ISTITUTO NAZIONALE DI FISICA NUCLEARE - ISTITUTO NAZIONALE DI FISICA NUCLEARE - ISr,)\

~

Laboratori Nazionali di Frascati

Submitted to Z. Phys. C

LNF-92/029 (P)
10 Aprile 1992

S. Bellucci:
BROKEN SUPERSYMMETRY IN THE MATRIX MODEL ON A CIRCLE

Servizio Documentazione
dei Laboratori Nazionali di Frascati
P.0. Box, 13 - 00044 Frascati (ltaly)

I FIYNOIZYN OLNLILSI - JHVITONN WIISId I1Q FTYNOIZYN OLNLILSI = FJHYITONN VOISIH Id ITVNOIZVN OLNLILSI - IHVITONN VIISId 10 FTVNOIZYN OLN




INEFN - L ratori ionali di Fr
Servizio Documentazione

LNF-92/029 (P)
10 Aprile 1992

BROKEN SUPERSYMMETRY
IN THE MATRIX MODEL ON A CIRCLE

S. Bellucci,’

INFN-Laborators Nazionals di Frascats
P.O. Boz 18
1-00044 Frascats, Italy

ABSTRACT

We consider the discretization of a D = 2 surface using polygons. We map
the surface onto superspace and integrate over surfaces of arbitrary genus, ob-
taining a discretized version of the Green-Schwarz string in D = 1. Taking an
unusual critical limit of the supersymmetric matrix model involved, we construct
exact solutions, to all perturbative orders, for the discretized superstring in one
dimension, both when the target space is a real line and when the theory is
represented in terms of matrix variables on a circle of finite radius. We com-
ment on the behavior of the compactified perturbative expansion under duality
transformations.
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The analysis contained in the present paper, is concerned with the nonpertur-
bative solution of the supersymmetric matrix model. The study of string theories
in low dimensions can be carried out by discretizing the worldsheet [1]. A connec-
tion to the matrix theory is so established. Carrying out random triangulations
of arbitrary D = 2 surfaces one can recover D = 2 gravity [2]. Summing over
arbitrary genus surfaces in the critical limit, which is equivalent to summing the
series to all orders, is a consequence of the random matrix model representation
of D = 1 string theory [3]. The case of one-dimensional matter coupled to gravity
has been considered in ref. [4]. This case is equivalent to the theory of D = 1
strings. The connection to random matrix theory reduces the problem to that of
N fermions in D = 1 quantum mechanics [1]. In the critical limit, this is exactly
solvable. There appear logarithmically divergent terms due to massless modes
[5].

In ref. [6], the supersymmetric theory is analyzed. Our main motivation in
taking up the supersymmetric matrix model is that, in the supersymmetric case,
one of the flaws that afflict the bosonic theory in D > 1, i.e. the presence of a
tachyon in the spectrum, is taken care of by the invariance of the model. We
consider arbitrary potentials, through supersymmetric quantum mechanics, in a
certain critical limit, to all orders. We obtain an exact expression for the density
of states and the critical coupling, by adopting a supersymmetric WKB (sWKB)
method [7]. In this way, we are able to evaluate the spectral density in the double
scaling limit. The density of states turns out to be different from the standard
critical limit of the bosonic matrix model. In the present work, we also consider
multicritical points and compute the contribution of various terms in the sWKB

series, commenting on the multicritical cases that could arise.

Recent results on nonperturbative features of D = 2 quantum gravity have
been obtained by carrying out numerical simulations {8]. The discretization of
the surface gives us exact results. The matrix model is equivalent to D = 2
quantum gravity, in the continuum limit. The discrete theory allows to study

nonperturbative phenomena, at least for the cases when embedding of the theory

in a target space can be carried out in a calculable way. In this respect, numerical
simulations can provide a complementary view. This gives rise, according to ref.
(8], to quite surprising results, such as the formation of D = 1 baby universes,
i.e. circles whose radiuses correspond to the time coordinate on the world-sheet,

in D = 2 quantum gravity.

Next, we consider the mapping from a D = 2 surface to superspace [6]. The
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D = 2 surface can be discretized using polygons of the same size and associating
to each polygon a point in superspace. By integrating over all surfaces of arbitrary
genus, imposing reparametrization invariance and supersymmetry, respectively,
in parameter and target spaces one can define the superstring theory. In this way,
one obtains a discrete version of the D = 1 Green-Schwarz string. The features

of the latter can be reproduced in the large N limit (i.e. N — o0).

We define a superfield matrix ¢
® =¢ + 0+ 8¢ + 64F, (1)

where ¢, ¢, F are N X N hermitean matrices. The superfield action can be

written as
S = / dt df dﬁrr[ - ®D* + W(3) | . (2)

Here we denote by D the covariant derivative and by W (®) the supersymmetric
potential. The partition function Z(B) is obtained by integrating eq. (2)

Z(B) = / D% P, (3)

In order to obtain the vanishing fermion number hamiltonian, we integrate

out the fermions . This gives

1
H=Tr(p2+F2—Eo3F'). (4)
Here we introduce the notation p? = —31;34:—,, F = %. Diagonalizing the ma-

trix field and introducing an appropriate jacobian for the measure, the problem
can be reduced to that of N fermions at zero temperature. Using a diagonal

representation for o3 we can rewrite the hamiltonian as

Hg 0 pt+ F2 - L1f 0
H= = g : (5)
0 Hp 0 p’+F2+ LF'

In the large N limit, near the critical point, with the levels becoming dense
and the maximum of the potential just touching the Fermi level, the problem can

be analyzed by studying the singularity structure of the density of states [4]
1
p(E) = 5 > 6(En — E). (6a)
n

One can introduce also the coupling constant
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Ep
N
9= % = [ oE)aE. (6b)

0

Here N is the number of fermions and coincides with the order of the matrix.

One has the ground state energy

Ep = Y E. = B* | Ep(E) dE . (7)
" 0

Defining u = Viaz — EF and letting 4 — 0, the density of states and the coupling
constant become divergent, reflecting a critical behaviour. We introduce the

derivatives of g and E, [1]

dg
— = - 8
ou p ( a)
and
oF dg
9 = 2 —_ = — 2 .
ou p #ap, Blue (8b)

In the WKB approximation, i.e. in the large N limit, we obtain to the zeroeth
order

1 / dz 9)
P x) SE-V)
The singularity of the density of states at the turning points that correspond

to maxima of the potential reads

1
= - —1 .
p o log » (10)

The 4 term in the potential for the supersymmetric case is O( 5) ~ O(%)

Expanding \/E - F1+ %F ! in eq. (9) one can calculate, in the leading N ap-
proximation, the maximum of the potential F'? that contributes to the divergent
part. Hence, to the leading order in IV, we can compute the energy of the ground

state
B N2(Ag)2
log (Ag)

This expression exhibits a weli-known logarithmic dependance on the renormal-

Ega ~

ized cosmological constant.

Next, we will carry out a resummation of the contributions to all orders and

take a double scaling limit different from that in ref. [4]. To this purpose, we
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are going to choose the origin of the energy variable at the maximum of the F2
term, near the critical point. In doing so, we are not going to concern ourselves
with the issue of maintaining the supersymmetry invariance of the theory, when
the zero of the energy coincides with the maximum of the potential. The non-
preservation of supersymmetry when the energy is measured from the new origin

is carried out in an appendix.

The potential can be expanded in the vicinity of the maximum of F. Hence,

recalling eq. (5), we obtain

H = p* + azxz(l+zcnz") — %(a-{—z:dnx“). (11)

n>0 n>0

Here we made use of the vanishing of the maximum of the potential. The con-
tribution of the coefficients ¢, and dn to the hamiltonian (11) is suppressed by
powers of . In fact, if we scale u as %3 and z? as %, the hamiltonian scales as
-;; ~ # In this scaling limit, we remain with the potential of a supersymmetric
harmonic oscillator, analytically continued to imaginary frequency. This is the

same behaviour obtained in the bosonic case.

Considering a supersymmetric harmonic oscillator and analytically continu-
ing its frequency to imaginary values, taking into account that the energy levels

are modified to be nA rather than (n + 1)%, one can obtain the density of states

o0

p(k) = >Re > ol (12)

s 2n +18u

Modifying the singularity, in order to achieve agreement with the value obtained

in (10) for N — o0, one introduces the redefinition

1 .1 1
plu) = — 5| Re \b(“iﬂ#) — log (Eﬂ)] : (13)
Here 9 is the digamma function
d
v(z) = Elog I'(z) . (14)

The redefined density of states can be rewritten as a power series, with coefficients

given in terms of the Bernoulli numbers
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1 1 > 1
pl) = — S-logu + m"mz1—£3&
n=0 Bu (15)
27 27 Pt 2k \Bu

Using the explicit value of the first few Bernoulli numbers

1 1 1
= - = — B = —,

one can explicitly express the density of states in the form

) = — ~{togp + —— + —2_ 4 & (16)
PI = T ox\ 9B 7 3522 7 T5g4u4 T 638648 T )

Next, we describe a calculation carried out using the method of sWKB [7]. It
is quite interesting that this procedure leads to the same series obtained above

using the expansion of the resolvent.

We start with the expression of the potential in supersymmetric quantum

mechanics
V = f2 - nf'. (17)

It is well-known that the conventional WKB approximation can be described as
an expansion in powers of the parameter A. The underlined assumption is that
h is small. In our case h corresponds to é— or —g—, , where N — co. However, it
seems that the f’ term in the 1-particle potential is not suppressed by a power
of 7},— . Indeed, the factor ﬁ ~ h, arising because this term comes from fermionic
loops, cancels due to the presence of N fermions per eigenvalue in the matrix
model, in agreement with refs. [6]. We take the integrand of sWKB to be
f2, rather than the full potential f2 — Af’ which includes the contribution of
fermionic loop integrals. The second difference in the sWKB procedure, with
respect to the conventional WKB method, arises in choosing the turning points.
In fact, in sWKB, the turning points are given by E — F? = 0, rather than by
E—F*4+AF' =0, as is the case of the standard WKB approximation. Effectively,
sWKB provides a resummation of terms in the conventional WKB series. There
are cases where the energy spectrum can be calculated exactly and one can
obtain analytic solutions. These are the supersymmetric quantum mechanical

problems with exactly solvable potentials. In these cases, the solution receives

contributions from an infinite number of terms of the conventional WKB series,
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i.e. from terms of all orders, while the result obtained using sWKB to first order

It is instructive to compare the series obtained by both approximation tech-

niques. We begin by giving the conventional WKB series, up to O(%°) terms

Za

z3
K2 d |44
\/2m/ VE-V dz - _— ——
SREPYW = B
z) z3

X2

L & / 7(V")? - svrym p
I
2880(2m) % 457 VE-V
1 .
RS a4 T 216(vm)? J (18)
- T
125760(2m)3 | 4B VE-V
L& 7 93(V")® — 224V VY M 4 35(y )2y m P
dES VE-V *
z;
= Nrh,

where we denote by z; and z3 two points where the expression £ — V vanishes.

Following ref. [7], the series obtained using sWKB reads

b

Vi [ VB - 2 oy (i

6v2mdE? VE — f?

a

4 ht d? . 30f'fMm is
720(2m)3 | 4E? J VE -3
b
+ & / “S(f')4 - 31f(f')2f" + 7}'2(‘1'”)2 —5f2frpm J
= VE-T? ’
+ h® & ( 378(f™)? is
90720(2m)’ | 4E° ) VE-f2 (19)
b
+ d* / [-2160ff’f”f”’ + 1674(}")2(}'")2 — 108f2(f”')2] J
" VE-7? §

b
ds
+ o [ \/El__fz[gs(f’)°—1119f(f')4f”+ 72031 (1)}

+ 399f2(f')3f'" _ 93f3(f")3 + 224f3flf”flll _ 35f3(fr)2flrrr]
= Nxh.

The expression E — f2 vanishes at the integration extrema a, b.
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We recall that we are approximating using an inverted supersymmetric har-
monic oscillator. Hence, in our case, f = iv/2z and f' = iv/2. We note the
presence of the imaginary factor ¢+ in the potential, although the final result is
real, due to the appearance of only even powers of f. The appearance of imag-
inary factors is a consequence of the shift in the origin of the energy variable
that we introduced when setting a vanishing maximum of the F? term in the

potential.

The method of sWKB allows us to obtain the density of states. All one needs
is taking one derivative of the sSWKB series with respect to E. Differentiating

eq. (19) yields the divergent part for p(u)

1 1 1 8
plu) = —E;log b= 67 (Bu)? B 15x(Bu)t  63n(Bun)8

. (20)

This matches exactly the terms of the series in eq. (16). Thus, we have obtained
the result that the modification of the WKB approximation adopted here coin-
cides with the nonperturbative solution for the discretized D = 1 superstring we
constructed by analytically continuing the supersymmetric harmonic oscillator.
Next, we turn our attention to the exact expression that can be derived for the

critical coupling.

In order to compute Ag entering the result to leading order in N for the
ground state energy, we integrate eq. (8a) using the exact expression for the
density of states given in (13), (14)

Ag = %[——Im log I‘(i%ﬂp)%—%log (%"—)} —%u log u . (21)

This represents an exact solution that can be asymptotically expanded, yield-
ing the same result one obtains by integrating the asymptotic expaﬂsion of the
density of states (15), modulo terms that vanish when the planar limit or the
double scaling limit are considered. The integral representation of (21) allows the
investigation of the non-perturbative aspects of the corresponding string theory.
This includes the possibility of obtaining useful information on the ground state
energy of the D = 1 Green-Schwarz superstring, by discretizing the worldsheet
and establishing the connection to the matrix model we described. Thus, our
exact results bear important consequences for the nonperturbative description of
D = 2 quantum gravity through the supersymmetric string. Our nonperturba-
tive solution can be elaborated, following the same procedure adopted in accord

with the WKB expansion in ref. 9], as quantum oscillations on top of smooth
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distributions obtained using sWKB, instead of the conventional WKB solution.
We note that all the correlation functions, which are related to < Tr¢2* >, can
be calculated by differentiating the density of states p with respect to g [4].
One can consider next the case of potentials whose k-th derivative vanishes
at the maximum. The critical behaviour turns out to be the same as in the case
of the bosonic string theory [4]. The scaling law of Ag is given by p(+E)/2k The

ground state energy E,, scales as N%(Ag)**7+, where 7, = We can treat

k+2
the exact solution obtained by analyzing these potentials using sSWKB. For this
purpose, we take f = iz%/2. In carrying out the nonperturbative analysis, we

assume

p o~ zt ~ =382, (22)

After differentiating the sSWKB series (19) with respect to E, we obtain the

behaviour of the nth order term contributing to the density of states

m o L [, | 0

P ﬁ"/(E-fz)é+n £ (23)
Hence

p = y,zh Z 'H"' _”( ) (24)

Plugging this expression in eq. (8a) and integrating, we find
g = w¥ Y 2 Zn # w5 (29)
n ecven

We can also obtain the behaviour of the ground state energy. Integrating eq.
(8b) using (24), yields

E,, = —|1+ s . 26
where
J 1 )
Y prag W

Note that S(Ag) ~ O(1), as can be seen by inspecting eq. (22). Hence, all the
terms in the sum (26) are of the same order.

As we have seen in our model, string theory in D = 1, which is equivalent
to gravity coupled to matter in D = 1, is linked to the random matrix mod-

els, through the discretization of the worldsheet. The random matrix theory
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representation of the one dimensional string allows to derive a solution to all
perturbative orders, for both the case in which the target space is a real line [4]
and the string theory compactified on a circle of finite radius R [10]. Our present
analysis elucidates the solution to arbitrary genus of the supersymmetric string
on the real line, in the critical limit. Next, following ref. [11], we consider the
representation of the supersymmetric string in terms of matrix variables on a

circle. :
We begin with the topological expansion of the discretized string partition

function

z = ) N9 g4zy, (27)
. G Sn

where G denotes the genus and N is the number of points in the discretization Sy.
Here A represents the area of the discretization and g is the coupling constant.

The latter can be expressed in terms of the cosmological constant A
g = e A, (28)

In the string path integral (27) we introduced the term

ZN = /[dl’k]wp(— > Eij(N)) ) (29)

<ij>
where the sum is over the nearest neighbour vertices of Sy. We recall that the
target space is one dimensional. Hence, there are two cases to be analyzed. First,
we considered the case of a rea! line, where we integrated in the range (—oo, +o0).

In this case, we took a gaussian link factor
1 2
E,'J' ~ E(z‘- - Ij) . (30)

Now, we take into consideration the case of a circle, where the integrations are

carried out in the range [0,27R). In this case, the link factor is assumed to be
periodic with period 27 R

Eij ~ R(.’t; - .'.BJ') . (31)

The string partition function is related to that of a matrix model

Z = /[d@ab]cxp[—- N/Tr (%‘bz + V(Q))dt} , (32)

where @, is a N X N hermitean matrix and the potential can be expressed as
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V(@) = 28"+ 2g2%+ ... (33)

The action of the supersymmetric matrix model in (2) can be expressed, by

recalling the covariant derivative D
7]
D = —+0— (34)

and carrying out the integration over the fermionic coordinates #, § and elimi-
nating the auxiliary field F, in terms of the components of the D = 1 superfield

matrix ®,4,(t,48,0), as follows:

2
1, 1o (W), . aw(e)
S=/dtTr—2+- + + N
Going to the hamiltonian formalism and noticing that ]% plays the role of A,

we have

1
{pab’ ¢cd] = _6ad5bc ’ (36)
N

{¥ab, ¥ea} = baabse - (37)

As N — oo, this reproduces the D = 1 superstring. The problem is reduced to
that of finding the ground state of the hamiltonian

2
1 9 ow 1 9w

H = — + _—— 38

2N? a¢ab2 (a¢ab> ‘Na‘?sa,b2 ( )

We take as an ansatz for the wavefunction of the ground state x({};})|0 >, where
Yapl0 >=0, | (39)

and {A;} are the eigenvalues of ¢,
da =0"1AN . (40)

Here 1 denotes a unitary matrix, whereas A is a diagonal matrix. The change of

variables introduces the Van der Monde determinant

[dgas] = [ANI[ANIAT0) @



- 12 -

where
AR =[Ji=2)) - (42)
1<y

Then, we can write, for the ground state energy,

1 J[dA(XHX)

E,, = — min —
N [lAA](xx)

(43)
where we have introduced the redefinition of the ground state wavefunction due

to the Van der Monde determinant

x(A) = A(A)x(A) . (44)

The problem becomes that of N fermions in a one dimensional supersymmetric
potential

g 1
V) = W) - W) (45)
In the first part of our work, where we considered the discrete version of the

supersymmetric string on the real line, we took, for the superpotential W
W= -2x?, W"=iv2. (46)

In analogy with the bosonic case, we solved the inverted supersymmetric har-
monic oscillator. We define 4 = Ve — Ep. The density of states and the
coupling constant are singular functions of u. Accordingly with this critical
behaviour as 4 — 0, the ground state energy depends non-analytically on the
coupling constant. The renormalized cosmological constant is identified with the
nonanalytic component of E,{A), where A = 1 — g [4]. The function E,(A)
can be calculated from the equation

oF
—é—Aﬁ = ,Bz(ﬂ' - Vmaz) s (47)

plugging the function u(A) obtained by solving

A

5 = o(ER). (48)

The high degree of divergence of the asymptotic expansion of the density of states
(15) is expressed by the fast growth of the Bernoulli numbers, reflecting a typical
stringy behaviour [12].

The exact result we obtained can be rewritten as an integral representation -
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-1
1op _ 1 i ‘) -
32 st Jawemcnen (5) o (5)] - o

This should be regarded as an attempt to provide a nonperturbative definition of

the supersymmetric string theory, in terms of the integral over the Borel trans-
form of the asymptotic expansion (15), supplemented by a principle value pre-

scription for integrating about the infinite number of poles on the real axis. We

will have to keep in mind that the potential ambiguities associated with the infi-
nite number of arbitrary parameters introduced by the principle value prescrip-
tion, make the validity of the integral representation (49) beyond its asymptotic

expansion (15) unclear.

Integrating eq. (48) using the perturbative series (15), we obtain

A=H21 _togu + i_M(_z_)zk (50)
= ox TET Zaok(zk - 1) \Bu ‘
This expression can be inverted to write x4 as a function of A
2rA | Bakl log A2k
= — 5
# logA[ logAZ2k2k—1(7rﬂA) ’ (51)

where we neglect double logarithms, as well as terms that are suppressed by
powers of log A . Using u(A) from (51) and integrating eq. (47), yields the

leading-logarithmic series for the ground state energy

2ﬂ2A2 1 1 > lng+2| log AN 2k
By =—Toga " 6x'® A+2—r;k(k+1)(2k+1)(wﬂz§) - (59)

For comparison, note that in the bosonic case one has

x2B2A2 1 RN |Baksal log A\ 2k
= - - = ~1
Bo=Togn Y122 an ;(2 )k(k +1)(2k + 1) (27rﬂA)

(53)
In writing (53), we are correcting an error in the result given in eq. (3.13) of ref.
[10]. The appearance of logarithmic divergences in our result deserves two com-
ments. Firstly, these divergences can only be detected by the discretized version
of the theory, though agreement is found with the scaling of the free energy like
A? obtained from conformal field theory {13]. Secondly, the logarithmic depen-
dance on the renormalized cosmological constant has been linked, in the bosonic

string case, to the presence of massless modes [5].
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As in the bosonic case [10!, we define the matrix variable ¢(t) on a circle of

radius R, with the partition function
Z = Trezp(—2nRBH) . (54)

Note that 2rR can be interpreted as the inverse temperature. The coupling

constant is defined in terms of the chemical potential up as follows:

[0 0]

9 = [PENL + copl2nRO(E ~ up)} 7 dE . (55)
0

In order to calculate the free energy F as a function of A, one needs to consider

the equations

%% - / dX ppe — /\)a%{l + ezpl2nRA(p — A}, (56)

oF

38 = Ble - nd. (57)

Here we have introduced p = p. — pp, A = p. — E. First, one uses (56) to
determine the function p(A). Then, F(A) can be calculated by integrating eq.
(57).

Next, we proceed by differentiating (56)

atA

dp 1 -
™ = _/d'\5§ EwRﬁ {cosh{rRB(p — N)]}~*. (58)

It is convenient to use the integral representation of p given in eq. (49) that

provides the exact result for the supersymmetric string theory. The integral in A
can be carried out introducing the variable z = 79‘17 )

%WRﬂ / d(p = A) ezplif(n — Nz] {cosh{RB(n — N}~

z z o (59)
(el
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and yields the result

00 -1

192A .

Em = %Im /d:z: ze’;}:—ic“’p"‘ [sinh(z) sinh (5'%)} . (60)
0

Integrating in u4 we find

o0
A 1 : t t t 14
—=—R dt e ¥ — nh| — |st —_—
o 2n e / e 2Rﬂ2#2cxp (ﬂ#) [sm (ﬂ“)smh (2Rﬂu)

m

-1

» (61)

where we fix the integration constant, in order to agree with the W K B approxi-

mation.

The result (61) is not symmetric under the duality transformations

1
— — . 62
2R — 5B B8 — 2Rp (62)

This is the opposite of what occurs in the bosonic case [10], whose solution can

be obtained from (61) by simply dropping the factor ezp (—Bt;) on the r.h.s. of

(61)
oa 1 [ t t ¢\
ga _ -t b | A A _t
EP szc /dt e 2RB sinh (ﬂ#) sinh <2Rﬁu) (83)
m

Remarkably, eq. (63) has a duality symmetry under the transformations (62).
Although this is not a symmetry of the relation (61) holding for the supersym-
metric theory, the transformations (62) still play a special role. Firstly, note
that the exact supersymmetric solution (49) is obtained from (60), in the limit
R — oo. Secondly, let us carry out a duality transformation of {60) and follow

the fate of the exponential factor

._t_ — __t_ (64)
exp i exp 2RAE )

Then, taking the limit R — oo, this exponential factor goes to one and we recover

the nonperturbative solution of the bosonic theory (4]

o] -1
19 _ 1 R
39n — Znn Im 0/ dt exp (—1t) P [smh (ﬁ#) ] . (65)

Hence, we conclude that duality is not a symmetry, rather it maps the nonper-
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turbative solution of the R = oo supersymmetric string into the corresponding
solution of the bosonic theory. One way to interpret this result is by speculating
that the exact solution we found in the case of the supersymmetric matrix model
on the real line suggests itself as a candidate for a dual point of string theory.
Summarizing, that is what we learned, having modified string theory to put it on
a circle. Although the validity of (61) is based upon the assumption that the inte-
gral representation (49) that summarizes the asymptotic expansion of the density
of states is correct, the asymptotic expansion of (61) holds unambiguously, just

as the asymptotic expansion of p given in (15).

The R — o/R duality of the bosonic solution [10] is broken for T > Tkr,
where Txr denotes the Kosterlitz-Thouless transition temperature [14]. We can
study the Kosterlitz-Thouless phase transition on random surfaces. In this re-
spect, it is useful to consider the theory of quantum mechanics with a discrete

time step € {15]. This problem can be reduced to finding the hamiltonian H ()
such that

< zle:cp(—- eNH(e))Iy > = K(z,y), (66)

where K(z,y) is the transfer matrix. The latter coincides with the propagator

for the inverted harmonic oscillator. Hence, the free energy reads

E(e,A) = %w(e)E(A) , (67)

where E(A) coincides with the N-fermion ground state energy of matrix quantum
mechanics found in eq. (52). For € > 1, both w(¢) and H(¢) have complex values.
This can be interpreted as an indication that the ¢ = 1 phase of string theory
is unstable. As ¢ — 0, we have w(¢) — 2. Hence, one recovers matrix quantum

mechanics from the infinite chain of matrices with nearest neighbour couplings.

In conclusion, we recall that we evaluated the spectral density of the target-
space supersymmetric matrix model in a double scaling limit different from that
in ref. [4]. In the case of the random matrix model on the real line, we found
that expanding the resolvent yields the same result as the calculation carried
out using sWKB. The origin of the logarithmic divergences that appear again,
as in the universal result of ref. {4], may be linked to the presence of massless
modes. The divergent series obtained in our solution is not summable. However,
we showed that the series can be analytically continued. We discussed the case
of multicritical points and gave the scaling behaviour of the sWKB result. We
considered a D = 1 theory which is effectively equivalent to a D = 2 model

with the inclusion of gravity fluctuations [16]. Our procedure can be followed in
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studying the D = 0 theory, in order to find the changes induced in the nonlinear
equations obeyed by the susceptibility. The scaling behaviour for this model
changes with respect to the ordinary bosonic case of ref. [4]. Hence, the density

of states turns out to be different.

We want to finish with a few clarifying remarks about the comparison of
the results obtained here with related results in the literature and their physical
significance. Had we considered an arbitrary potential and expanded around the

critical point, we would have obtained
—4
(W’) maz s Az Y W" - - A( Vmaz - Az) 2 . (68)

Substituting these expressions into the sWKB expansion (19) yields the asymp-
totic expansion of the density of states for the bosonic random matrix model of
ref. [4]

1
p(p) = —~——logu + ;E—I 21— TS,
o 21 )
- _ - _ 2k 1-2k _
Lios - L5 B(L) ey,

rather than the asymptotic series (15) of the supersymmetric case. In order
to elucidate further what appears to be a deep relationship between the two
nonperturbative solutions, one may ask what happens in the limit V,,,, — oo.
In this sense it may prove useful to investigate the entire complex parameter
space of the couplings, where one may be able to establish a relationship to
the complex solutions in D = 0 by using stochastic quantization. Note that the
model we solved differs from the Marinari-Parisi one-dimensional supersymmetric
matrix model, because of the target-space supersymmetry-breaking procedure we
adopted in taking the scaling limit. We recall that, assuming zero fermion content
of the ground state, the energy of the Marinari-Parisi model is the sum of the first
N levels in a one-particle potential V = W'W' — W" | Below the critical point,
the minimum and local maximum of this potential lie respectively below and
above zero. In this regime, the sum of the first NV levels vanishes to all orders in
the WKB expansion, consister.t with a perturbatively unbroken supersymmetry
invariance of the matrix model. Above the critical point, the local maximum
disappears, supersymmetry is spontaneously broken and the scaling properties
are identical to the D = 0 (pure gravity) case. On the other hand, we find
a nonvanishing energy already in the leading planar order, but with the scaling

properties of the D = 1 bosonic string, in apparent contradiction with both of the
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abovementioned behaviours. This discrepancy is due to the fact that the energy
shift we used to bring the local maximum to zero does not respect supersymmetry
(see the appendix). Thus, the model we solved is equivalent to a bosonic D =1
matrix model, with a potential of the form: W/W' — %W”, which we studied by

the sSWKB approximation. A very interesting feature of our solution is that the

answer differs from the a-priori universal analysis of ref. [4]. The reason for this
difference is very simple: because N enters explicitly in the potential, % loses
its geometric interpretation as a loop-counting parameter, or put differently, the
scaling limit is different from that in ref. [4]. We hope that a future investigation
will clarify the geometric interpretation for taking the unusual scaling limit we
introduced in this work. In this sense, it appears natural to consider the matrix
model involved as the representation of the D = 1 supersymmetric string with

broken target-space supersymmetry.

Finally, following Gonzélez and Vozmediano [6|, we may choose as an ansatz
for the wavefunction of the ground state x({\;}) ¥11%¥22-- - ¥nn|0 >
or x({A;}) det(¥43)|0 >. As a consequence, we obtain a different hamiltonian. In
this case, the ground state energy is given, in terms of the ground state energy of
the one particle-hamiltonian eg,, by E’;, = feg,. This should be compared with
the solution (52), which exhibits a different behavior Ey, ~ #2. This may indicate
that, as B goes to infinity, the theory undergoes a sort of phase transition from
the essentially bosonic choice for the ground state wavefunction x({A;})|0 >, to
the fermionic ansatz x({);}) det(¥)|0 > . An investigation of the features of the
latter would probably require the use of collective coordinates for 4. Evaluating
egs will also prove to be proLlematic, with sWKB not quite adequate, and with

issues of nonperturbative breaking of supersymmetry.
Appendix

The formalism for dealing with a supersymmetric quantum mechanical theory
is described in ref. [17], which we refer to throughout this appendix. Here, we
focus on the discussion of the shift of the zero of the energy away from the
minimum of the potential, introduced in writing the hamiltonian (11) as well
as the sWKB series (19). The original supersymmetric hamiltonian appears in
the algebra, as a result of anticommuting the supersymmetric charge Q and its

hermitian conjugate

{Qh.Q} =21, (70)
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Next, we show that introducing in the hamiltonian a constant shift K, according

to
H-H=H+ K, (71)

implies the redefinition of the supersymmetric charge
Q = ()Qe%(2) (72a)

Note that we are working with a formalism where Q is complex, rather than ex-
pressing our result in terms of the real and imaginary part of Q. The redefinition

of the hermitian conjugate yields
Ot = etz i) . (728)

For the time being, ¢ represents any real function of z.

Indeed, given any real function ¢(z) in (72), the redefined charge é satisfies
the same supersymmetry algebra (70) as Q. However, the expression of the
hamiltonian obtained from the anticommutator of Q and its hermitian conjugate

reads

H = ) He () (73)

We can expand this expression for small values of ¢

fl = H - [P2,¢] . (74)

This can be represented as
] : " ! d
H =H + th[ ¢ (15) + 2¢ (I)E ] ) (75)

where we reintroduced explicitly the & parameter. Hence, the requirement that

supersymmetry is preserved by the redefinition of the charges would force us to
relate the second derivative of the function ¢(z) to the constant shift K defined
in (71)

@) = - 1K (76)

The requirement ¢" = constant corresponds to a potential such that f! = 1\/2h,
which is what we introduced in the text, after eq. (19). Note, however, the first
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derivative term in eq. (75). This forces us to restrict the function ¢(z) to be
a constant and K to vanish. We conclude that the definition of the zero of the

energy cannot be changed without affecting the validity of the supersymmetry

algebra.

Another important issue we must consider is the possible modification of the

energy spectrum, as a consequence of shifting the hamiltonian according to (71).

The eigenvalue equation

Hyp

Ey, (77)
becomes, after the redefinition,

P ~ -

Hy = Ey. (78)

The redefined wave function of the eigenstate is related to the original one by

the transformation
b = ey . (79)

This result shows that nothing has been done that would modify the spectrum.
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