LNF-92/016

MARCO — models of accelerators and rings to
commission and operate

L. Catani, G. Di Pirro, C. Milardi, A. Stecchi, L. Trasatti, M.J. Lee

Nucl. Instr. & Meth. In Phys. Res- A313 (1992) 273-276

-
[

2

o b

Nuclear Instruments and Methods in Physics Research A313 (1992) 273-276

North-Holland

H

NUCLEAR
INSTRUMENTS
& METHODS
IN PHYSICS
RESEARCH

Section A

MARCO - models of accelerators and rings to commission

and operate

L. Catani, G. Di Pirro, C. Milardi, A. Stecchi and L. Trasatti
INFN. Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Rm), Italy

M.J. Lee

Stanford Linear Accelerator Center, P.O. Box 4349, Stanford, CA 94309, USA

Received 30 August 1991

MARCO is a knowledge-based user interface for commissioning and operating modern accelerators and storage rings. Its
purpose is to provide a model-referenced graphical interface system between the users and the machine. It allows access to
modeling and simulation codes that are used in the design of the machine. it can be used to predict the effects of a change of
parameters on the beam, or to compare the predicted with the measured effects. The design and prototype development of

MARCO using HyperCard will be described in this paper.

1. Design codes

Two types of programs are used in machine design:

1) Lattice modeling — to define the location and
strength of the beamline elements in order to obtain
the desired lattice function values (e.g., the transport
matrix and the Twiss parameter values). Examples of
the lattice calculation programs are COMFORT (1],
LEDA {2], etc.

2) Error simulation - to find the location or the
strength of the beam monitors and correctors to change
the beam errors (e.g. the beam trajectory and shape).
Examples of the correction programs are RESOLVE
[3], etc.

MARCO is an attempt to build a common graphical
and interactive user interface to these programs, hiding
the complexity of the many existing input-output data
formats. The integration of such a tool in the control
environment of an accelerator will greatly enhance the
possibility of understanding and predicting machine
behaviour for the operators, during both commission-
ing and normal operation.

1.1. Control applications

MARCO will be an interface to both types of pro-
grams: lattice modeling .and error simulation. Using
these programs, it is possible to operate the machine
more intelligently. For instance, lattice modeling pro-
grams can be used to see the effects on the Twiss

function values before making a change in the beam-
line elements; they also can be used to compute the
strength of the beamline elements required for making
a specific change on the Twiss functions. Both applica-
tions are needed in a procedure to “Setup the beam
line”. Also, trajectory error simulation programs can
be used to predict the effects on beam trajectory be-
fore making a change on a corrector; they aiso can be
used to compute the strength of the correctors re-
quired for making a specific change in the trajectory.
Both applications are needed in a procedure to “cor-
rect the beam error”.

1.2. Commissioning applications

The goal in commissioning is to find and correct the
errors in the beamline. The error verification proce-
dure involves two steps: 1) Identify the good regions by
finding the largest regions where the prediction from
the simulation codes agrees with the measurement; 2)
Identify the errors by searching for the most likely
candidate in the bad region (a bad region usually lies
between two adjacent good regions).

For example, it will be possible to use MARCO to
find field errors due to misalignment or miscalibration
of the beam-line elements by analyzing the measured
trajectory of a test beam. The measurement usually
involves changing the beam trajectory by kicking the

g‘beam with some trajectory correctors and measuring
the beam trajectory at the beam position monitors

0168-9002 /92 /305.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

274 L. Catani et al. / MARCO

(BPMs). In practice. 1) Focusing errors are found by
analyzing a multiple set of beam oscillation data (an
oscillation is defined as the difference between two
sets of beam trajectory data); 2) Bending errors are
found by analyzing a set of trajectory data (not their
differences). Both applications are needed in a proce-
dure to “verify the beamline”. This procedure has
been used successtully to find focusing errors and
bending errors in SLC and to find the alignment errors
in PEP and SPEAR at SLAC.

2. The system requirements

Recently, a user interface. GENI (4], has been de-
veloped for modeling and simulation programs such as
COMFORT and RESOLVE. These modeling and sim-
ulation programs are normally used to control and
commission any machine.

To use these programs, the user has only to read
the beamline dataset which contains the element defi-
nitions and beam line definitions. The name, type,
strength, etc. of every element are described in the
element definition data, and the position along the
beam line of the elements is contained in the beam line
definition data. After reading in the beam line dataset,
it is possible to use GENI to set up the beam line
configuration and to analyze measured beam trajecto-
ries.

We would like MARCO to expand the range of
GENIL. It should offer a standard interface to all of the
modeling and simulation programs that are commonty
used for lattice design and error study. Since GENI
was implemented on a MicroVAX workstation, its
availability will be limited. MARCO is required to
operate on a Macintosh II in order to be available to
many more users. In particular, the use of HyperCard
[5] on a MAC can offer a simple way to maintain and
upgrade MARCO.

2.1. The HyperCard solution

We have designed an interface system for MARCO
that can meet these requirements. Fig. 1 shows a block
diagram for the layout of the interface system for
MARCO.

For beam-line setup, the lattice modeling code in-
terfaces to the input beam line description data and to
the output data package. Two copies of the input data
are provided: an original copy containing the element
strength values of the design solution, and a second
copy containing the strength values of a new solution.
The user can run the modeling code to find the strength
of the elements (FITTING) that produce the desired
values of the TWISS functions at some specific points
(FIT POINT). The output data include a table of the

modeling
program
O AN
(o1d) l (new)
......] [T W
:]
MARCO's
DataBase

Fig. 1. A block diagram showing the layout of an interfacing

system to MARCO for beam-line setup. A dotted line sepa-

rates the modeling program from the translators (t) and
MARCO.

Twiss functions at every element and the strength of
the elements.

MARCO uses three translator codes: one for trans-
lating the input data from the data format of the
modeling code, the second for translating the
MARCO’s output data to the format of the modeling
code, and the last one to translate the output of the
modeling code to the MARCO interface standard.
After the input—output data have been translated. the
user can make changes or select a display interactively
using buttons, menus, graphs and windows.

At Frascati, most existing codes are working on a
VAX computer. [t is not necessary to implement them
to work on the MAC. It is possible using HyperCard to
run MARCO on the Mac and to run the modeling
code on the VAX simultaneously. Alternatively, for a
code that has been implemented to run on the MAC,
both MARCO and the modeling code can run on the
MAC concurrently. The use of HyperCard offers us a
simple way to connect new programs to MARCO with
minimum effort.

3. First implementation

The first two programs to be connected to MARCO
are the lattice design codes LEDA and COMFORT.
LEDA was originally written to run on a VAX using
Top Drawer as a graphical interface. All of the /0O
functions provided by Top Drawer are replaced by
HyperCard.

! Using MARCO it is possible to run Leda in two
modes:

L. Catani et al. / MARCO

275

SELEMENTS 24 sPERICOS | ! @
L (184 2 SMOrETS |8
sconpitions [2 oenTCH! (29 Hel
AR ABLE 4.2 8 1% wratoR (€3
Queo on DRIFT (119 121 122

C)PLOTMeg (X FRUCHET
) ZAPfiag CJFiTMiag R 15K flag

~2.0

o [N} cAxy 2
A s. 10] =5.28
ETAGM - CRXCOMR .
A CAZCOMR

e
(K+OMUX) (B i (ma)> 45197
(KeOMUZ) 9. corL (ot
axt 3 weawy fo7]
8zt 043 HeF 118,
ox2 S X0¢m) u.%.b._—_
822 7.5 YO(n) - 03

.8 mat[T 418
ALCOST 4.3 (rovert]mr«mml frout il l
) 1.
. 2
o (Lo J(puerean)

NE_ (47107903]

Fig. 2. General parameter setting window for LEDA.

- Importing the code to the Macintosh and recom-
piling it {(using MPW 3.1 [6] and the Language System
FORTRAN [7)).

— Using an RS232 interface to the VAX (the input
and output files are transferred between Macintosh
and VAX). In this mode, LEDA runs directly on the
VAX cpu. In the future the use of the Apple Commu-
nication Toolbox will allow faster and more flexible
communications with external computers.

These two modes of operation reflect different
needs which may arise for different programs: While
running a program on the machine for which it was
originally intended is usually the easiest way to pro-
ceed. it may sometimes be convenient to be able to
work in a standalone environment by running it on the
Macinotsh.

As far as COMFORT is concerned, only the first
method has been implemented, due to the high level of
complication of the program.

To run LEDA or COMFORT three separate win-
dows have been developed using HyperCard 2.

A) General parameter setting window (see fig. 2).

When this window is selected, a menu becomes
available to load an input data file and to translate it to
window B.

B) Element index and histogram window (see fig.
3). The elements are selected by the upper scroll bar
which permits rapid scrolling through the entire ma-
chine. Once an element is selected by clicking on the
corresponding icon, it is possible to change its parame-
ter values, or to assign/delete a parameter from the
list of elements to be used in fitting (for LEDA, fitting
is the process of calculating the values of the variable
element parameters to obtain the desired Twiss func-

tion values at some specific points along the beam
line). These points are called the fit points. The output
is displayed in graphic form. Multiple plots can be
shown in the same window, including the output from
a previous run of the program.

On window B, the user can click the buttons to:
reset the machine to the original configuration; save
the changes entered or discard them; go back to the
parameter window; run the program on the Macintosh
(only for LEDA); run the program on the VAX. If the
last option is selected, the user is presented with win-
dow C.

C) VAX communication window, which allows
through a simple terminal emulator to log onto the

% dy A3 da

'

TNOEX
FARILY
Otsttal

Fig. 3. Element index and histogram window.

276 L. Catani et al. / MARCO

VAX and to change directories. Moreover, while the
program is being run, messages showing the status of
the execution may be displayed on the screen.

4. Summary

The experience with HyperCard 2 has proven ex-
tremely positive. We have demonstrated that a user
interface for a model-based control system can be
implemented in a highly modular way that can ease
debugging and improve maintainability, as can be ex-
pected from the use of an object oriented language
(HyperTalk).

We have found that development time using Hyper-
Card can be reduced to 1/5 or 1/10 of the develop-
ment time using UIS graphics (VAX workstation). In
particular, the number of lines of code has been re-
duced from 3000 (GENI) to less than 2000 (MARCO).
We believe that the reduction in the number of lines
will also lead to a reduction in the effort to maintain/
upgrade MARCO.

" The success obtained in building a common inter-
face to programs as different as LEDA and COM-
FORT encourages us to continue to implement other
modeling and simulation programs into MARCO.

Eventually, MARCO will be the user interface for the
model-based control system for the new PHI-factory
DA®NE under construction at the LNF.

Acknowledgements

We would like to thank the accelerator group of the
LNF for continuing discussions and encouragement.
We are particularly grateful to G. Vignola, C. Biscari
and Steven Kleban (SLAC) for their help in the imple-
mentation of LEDA with MARCO.

References

[1] M.D. Woodley, M.J. Lee. J. Jager and A.S. King, SLAC-
PUB-3086 (March, 1983).

[2} G. Vignola. private communication.

{3] M. Lee, private communication.

[4] S. Kleban, M. Lee and Y. Zambre. Nucl. Instr. and Meth.
A293 (1990) 475,

[5) HyperCard v2.0v2, Apple Computer Inc, © 1987-90.

(6] Macintosh Programmer Workshop v3.1. Apple Computer
Inc, © 1985-89.

[7] Language System FORTRAN. Language System Corpora-
tion, © 1988.

	LNF-92/016
	L. Catani, G. Di Pirro, C. Milardi, A. Stecchi, L. Trasatti, M.J. Lee

