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ABSTRACT

We discuss a general method for estimating the number of events required to obtain

a given accuracy in the measurement of a parameter of a theory. Simple examples are
given. We also discuss resolution effects.

1. Introduction

Consider a variable z, a physical measurable parameter, for which a theory predicts
the distribution function f(z;p), where p is a (set of) parameter(s) to be determined
experimentally. f(z;p) is called the probability density function, meaning that dP, the
probability of observing an event at z in the interval dz, is f(z;p)dz. The function f

is normalized to unity over the whole {z} interval where z is physical.

The joint probability density or likelihood of an observation (experiment) resulting

in a set of N values z; for the variable z is:

N
£=1]f=ip) (1.1)

1
The best estimate for p is the value p which maximizes the likelihood L of the
observation or, equivalently of W=log{. From the theorem above[l] and the theorem
that for large NV the likelihood function approaches a gaussian we obtain that the actual

result of an experiment with N events will fluctuate around the true value with a



variance ((p — p)?) = o given by:

(1.2)

From eq. (1.1) the likelihood for an experiment in which one event is observed is
L=f(z,p)and W = log £ = log f. If we want the accuracy with which we can determine

. . . O*W
the parameter p, we use the result in equation (1.2),[2] relating a7 to o, as:

*w _ 9%log f(z; p)

a7 = o2 (1.3)
2
The value of 52 averaged over repeated experiments of one event each is:
d%lo
)= [ FRELE D a0 (1.4

and for N events

W _ 8% log f(z;p) '
< 352 >—N/—6;2————f(z,p)dx. (1.5)

Computing the derivative in the integral above gives:

8% log f 1 /0f\2 *f
5 dx—~/7(a—p) de + [ 57 da, (1.6)

where the last term vanishes, exchanging integration and differentiation, since [ f dz=1.

Thus finally we obtain:

o e [FEER ) @

For the case of many parameters, the error matrix, which in general is non diagonal if

the parameters are correlated, is given by:

(pi — Pi)(p; —pj) = %[/%(ngmafép;p)) a:] - (1.8).

Notice that the expression in brackets which has to be inverted is a square, symmetric
matrix. While the integrals in (1.7) and (1.8) might appear ugly, they are trivially
computed numerically, even if no closed form for f is given by theory. The errors,
as expected, decrease as 1/v/N and the accuracy of the error estimate itself does not

depend on N but on the approximations in computing the integrals.



2. Examples

2.1 SLOPE

The simplest application is estimating the number of events necessary do determine
a slope parameter g defined as in f(z;¢) = (1 4+ z¢)/2, with z in {—1, 1}. The integral

in equation (1.7) is:

1

72
:{mdx 2; (log(itg> —29) (2.1)

giving g, = /3/N, for g=0. For convenience I recall that log ((1 + z)/(1 — z)) =

2(z — z%/3--). Measurements of a slope of ~5x107% to 3¢ requires therefore v/3/N ~
5x107°/3 or N ~ 1010,

2.2 DALITZ PLOT SLOPE

The measurement of the slope of the Dalitz plot density for the odd pion from the
31 decays of K mesons is of particular interest here. The accuracy for this case is
slightly worse than for the previous one because events at the edge of phase space which
carry the most information about the slope are less frequent. The loss is however very
small, ~15%. The odd pion energy distribution is (1 + g X Er) x ¢(Ey), where g is
the slope of interest and ¢(E;) is the phase space factor. We approximate the shape
of the Dalitz plot with a circle centered at the origin. The probability density is then
f(z;9) = (2/m)(1 + gz)v1 — 22, with z in {—1, 1}. The error on g is given by:

1

2 V1-22 -1 g2

2 __ (2 - .2

(0g)" = 7r/ 149z ) N (2.2)
-1

where for ¢ = 0.26, the value for Kai; decays, £ = 1.98 resulting in a fractional accuracy,
o4/9 = 1.56/V/N.

Observation of 101° K+ and K~ 37 decay events allows one to measure o4/g to an
accuracy of 7.6x1075. To observe .a 30 difference in the Kt and K~ slopes, they must
differ by 3xv/2x0.26x7.6x1073=8.4x10"% or Ag/g = 3.2 x 10~*. This is probably the
ultimate sensitivity which could be achieved at DA®NE. Kaon beams at other facilities

could provide smaller statistical errors, but will probably suffer from worse systematic

uncertainties.



2.3 THE mm SCATTERING LENGTH

The same method is easily applied to the question of what can DA®NE do with
respect to measuring the 77 scattering lengths, what kind of detector is required and
whether tagging is necessary. Given the appropriate dependence of the measurable
physical quantities, in various conditions, on the physical parameters of interest. one
can estimate the number of ete™ — mmete™ events which must be detected to obtain

the required accuracy, following the procedure outlined above.

3. Including the effects of experimental resolution

We assume the resolution function is known, otherwise the case is, of course, hope-
less. A common procedure is to try to unfold the resolution effects from the data. This
procedure is ambiguous and can lead to incorrect results. The correct procedure is

however very simple. Convolute the resolution r with the probability density f:
Flaip) = [ fla - i) e, (3.)

make sure that f’ is correctly normalized and proceed as above.[3] The loss in accuracy

due to resolution can be obtained in this way, helping to define how to design an

experiment.
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