. It has not been shown in
fact that this regularization has a continuum limit. Since perturbation theory cannot be used for
this purpose, one should study some physical quantity (different from the string tension) to
determine whether it would scale or not.

In conclusion the present result is not in contradiction with previous investigations,
showing the equivalence, as far as confinement is concerned, between compact and noncompact
regularizations provided they are both gauge—invariant and renormalizable.

2. — To make the paper reasonably self contained we report the essential features of the
regularization we have studied. In the whole paper we will restrict ourselves to the SU(2) gauge
group.

The basic element is the covariant derivative

1
D, = (5 —Wu)l+ﬂu, Ay =T, Aua (1)
where a is the lattice spacing, T, are the generators of the gauge group normalized according to

[Ta’Tb] =ig abc TC

| )
{Ta’Tb} =3 Sabs
A, is the gauge field and W, is the auxiliary field. They transform according to
' a
Apa=Apa+ (1 —a W) Ay By —egne A (1 +54) O
(3)

' 1
Wy =Wy+ 7 a A4, A, 0,

In the above formulae §, are the parameters of the transformation and Ay, the right
derivative

Auf =1 [fx+W)~F (] @
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U being the unit vector in the positive p—direction.
From the transformations of ﬂlu and Wu it follows that

Dy (x) = g(x) Dy, (x) g* (x + 1) )
. iTaﬁa
for a gauge transformation g(x) = e
There are two invariants
1
=-3 BZ T D) Dyx+W D, (x+Vv)Dy (6)
w>v

t,I=D, D' - = T (7)
g 1] a2 :

We will study the gauge field Lagrangian

L= Lp+ 3[3l2 Ztu-i-%[} 2o )ty (x+p)
a u PV

8)

1 2, 1 2
-6 B T (Aptv-Ay i)+ 57 X t-
WAV K

The additional terms with respect to Lp have been determined® in order to have
Euclidean invariance in the continuum limit and a propagator of W, constant in momentum
space. This ensures its decoupling in the continuum limit where L becomes the Yang—Mills

Lagrangian density plus the free Lagrangian of the field ty. For y=co we get exactly Wilson's
formulation.

The partition function is

~Yatsg

Z= [aw,, [d4,, ¢ % ©)

because the measure for integration over Wy, and A, is 1. This might be a significant
simplification for gauge groups SU(N) with N>2.

Both in the perturbative calculationd) and in the present numerical simulation the "polar”
representation of the covariant derivative has been used

1 def 1
D=3 Vi+t Uy= 2p,Uy (10)

where U, are link unitary variables. In terms of these variables



_Y adr
Z=Jdpupfl jdU e %a N (11)

where dU is the Haar measure on the SU(2) group and

Lo== 3 T Bppy TeUpy +V 0. (12)

Puyv
u>v

In the above equation

Upy = Up (0 Uy (x + ) U; x+v) U7

Ppyy = Pu (0 Py (X +1) Py (X +V) py,s

while V(p) can be dertermined by comparison with Eq. (8). For 1y = oo, Py is fixed to one, and
this explains how Wilson's formulation is recovered.

The renormalization group parameter of the present noncompact regularization has been
determined by a one loop calculationd). As a result of this calculation it has been shown that in
the scaling regime 7y is not an arbitrary parameter, but it must behave at large values of 3 as

Y= N B+, (13)

where 7, is arbitrary while vy, (independent of f) is calculable but has not been evaluated. In the
numerical simulation we will use the above expression of ¥ not only in the scaling window but
for all values of B, neglecting y,. We will comment on this approximation after presentation of
the numerical results.

The renormalization scale parameter Ayc of this regularization has been related® to that
of Wilson Ay

_lon?
Anc=Aw e U (14)
where
1
E = 0.2208 B ? , (15)

so that in the continuum limit (§ — o) according to Eq. (13) Axc = Aw-
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3. -~ We have performed our numerical simulation on a 124 lattice using the polar variables.
Since in such a representation the link matrices Uy, enter linearly into the action (12), it is
possible to use the standard heat bath method for the integral over the Uy's. For the integral
over p,, we used instead the Metropolis algorithm.

In Fig. 1 we show the expfectation value <5 T; U,> as a function of B for different values
of ;. The expectation value < 5 T, UP> of Wilson regularization is also reported. We see that
Wilson's result is recovered for large v¥;, while decreasing 7; the crossover is shifted to larger
values of f.
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FIG. 1 - The expectation value of < —é— T, UP > as a function of  fory; =5
(crosses); 2.5 (squares); 1 (circles). The slashed line corresponds to Wilson's model.

In Fig. 2 we report the Creutz ratio

WI—l J-1

X = — 1[‘[ s (16)
! Wi Wi
where Wy is the expectation value of the rectangular Wilson loop Tx J.

Due to the existence of the field p;, there are (at least) two possible definitions of the
Wilson loop
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W(Cl)=< Il Dy>=< 11 pys Uy>
Le C Le C
a7
wP=< 11 U, >
Le C

which should coincide in the continuum limit. We have evaluated both of them finding that they
indeed coincide within statistical errors in the scaling window for all the values of v; explored.
In Fig. 2 we have reported the Creutz ratio obtained from Wg).
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FIG. 2 — The value , as a function of f§ for decreasing values of v, from left to right
(v1=5;2,5;1). The fit to Wilson's values is given by the slashed line. Full circles, squares,
crosses and empty circles refer to I = 3,4,5,6 respectively.

We calculated the mean values of ); using for each value of § and y; 30 configurations of
the gauge field. These configurations are separated by 50 Monte Carlo sweeps through the
lattice. For each link we choosed the new value of Py by performing 3 Metropolis iterations,
while, as already mentioned, we used the heat bath method for Uy

In Fig. 2 for each value of vy only points lying in a band around the fit are reported for
clarity. The points to be discarded have been chosen by inspection. Always for clarity we have
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not reported the points corresponding to Wilson's regularization, but only their fit (broken
line). Writing the Creutz ratio in the form

102

(2 ol 50).

w

from the fits we determine the ratio (AW/ANC) which is reported in the Table along with the
theoretical value given by Eq. (14). Although this theoretical value is increasing with decreasing
Y1» it does so at a very much lower rate than the corresponding value provided by the Monte
Carlo simulation. This discrepancy can be due either to our approximation of neglecting ¥, in
Eq. (13), or to large corrections to the one-loop formula which would not be surprising in view
of the value of g ~ 1 in the scaling window. A similar situation occurs in the mixed
fundamental-adjoint model .

TABLE — The Monte Carlo and the theoretical values of the ratio (Aw/Anc) for
different values of ;. Numerical errors are purely subjective estimates. The
uncertainty in the theoretical values is due to the range of f3 in the scaling window.

Y1 5 2.5 1
(AwAye | 13402 30402 8.5+ 0.3
(Aw/Anc),, 1.03 £ 0.05 1.13 £ 0.05 2.0+ 0.2

In conclusion we think that we have the same kind of evidence for confinement as in
Wilson model. Such a result puts the two regularizations on the some footing and eliminates the
common assumption that confinement be related to compactness of the gauge fields.
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